Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 74
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

In the knock-out process, as well as in the preliminary phase of moulding sand reclamation, the issue of energy demand for the process of crushing used sand agglutinations, preferably to single grains, is particularly important. At present, numerical values of moulding sand impact resistance, which would allow energy-related aspects of this process to be forecast, are not known, as such research has not been carried out. It seems that impact resistance tested on very small cross-section samples, which allows us to very precisely reveal some unique features of a moulding sand with organic and inorganic binders, is an important parameter, which so far has not been taken into account for evaluation of mechanical properties of moulding sands. Preliminary attempts to determine impact resistance of moulding sands have been carried out as part of own research of the author. The conducted investigations aimed at determining the relationships between the obtained values of tensile strength and impact resistance of moulding sands. In addition, the effect of holding samples at temperatures of 100oC, 200oC, 300oC on the value of impact resistance was determined, both for sands made with fresh and with reclaimed sand grains.

Przejdź do artykułu

Autorzy i Afiliacje

R. Dańko
G. Dajczer

Abstrakt

Energy conservation is an important step to overcome the energy crisis and prevent environmental pollution. Casting industry is a major consumer of energy among all the industries. The distribution of electrical energy consumed in all the departments of the foundry is presented. Nearly 70% of the energy is consumed especially in the melting department alone. Production of casting involves number of process variables. Even though lot of efforts has been taken to prevent defects, it occurs in the casting due to variables present in the process. This paper focuses the energy saving by improving the casting yield and by reducing the rejections. Furthermore an analysis is made on power consumption for melting in the induction furnace to produce defective castings and improvement in the casting yield. The energy consumed to produce defective castings in all other departments is also presented. This analysis reveals that without any further investment in the foundry, it is possible to save 3248.15 kWh of energy by reducing the rejections as well as by improving the casting yield. The redesign of the feeding system and the reduced major rejection shrinkage in the body casting improved the casting yield from 56% to 72% and also the effective yield from 12.89% to 66.80%.

Przejdź do artykułu

Autorzy i Afiliacje

B. Chokkalingam
V. Raja
M. Dhineshkumar
M. Priya
R. Immanual

Abstrakt

The determination of the form of a probability density function (PDF3) of diameters for nodular particles by using a probability density function (PDF2), which form is empirically estimated from cross-sections of these nodules in a metallographic specimen, can be regarded as a special case of Wicksell's corpuscle problem (WCP). The estimation of the PDF3 for the nodular particles provides information about the kinetics of these particles nucleation, and so about the kinetics of their growth. This information is essential for building more accurate mathematical models of the alloy crystallization. In the paper there are presented two derivations of the methods used for the estimation of the PDF3 form. The first method bases on diameters received from a planar cross-section. The second one uses also data from the planar cross-section but not the diameters only chords. Both methods provide practical rules for the analysis of the empirical diameters’ and chord’s size distribution and allow to estimate the mean value of the external surface area of the particles.

Przejdź do artykułu

Autorzy i Afiliacje

D. Gurgul
A. Burbelko
T. Wiktor

Abstrakt

The paper presents a detailed description of one of the newest methods of vacuum saturation of reinforcing preforms in gypsum molds. As an appropriate selection of the infiltration time is a crucial problem during realization of this process, aim of the analysis shown in the paper is to present methods of selection of subatmospheric pressure application time, a sequence of lowering and increasing pressure, as well as examining influence of structure of reinforcing preforms on efficiency of this process. To realize the aim, studies on infiltration of reinforcing preforms made of a corundum sinter of various granulation of sintered particles with a model alloy were conducted. The infiltration process analysis was carried out in two stages. The first stage consisted in investigation of influence of lengthening of sucking off air from the reinforcing preforms on efficiency of this process. In the second stage, an analysis of influence of a two-staged infiltration process on saturation of the studied materials was conducted. Because the studied preforms were of similar porosity, the obtained differences of the saturation level of particular preforms have shown, that the saturation process is influenced mostly by size of pores present in the reinforcement. Because of these differences, each reinforcement type requires individual selection of time and sequence of the saturation process. For reinforcements of higher pore diameter, it is sufficient to simply increase air sucking off time to improve the saturation, while for reinforcement of smaller pore diameter, it is a better solution to apply the two-staged process of sucking off air. Application of the proposed analysis method allows not only obtaining composite castings of higher quality, but also economical optimization of the whole process.

Przejdź do artykułu

Autorzy i Afiliacje

K. Gawdzińska
D. Nagolska
P. Szymański

Abstrakt

This article discusses issues related to continuous casting of brass. The tested material was CuZn39Pb2 brass with the use of continuous casting and different parameters of the process. The position consists of a melting furnace with a graphite refining pot of about 4000 cm3 chuting capacity, a graphite crystallizer of 9,5 mm nominal diameter, a primary and secondary cooling system and an extracting system as well. The analysis was carried out in terms of technological parameters of the process and type of charge. Highlighted: feedrate ingot, number of stops, and technological temperatures. The surface quality of the obtained ingots and the structure were analyzed. The most favorable conditions were indicated and technological recommendations indicated. They have been distinguished for ingots for plasticity and other technologies. Favorable casting conditions are low feed and low temperature. Due to the presence of impurities coming from the charge it is disadvantageous to have Ni greater than 0.053% by mass, and Fe more than 0.075% by mass. It is recommended to maintain a high zinc content in the melt which is associated with non-overheating of the metal during casting and earlier melting.

Przejdź do artykułu

Autorzy i Afiliacje

P. Kwaśniewski
K. Najman
W. Wołczyński
A.W. Bydałek
P. Schlafka

Abstrakt

This article discusses results of an analysis of mechanical properties of a sintered material obtained from a mixture of elemental iron, copper and nickel powders ball milled for 60 hours. The powder consolidation was performed by hot pressing in a graphite mould. The hot pressing was carried out for 3 minutes at 900 °C and under a pressure of 35 MPa. The sintered specimens were tested for density, porosity, hardness and tensile strength. Their microstructures and fracture surfaces were also examined using a scanning electron microscope (SEM). The study was conducted in order to determine the suitability of the sintered material for the manufacture of metal-bonded diamond tools. It was important to assess the effects of chemical composition and microstructure of the sintered material on its mechanical properties, which were compared with those of conventional metal bond material produced from a hot-pressed SMS grade cobalt powder. Although the studied material shows slightly lower strength and ductility as compared with cobalt, its hardness and offset yield strength are sufficiently high to meet the criteria for less demanding applications.

Przejdź do artykułu

Autorzy i Afiliacje

J. Lachowski
J.M. Borowiecka-Jamrozek
J. Konstanty

Abstrakt

The thermal reclamation process as a utilisation method of spent moulding and core sands is more costly than other reclamation methods, but in the majority of cases it simultaneously provides the best cleaning of mineral matrices from organic binders. Thus, the application of the thermal analysis methods (TG-DSC), by determining the temperature range within which a degradation followed by a destruction of bounded organic binders in moulding sands, can contribute to the optimisation of the thermal reclamation process and to the limiting its realisation costs. The thermal analysis results of furan resin, one of the most often applied binder in foundry practice, are presented in the hereby paper. The influence of the heating rate of the sample - placed in the thermal analyser - on its degradation and destruction process under oxygen-free (argon) and oxygen (air) conditions, were compared. The recorded TG and DSC curves were used for analysing these processes as the temperature as well as the time function. The obtained results were analysed with regard to determining the required temperature of the thermal reclamation of the investigated organic binder. The usefulness of the developed methodology was found out, however under conditions of meeting several essential requirements concerning the repeatability of performed analyses.

Przejdź do artykułu

Autorzy i Afiliacje

M. Łucarz

Abstrakt

The paper proposes a new electropulse apparatus for processing natural raw materials. The temperature of the crushing-and-reducing assembly of an electropulse plant is found. The results of ore crushing are presented and optimal engineering factors are offered. The elemental analysis of the test material is obtained. It is reported that the electropulse processing at the reduction stage made for significant increase in the content of non-ferrous and rare metals.

Przejdź do artykułu

Autorzy i Afiliacje

B.R. Nussupbekov
A.K. Khassenov
D.Zh. Karabekova
I.P. Kurytnik
A.Sh. Kazhikenova

Abstrakt

The present paper is a presentation of results of a study on morphology, chemical composition, material properties (HVIT, HIT, EIT), and nanoindentation elastic and plastic work for carbide precipitates in chromium cast iron containing 24% Cr. It has been found that the carbides differ in chemical composition, as well as in morphology and values characterizing their material properties. The carbides containing the most chromium which had the shape of thick and long needles were characterized with highest values of the analyzed material properties.

Przejdź do artykułu

Autorzy i Afiliacje

A.W. Orłowicz
M. Mróz
M. Tupaj
A. Trytek
M. Jacek
M. Radoń

Abstrakt

Bimetallic AZ91/AlSi17 samples were produced by compound casting. The casting process involved pouring the AZ91 magnesium alloy heated to 650oC onto a solid AlSi17 aluminum alloy insert placed in a steel mould. Prior to casting, the mould with the insert inside was heated to about 370oC. The bonding zone formed between AZ91 and AlSi17 had a thickness of about 200 μm; it was characterized by a non-homogeneous microstructure. Two different areas were distinguished in this zone: the area adjacent to the AZ91 and the area close to the AlSi17. In the area closest to the AZ91 alloy, a eutectic composed of an Mg17Al12 intermetallic phase and a solid solution of Al in Mg was observed. In bonding zone at a certain distance from the AZ91 alloy an Mg2Si phase co-occurred with the eutectic. In the area adjacent to the AlSi17 alloy, the structure consisted of Al3Mg2, Mg17Al12 and Mg2Si. The fine Mg2Si phase particles were distributed over the entire Mg-Al intermetallic phase matrix. The microhardness of the bonding zone was much higher than those of the materials joined; the microhardness values were in the range 203-298 HV. The shear strength of the AZ91/AlSi17 joint varied from 32.5 to 36 MPa.

Przejdź do artykułu

Autorzy i Afiliacje

R. Mola
T. Bucki

Abstrakt

Measurements of the hardening process course of the selected self-hardening moulding sands with the reclaimed material additions to the matrix, are presented in the hereby paper. Moulding sands were produced on the „Szczakowa” sand (of the Sibelco Company) as the matrix of the main fraction FG 0,40/0,32/0,20, while the reclaim was added to it in amounts of 20, 50 and 70%. Regeneration was performed with a horizontal mechanical regenerator capacity of 10 t/h. In addition, two moulding sands, one on the fresh sand matrix another on the reclaimed matrix, were prepared for comparison. Highly-fluid urea-furfuryl resin was used as a binder, while paratoluensulphonic acid as a hardener. During investigations the hardening process course was determined, it means the wave velocity change in time: cL = f(t). The hardening process kinetics was also assessed (dClx/dt = f(t)). Investigations were carried out on the research stand for ultrasound tests. In addition strength tests were performed.

Przejdź do artykułu

Autorzy i Afiliacje

Ł. Jamrozowicz
J. Kolczyk
P. Wojtuń

Abstrakt

The article presents an example of analysis of the influence of selected parameters deriving from data acquisition in foundries on the occurrence of Gas porosity defects (detected by Visual testing) in castings of ductile cast iron. The possibilities as well as related effectiveness of prediction of this kind of defects were assessed. The need to rationally limit the number of possible parameters affecting this kind of porosity was indicated. Authors also benefited from expert group's expertise in evaluating possible causes associated with the creation of the aforementioned defect. A ranking of these parameters was created and their impact on the occurrence of the defect was determined. The classic statistical tools were used. The possibility of unexpected links between parameters in case of uncritical use of these typical statistical tools was indicated. It was emphasized also that the acquisition realized in production conditions must be subject to a specific procedure ordering chronology and frequency of data measurements as well improving the casting quality control. Failure to meet these conditions will significantly affect the difficulties in implementing and correcting analysis results, from which INput/OUTput data is expected to be the basis for modelling for quality control.

Przejdź do artykułu

Autorzy i Afiliacje

Z. Ignaszak
R. Sika
M. Rogalewicz

Abstrakt

High prices of tin and its limited resources, as well as several valuable properties characterising Cu-Sn alloys, cause searching for materials of similar or better properties at lower production costs. The influence of various nickel additions to CuSn10 casting bronze and to CuSn8 bronze of a decreased tin content was tested. Investigations comprised melting processes and casting of tin bronzes containing various nickel additions (up to 5%). The applied variable conditions of solidification and cooling of castings (metal and ceramic moulds) allowed to assess these alloys sensitivity in forming macro and microstructures. In order to determine the direction of changes in the analysed Cu-Sn-Ni alloys, the metallographic and strength tests were performed. In addition, the solidification character was analysed on the basis of the thermal analysis tests. The obtained results indicated the influence of nickel in the solidification and cooling ways of the analysed alloys (significantly increased temperatures of the solidification beginning along with increased nickel fractions in Cu-Sn alloys) as well as in the microstructure pattern (clearly visible grain size changes). The hardness and tensile strength values were also changed. It was found, that decreasing of the tin content in the analysed bronzes to which approximately 3% of nickel was added, was possible, while maintaining the same ultimate tensile strength (UTS) and hardness (HB) and improved plasticity (A5).

Przejdź do artykułu

Autorzy i Afiliacje

M. Perek-Nowak
J. Kozana
M. Piękoś
A. Garbacz-Klempka
E. Czekaj

Abstrakt

The problem of production flow in steel casting foundry is analysed in this paper. Because of increased demand and market competition, a reorganisation of the foundry process is required, including the elimination of manual labour and the implementation of automation and robotisation of certain processes. The problem is how to determine the real difference in work efficiency between human workers and robots. We show an analysis of the production efficiency of steel casting foundry operated by either human operators or industrial robots. This is a problem from the field of Operations Research for which the Discrete Event Simulation (DES) method is used. Three models are developed, including the foundry before and after automation when taking into consideration parameters of the availability of machines, operators and robots. We apply the OEE (Overall Equipment Effectiveness) indicator to present how the availability, performance and quality parameters influence the foundry’s productivity. In addition, stability of the simulation model was analysed. This approach allows for a better representation of real production processes and the obtained results can be used for further economic analysis.

Przejdź do artykułu

Autorzy i Afiliacje

A. Kampa
G. Gołda

Abstrakt

The article presents results of research on the influence of variable parameters of horizontal continuous casting on the structure of AlCu4MgSi (EN AW-2017A) alloy ingots. The special character of the process allows for a continuous change of some of its parameters, namely, of the casting speed and of the rate of the cooling fluid flow thorough the crystallizer. These parameters have a significant impact on the crystallization process of the liquid metal. Depending on the cooling rate, intensity of the convection inside the solidifying alloy, and its chemical composition, there may arise some differences in the structure of the cast. In this study, ingots obtained at different casting speeds have been analyzed. The research methodology, based on light microscopy and electron microscopy (SEM), as well as energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), allowed for a thorough examination of the structure of the studied materials. The results were shown that an increase in the ingot casting speed leads to an increase in the average grain surface area.

Przejdź do artykułu

Autorzy i Afiliacje

T. Wróbel
P.M. Nuckowski

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji