Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1028
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

High pressure die casting technology (HPDC) is a method enabling the production of shape-complex casts with good mechanical properties, with high repeatability of production within narrow tolerance limits. However, the casts show, to some extent, basic porosity, which may reduce their mechanical and qualitative properties. One of the main areas to focus on in order to reduce the porosity of casts is the correct design and structure of the gating and overflow system. Submitted article is devoted to the assessment of the connecting channel cross-section design for connecting the overflows to the cast on selected parameters of the casting process. Five different cross-section designs of connecting channels are considered, enabling the removal of gases and vapors from the volume during the molding. The connecting channels are designed with a constant width g = 10mm and variable height h1 = 1.50 mm, h2 = 1.25 mm, h3 = 1.00 mm, h4 = 0.75 mm and h5 = 0.6 mm. The primary monitored parameter is the gas entrapment in selected points of the cast. The following is an evaluation of the pressure conditions change in the mold cavity at the end of the filling mode and local overheating of the mold material just below the surface of the mold face. With regard to the monitored parameters, based on the performed analyzes, the most suitable design solution of the connecting channel is assessed and recommendations for the design and structure of the overflows and their connection to the cast are derived.
Go to article

Bibliography

[1] Gaspar, S., Pasko, J., Majernik, J. (2017). Influence of structure adjustment of gating system of casting mould upon the quality of die cast. Lüdenscheid: RAM-Verlag.
[2] Pasko, J., Gaspar, S. (2014). T echnological factors of die casting. Lüdenscheid: RAM-Verlag.
[3] Ruzbarský, J., Pasko, J., Gaspar, S. (2014). Techniques of Die casting. Lüdenscheid: RAM-Verlag.
[4] Majernik, J. (2019) The issue of the gating system design for permanent dies (Problematika návrhu vtokových soustav permanentních forem pro lití kovů pod tlakem). Stalowa Wola: Wydawnictwo Sztafeta Sp. z.o.o.
[5] ČSN 22 8601. C onstruction of compression casting moulds: Instructions (Formy tlakové licí: Zásady pro navrhování). Praha: Český normalizační institute, 1984. 32.
[6] El-Fotouh, M.R.A., Shash, A.Y. & Gadallah, M.H. (2018). Semi-automated gating system design with optimum gate and overflow positions for aluminum HPDC. In A. Öchsner & H. Altenbach (Eds.) Improved Performance of Materials (37-51). Cham, Switzerland:Springer Verlag. DOI: 10.1007/978-3-319-59590-0_4.
[7] Pinto, H.A., et al. (2019). Improvement and validation of Zamak die casting moulds. In 29th International Conference on Flexible Automation and Intelligent Manufacturing, 24-38 June 2019 (pp. 1547-1557). Limerick; Ireland: Elsevier B.V.. DOI: 10.1016/j.promfg.2020.01.131.
[8] Chavan, R. & Kulkarni, P.S. (2020). Die design and optimization of cooling channel position for cold chamber high pressure die casting machine. In 2nd International Conference on Emerging trends in Manufacturing, Engines and Modelling, 23-24 December 2019 (Article number 012017). Mumbai, India: Institute of Physics Publishing. DOI: 10.1088/1757-899X/810/1/012017.
[9] Dabhole, S.S., Kurundwad, C.A. & Prajapati, S.R. (2017). Design and development of die casting die for rejection reduction. International Journal of Mechanical Engineering and Technology. 8(5), 1061-1070.
[10] Altuncu, E., Doğan, A. & Ekmen, N. (2019). Performance evaluation of different air venting methods on high pressure aluminum die casting process. Acta Physica Polonica A. 135(4), 664-667. DOI: 10.12693/APhysPolA.135.664.
[11] Zhao, X. et al. (2018). Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation. China Foundry. 15(6), 436-442. DOI: 10.1007/s41230-018-8052-z.
[12] Qin, X.-Y., Su, Y., Chen, J. & Liu, L.-J. (2019). Finite element analysis for die casting parameters in high-pressure die casting process. China Foundry. 16(4), 272-276. DOI: 10.1007/s41230-019-8088-8.
[13] Cleary, P.W., Savage, G., Ha, J. & Prakash, M. (2014). Flow analysis and validation of numerical modelling for a thin walled high pressure die casting using SPH. C omputational Particle Mechanics. 1(3), 229-243. DOI: 10.1007/s40571-014-0025-4.
[14] Majernik, J. & Podaril, M. (2019). Influence of runner geometry on the gas entrapment in volume of pressure die cast. A rchives of Foundry Engineering. 19(4), 33-38. DOI: 10.24425/afe.2019.129626.
[15] Dańko, R., Dańko, J. & Stojek, J. (2015). Experiments on the Model Testing of the 2nd Phase of Die Casting Process Compared with the Results of Numerical Simulation. Archives of Foundry Engineering. 15(4), 21-24. DOI: 10.1515/afe-2015-0072.
[16] Gaspar, S. & Pasko, J. (2016). Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast. A rchives of Foundry Engineering. 16(2), 45-50. DOI: 10.1515/afe-2016-0024
Go to article

Authors and Affiliations

J. Majerník
1
ORCID: ORCID
M. Podařil
1
D. Gojdan
2

  1. Institute of Technology and Business in České Budějovice, Czech Republic
  2. Technical University of Košice, Faculty of Manufacturing Technologies with the Seat in Prešov, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The results of microstructure examinations and UTS, YS, El, RA carried out on low-carbon cast steel containing 0.15% C. The tests were carried out on specimens cut out from samples cast on a large-size casting and from samples cast in separate foundry moulds. It has been shown that significant differences in grain size observed in the material of the separately cast samples and cast-on samples occur only in the as-cast. In the as-cast state, in materials from different tests, both pearlite percent content in the structure and mean true interlamellar spacing remain unchanged. On the other hand, these parameters undergo significant changes in the materials after heat treatment. The mechanical properties (after normalization) of the cast-on sample of the tested cast steel were slightly inferior to the values obtained for the sample cast in a separate foundry mould. The microscopic examinations of the fracture micro-relief carried out by SEM showed the presence of numerous, small non-metallic inclusions, composed mainly of oxide-sulphides containing Mn, S, Al, Ca and O, occurring individually and in clusters.
Go to article

Bibliography

[1] Kniaginin, G. (1977). Metallurgy and casting of steel. Katowice: Śląsk. (in Polish).
[2] Standard PN-ISO 3755-1994. Cast carbon steels for general engineering purposes.
[3] Głownia, J. (2017). Metallurgy and technology of steel castings. Sharjah: Bentham Books. ISBN: 978-1-68108-571-5.
[4] Kasińska, J. (2017). Effects of rare earth metal addition on wear resistance of chromium-molybdenum cast steel. Archives of Foundry Engineering. 17(3), 63-68. ISSN: 1897-3310.
[5] Lis, T. (2009). High purity steel metallurgy. Gliwice: Wyd. Politechniki Śląskiej. (in Polish).
[6] Torkamani, H., Raygan, S., Mateo, C. G., Rassizadehghani, J. & Palizdar, Y. et al. (2018). Contributions of rare earth element (La, Ce) addition to the impact toughness of low carbon cast niobium microalloyed steels. Metals and Materials International. 24(4), 773-788. DOI: 10.1007/ s12540-018-.0084-9.
[7] Bartocha, D., Suchoń, J., Baron, Cz. & Szajnar, J. (2015). Influence of low alloy cast steel modification on primary structure refinement type and shape of nonmetallic inclusions. Archives of Metallurgy and Materials. 60(1). 77-83. DOI: 10.1515/2015-0013.
[8] Żak, A., Zdonek, B., Adamczyk, M., Szypuła, I., Kutera, W. & Kostrzewa, K. (2015) Technology for manufacturing large – size steel castings for applications under extreme operating conditions. Prace IMŻ. 2: 21-28.
[9] Najafi, H., Rassizadehghani, J. & Halvaaee, A. (2007) Mechanical properties of as-cast microalloyed steels containing V, Nb and Ti. Materials Science and Technology. 23, 699-705. https ://doi.org/10.1179/17432 8407X17975 5.
[10] Miernik, K., Bogucki, R. & Pytel, S. (2010) Effect of quenching techniques on the mechanical properties of low carbon structural steel. Archives Foundry Engineering. 10 (SI 3), 91-96.
[11] Brooks, Ch. R. (1999). Principles of the heat treatment of plain carbon and low alloy steels. Materials Park: ASM International.
[12] Bolouri, A., Tae-Won, Kim & Chung, Gil Kang. (2013). Processing of low-carbon cast steels for offshore structural applications. Materials and Manufacturing Processes. 28: 1260-1267. DOI: 10.1080/10426914.2013.792424.
[13] Standard PN-EN ISO 3755-1994. 6892-1:2009. Metallic materials. Tensile testing. Part 1: Method of test at room temperature.
[14] Ryś, J. (1983). Quantitative metallography. AGH. (in Polish).
[15] Vander Voort, G. F. (1984). Measurement of the interlamellar spacing of pearlite. Metallography. 17: 1-17. https://doi.org/10.1016/0026-0800(84)90002-8.
[16] Wyrzykowski, J., W., Pleszakow, E., Sieniawski, J. (1999). M etal deformation and fracture. Warszawa: WNT. ISBN 83-204-2341-4. (in Polish).
[17] Maciejny, A. (1973). The fragility of metals. Katowice: Śląsk. (in Polish).
[18] Pacyna, J. (1986). Effects of nonmetallic inclusions on fracture toughness of tool steels. Steel Research. 57(11), 586-592. https://doi.org/10.1002/srin.198600830.

Go to article

Authors and Affiliations

B.E. Kalandyk
1
Renata E. Zapała
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Cast Alloys and Composites Engineering, Faculty of Foundry Engineering, ul. Reymonta 23, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

For the manufacture of near net shape complex titanium products, it is necessary to use investment casting process. Melting of titanium is promising to carry out by electron beam casting technology, which allows for specific processing of the melt, and accordingly control the structure and properties of castings of titanium alloys. However, the casting of titanium in ceramic molds is usually accompanied by a reaction of the melt with the mold. In this regard, the aim of the work was to study the interaction of titanium melt with ceramics of shell molds in the conditions of electron beam casting technology. Ceramic molds were made by using the following refractory materials – fused corundum Al2O3, zircon ZrSiO4 and yttria-stabilized zirconium oxide ZrO2, and ethyl silicate as a binder. Melting and casting of CP titanium was performed in an electron beam foundry. Samples were made from the obtained castings and electron microscopic metallography was performed. The presence and morphology of the altered structure, on the sample surface, were evaluated and the degree and nature of their interaction were determined. It was found that the molds with face layers of zirconium oxide (Z1) and zircon (ZS1) and backup layers of corundum showed the smallest interaction with the titanium melt. Corundum interacts with titanium to form a non-continuous reaction layer with thickness of 400-500 μm. For shell molds with face and backup layers of zircon on the surface of the castings, a reaction layer with thickness of 500-600 μm is formed. In addition, zirconium-silicon eutectic was detected in these layers.
Go to article

Bibliography

[1] Agripa, H. & Botef, I. (2019). Modern Production Methods for Titanium Alloys: A Review. In Maciej Motyka (Eds.) Titanium Alloys – Novel Aspects of Their Manufacturing and Processing (pp. 1-14). UK: IntechOpen. DOI: 10.5772/intechopen.81712.
[2] Cviker, U. (1979). Titan i ego splavy. Moskow: Metallurgija, 512. (in Russian).
[3] Il'in, A.A., Kolachev, B.A., Pol'kin, I.S. (2009). Titanovye splavy: Sostav, struktura, svojstva. Spravochnik. Moskva: VILS-MATI, 520. (in Russian).
[4] Banerjee, D. & Williams, J.C. (2013). Perspectives on titanium science and technology. Acta Materialia. 6(3), 844- 879. DOI: 10.1016/j.actamat.2012.10.043.
[5] Saha, R. L., Jacob, K.T. (1986). Casting of titanium and its alloys. Defense science journal. 36(2), 121-141.
[6] Suzuki, K. (2001). An Introduction to the extraction, melting and casting technologies of titanium alloys. Metals and Materials International. 7(6), 587-604. DOI: 10.1007/BF03179258.
[7] Cen, M. J., Liu, Y., Chen, X., Zhang, H.W. & Li, Y.X. (2019). Inclusions in melting process of titanium and titanium alloys. China Foundry. 16(4), 223-231. DOI: 10.1007/s41230-019- 9046-1.
[8] Smalcerz, A., Blacha, L. & Łabaj, J. (2021). Aluminium loss during Ti-Al-X alloy smelting using the VIM technology. Archives of Foundry Engineering. 21(1), 11-17. DOI: 10.24425/afe.2021.136072.
[9] Paton, B.E., Trigub, N.P., Ahonin, S.V., Zhuk, G.V. (2006). Jelektronno-luchevaja plavka titana. Kyiv: Naukova dumka, 248. (in Russian).
[10] Ladohin, S.V. (Ed.). (2007). Jelektronno-luchevaja plavka v litejnom proizvodstve. Kyiv: Stal', 626. (in Russian).
[11] Ladohin, S.V., Levickij, N.I., Lapshuk, T.V., Drozd, E.A., Matviec, E.A. & Voron, M.M. (2015). Primenenie jelektronno-luchevoj plavki dlja poluchenija izdelij medicinskogo naznachenija. Metal and Casting of Ukraine. 4, 7-11. (in Russian).
[12] Voron, M.M., Drozd, E.A., Matviec, E.A. & Suhenko, V.Ju. (2018). Vlijanie temperatury litejnoj formy na strukturu i svojstva otlivok titanovogo splava VT6 jelektronno-luchevoj viplavki. Metal and Casting of Ukraine. 1-2, 40-44. (in Russian).
[13] Voron, M.M., Levytskyi, M.I. & Lapshuk, T.V. (2015). Structure and properties of lytic alloys of Ti-Al-V electronvariable smelting system. Metaloznavstvo ta obrobka metaliv. 2, 29-37. (in Ukrainian).
[14] Levickij, N.I., Ladohin, S.V., Miroshnichenko, V.I., Matviec, E.A. & Lapshuk T.V. (2008). Ispol'zovanie metallicheskih form dlja poluchenija slitkov i otlivok iz titanovyh splavov pri jelektronno-luchevoj garnisazhnoj plavke. Metal and Casting of Ukraine. 7-8, 50-52. (in Russian).
[15] Nikitchenko, M.N., Semukov, A.S., Saulin, D.V. & Jaburov, A.Ju. (2017). Izuchenie termodinamicheskoj vozmozhnosti vzaimodejstvija materialov lit'evoj formy s metallom pri lit'e titanovyh splavov. Vestnik Permskogo nacional'nogo issledovatel'skogo politehnicheskogo universiteta. Himicheskaja tehnologija i biotehnologija. 4, 249-263. (in Russian).
[16] Altindis, M., Hagemann, K., Polaczek, A.B. & Krupp, U. (2011). Investigation of the Effects of Different Types of Investments on the Alpha‐Case Layer of Ti6Al7Nb Castings. Advanced Engineering Materials. 13(4), 319-324. DOI: 10.1002/adem.201000264.
[17] Chamorro, X., Herrero-Dorca, N., Rodríguez, P. P., Andrés, U. & Azpilgain, Z. (2017). α-Case formation in Ti-6Al-4V investment casting using ZrSiO4 and Al2O3 moulds. Journal of Materials Processing Technology. 243, 75-81. DOI: 10.1016/j.jmatprotec.2016.12.007.
[18] Neto, R.L., Duarte, T.P., Alves, J.L. & Barrigana, T.G. (2017). The influence of face coat material on reactivity and fluidity of the Ti6Al4V and TiAl alloys during investment casting. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 231(1-2), 38-48. DOI: 10.1177/1464420716681824.
[19] Saulin, D., Poylov, V., Uglev, N. (2020). Effusion Mechanism of α-Layer Formation in Vacuum Casting of Titanium Alloys. IOP Conference Series: Materials Science and Engineering. 969, 012060, 1-12. DOI: 10.1088/1757- 899X/969/1/012060.
[20] Uwanyuze, S., Kanyo, J., Myrick, S. & Schafföner, S. (2021). A review on alpha case formation and modeling of mass transfer during investment casting of titanium alloys. Journal of Alloys and Compounds. 865, June 2021, 158558, 1-19. DOI: 10.1016/j.jallcom.2020.158558
[21] Guilin, Y., Nan, L., Yousheng, L., Yining, W. (2007). The effects of different types of investments on the alpha-case layer of titanium castings. The Journal of prosthetic dentistry. 97(3), 157-164. DOI: 10.1016/j.prosdent.2007.01.005
[22] Kim, M.G., Kim, S.K. & Kim, Y.J. (2002). Effect of mold material and binder on metal-mold interfacial reaction for investment castings of titanium alloys. Materials Transactions. 43(4), 745-750. DOI: 10.2320/ matertrans.43.745.
[23] Sun, S.C., Zhao, E.T., Hu, C., Yu, J.R., An, Y.K. & Guan, R.G. (2020). Characteristics of interfacial reactions between Ti-6Al-4V alloy and ZrO2 ceramic mold. China Foundry. 17(6), 409-415. DOI: 10.1007/s41230-020-0106-3.
[24] Farsani, M.A. & Gholamipour, R. (2020). Silica-Free Zirconia-Based Primary Slurry for Titanium Investment Casting. International Journal of Metalcasting. 14(1), 92-97. DOI: 10.1007/s40962-019-00335-y.
[25] Bańkowski, D. & Spadło, S. (2020). Research on the Influence of Vibratory Machining on Titanium Alloys Properties. Archives of Foundry Engineering. 20(3), 47-52. DOI: 10.24425/afe.2020.133329.
Go to article

Authors and Affiliations

Pavlo Kaliuzhnyi
M. Voron
1
O. Mykhnian
1
A. Tymoshenko
1
O. Neima
1
O. Iangol
1

  1. Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Aluminum casting alloys are widely used in especially automotive, aerospace, and other industrial applications due to providing desired mechanical characteristics and their high specific strength properties. Along with the increase of application areas, the importance of recycling in aluminum alloys is also increasing. The amount of energy required for producing primary ingots is about ten times the amount of energy required for the production of recycled ingots. The large energy savings achieved by using the recycled ingots results in a significant reduction in the amount of greenhouse gas released to nature compared to primary ingot production. Production can be made by adding a certain amount of recycled ingot to the primary ingot so that the desired mechanical properties remain within the boundary conditions. In this study, by using the A356 alloy and chips with five different quantities (100% primary ingots, 30% recycled ingots + 70% primary ingots, 50% recycled ingots + 50% primary ingots, 70% recycled ingots + 30% primary ingots, 100% recycled ingots), the effect on mechanical properties has been examined and the maximum amount of chips that can be used in production has been determined. T6 heat treatment was applied to the samples obtained by the gravity casting method and the mechanical properties were compared depending on the amount of chips. Besides, microstructural examinations were carried out with optical microscopy techniques. As a result, it has been observed that while producing from primary ingots, adding 30% recycled ingot to the alloy composition improves the mechanical properties of the alloy such as yield strength and tensile strength to a certain extent. However, generally a downward pattern was observed with increasing recycled ingot amount.
Go to article

Bibliography

[1] Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., Smet, P. De., Haszler, A. & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280, 37-49. DOI: 10.1016/S0921-5093(99)00653-X
[2] Cagan, S.C., Venkatesh, B. & Buldum, B.B. (2020). Investigation of surface roughness and chip morphology of aluminum alloy in dry and minimum quantity lubrication machining. Materials Today: Proceedings. 27, 1122-1126. DOI: 10.1016/j.matpr.2020.01.547
[3] Naumova, E.A., Belov, N.A. & Bazlova, T.A. (2015). Effect of heat treatment on structure and strengthening of cast eutectic aluminum alloy Al9Zn4Ca3Mg. Metal Science and Heat Treatment. 57, 5-6. DOI: 10.1007/s11041-015-9874-6
[4] Krolo, J., Gudić, S., Vrsalović, L., Branimir, L., Zvonimir, D. (2020). Fatigue and corrosion behavior of solid-state recycled aluminum alloy EN AW 6082. Journal of Materials Engineering and Performance. 29(7), 4310-4321. DOI: 10.1007/s11665-020-04975-8
[5] TMMOB Metalurji Mühendisleri Odası, Alüminyum Komisyonu, Alüminyum Raporu.
[6] Dhindaw, B.K., Aditya, G.S.L. & Mandal, A. (2020). Recycling and downstream processing of aluminium alloys for automotive applications. In Saleem Hashmi and Imtiaz Ahmed Choudhury (Eds.), Encyclopedia of Renewable and Sustainable Materials. 3 (pp.154-161). Elsevier Inc.
[7] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., Thonstad, J. (1982). Aluminium electrolysis: Fundamentals of the Hall-Heroult Process. 2nd Edition. University of California.
[8] Peng, T., Ou, X., Yan, X. & Wang, G. (2019). Life-cycle analysis of energy consumption and GHG emissions of aluminium production in China. Energy Procedia. 158, 3937- 3943. DOI: 10.1016/j.egypro.2019.01.849
[9] Prasada Rao, A. K. (2011). An approach for predicting the composition of a recycled Al-Alloy. Transactions of the Indian Institute of Metals. 64, 615-617. DOI: 10.1007/s12666-011-0084-7
[10] Capuzzi, S. & Timelli, G. (2018). Preparation and melting of scrap in aluminum recycling: A Review. Metals. 8(4), 249. DOI: 10.3390/met8040249
[11] Khalid, S.N.A.B. (2013). Mechanical strength of ascompacted aluminium alloy waste chips. Malaysia: MSc Thesis, Universiti Tun Hussein Onn Malaysia.
[12] Bjurenstedt, A. (2017). On the influence of imperfections on microstructure and properties of recycled Al-Si casting alloys. Sweden: PhD. Thesis, Jönköping University Jönköping.
[13] Bogdanoff, T., Seifeddine, S. & Dahle, A. K. (2016). The effect of Si content on microstructure and mechanical properties of Al-Si alloy. La Metallurgia Italiana. 108(6), 65- 69.
[14] Wang, Y., Liao, H., Wu, Y. & Yang, J. (2014). Effect of Si content on microstructure and mechanical properties of Al– Si–Mg alloys. Materials & Design. 53, 634-638.
[15] Ozaydin, O. & Kaya, A. (2019). Influence of different Si levels on mechanical properties of aluminium casting alloys. European Journal of Engineering And Natural Sciences. 3(2), 165-172.
[16] Zhang, X., Ahmmed, K., Wang, M. & Hu, H. (2012). Influence of aging temperatures and times on mechanical properties of vacuum high pressure die cast aluminum alloy A356. Advanced Materials Research. 445, 277-282. DOI: 10.4028/www.scientific.net/AMR.445.277
[17] Ozaydin, O., Dokumaci, E., Armakan, E., Kaya, A. (2019). The effects of artificial ageing conditions on a356 aluminum cast alloys. In ECHT 2019 - European Conference on Heat Treatment. Bardolino, Italy.
[18] Peng, J., Tang, X., He, J. & Xu, D. (2011). Effect of heat treatment on microstructure and tensile properties of A356 alloys. Trans. Nonferous Met. Soc. Chinea. 21, 1950-1956. DOI: 10.1016/S1003-6326(11)60955-2
[19] Wang, L., Makhlouf, M. & Apelian, D. (2013). Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships. International Materials Reviews. 40(6), 221-238. DOI: 10.1179/imr.1995.40.6.221
[20] Yuksel, C.K., Tamer, O., Erzi, E., Aybarc, U., Cubuklusu, E., Topcuoglu, O., Cigdem, M. & Dispinar, D. (2016). Quality evaluation of remelted A356 scraps. Archives of Foundry Engineering. 16(3), 151-156. DOI: 10.1515/afe-2016-0069
[21] Hu, M., Ji, Z., Chen, X. & Zhang, Z. (2007). Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling. Materials Characterization. 59(4), 385-389. DOI: 10.1016/j.matchar.2007.02.002
[22] Testing Of Metallic Materials – Tensile Test Pieces, Prüfung Metallischer Werkstoffe – Zugproben Deutsche Norm DIN 50125, 2016.
[23] Metallic Materials - Tensile Testing - Part 1:Method Of Test at Room Temperature, PN-EN ISO 6892-1: 2020-05
[24] Taylor J.A. (2012). Iron-containing intermetallic phases in AlSi based casting alloys. Procedia Materials Science. 1, 19-33. DOI: 10.1016/j.mspro.2012.06.004
[25] Eisaabadi, G.B., Davami, P., Kim, S.K., Varahram, N., Yoon, Y.O. & Yeom, G.Y. (2012). Effect of oxide films, inclusions and Fe on reproducibility of tensile properties in cast Al–Si– Mg alloys: Statistical and image analysis. Materials Science and Engineering: A 558, 134-143. DOI: 10.1016/j.msea.2012.07.101
[26] Schlesinger, M.E. (2013). Aluminum Recycling. CRC Press. 2nd Edition. CRC Press
[27] Dispinar, D., Akhtar, S., Nordmark, A., Sabatino, M. Di. & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering: A. 527(17), 3719-3725. DOI: 10.1016/j.msea.2010.01.088
[28] Akhtar, S., Dispinar, D., Arnberg, L. & Sabatino, M.Di. (2009). Effect of hydrogen content melt cleanliness and solidification conditions on tensile properties of A356 alloy. International Journal of Cast Metals Research. 22(4), 22-25. DOI: 10.1179/136404609X367245
[29] Bösch, D., Pogatscher, S., Hummel, M., Fragner, W., Uggowitzer, P.J., Göken, M. & Höppel, H.W. (2015). Secondary Al-Si-Mg high-pressure die casting alloys with enhanced ductility. Metallurgical and Materials Transactions A. 46(3), 1035-1045.
[30] Taylor, J.A. (2004). The effect of iron in Al-Si casting alloys. In 35th Australian Foundry Institute National Conference, 31 Oct - 3 Nov 2004 (148-157). Australia: Australian Foundry Institute (AFI).
[31] Campbell, J. (1993). Castings, 2nd Edition. Elsevier
Go to article

Authors and Affiliations

A.Y. Kaya
1
O. Özaydın
1
T. Yağcı
2
A. Korkmaz
2
E. Armakan
1
O. Çulha
2

  1. Cevher Alloy Wheels Co. / R&D Dept., İzmir, Turkey
  2. Manisa Celal Bayar University, Engineering Faculty, Dept. of Metallurgical and Materials Engineering, Manisa, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The paper presents changes in the production volume of castings made of non-ferrous alloys on the background of changes in total production of casting over the 2000-2019 period, both on a global scale and in Poland. It was found that the dynamics of increase in the production volume of castings made of non-ferrous alloys was distinctly greater than the dynamics of increase in the total production volume of castings over the considered period of time. Insofar as the share of production of the non-ferrous castings in the total production of castings was less than 16% during the first two years of the considered period, it reached the level of 20% in the last four years analysed. This share, when it comes to Poland, increased even to the greater degree; it grew from about 10% of domestic production of castings to over 33% within the regarded 2000-2019 period. The greatest average annual growth rate of production, both on a global scale and in Poland, was recorded for aluminium alloys as compared with other basic non-ferrous alloys. This growth rate for all the world was 4.08%, and for Poland 10.6% over the 2000-2019 period. The value of the average annual growth rate of the production of aluminium castings in Poland was close to the results achieved by China (12%), India (10.3%) and the South Korea (15.4%) over the same period of time. In 2019, the total production of castings in the world was equal to about 109 million tonnes, including over 21 million tonnes of castings made of non-ferrous alloys. The corresponding data with respect to Poland are about 1 million tonnes and about 350 thousand tonnes, respectively. In the same year, the production of castings made of aluminium alloys was equal to about 17.2 million tonnes in the world, and about 340 thousand tonnes in Poland.
Go to article

Bibliography

[1] Wübbenhorst, H. (1984). 5000 Jahre Giessen von Metallen. Ed. VDG Giesserei-Verlag GmbH, Düsseldorf.
[2] Orłowicz, A.W., Mróz, M., Tupaj, M. & Trytek, A. (2015). Materials used in the automotive industry. Archives of Foundry Engineering. 15(2), 75-78.
[3] Cygan, B., Stawarz, M. & Jezierski, J. (2018) Heat treatment of the SiMo iron castings – case study in the automotive foundry. Archives of Foundry Engineering. 18(4), 103-109.
[4] Bolat, C. & Goksenli, A. (2020) Fabrication optimization of Al 7075/Expanded glass syntactic foam by cold chamber die casting. Archives of Foundry Engineering. 20(3), 112- 118.
[5] Orłowicz, A.W., Mróz, M., Wnuk, G., Markowska, O., Homik, W. & Kolbusz, B. (2016). Coefficient of friction of a brake disc-brake pad friction couple. Archives of Foundry Engineering. 16(4), 196-200.
[6] Kmita, A. & Roczniak, A. (2017). Implementation of nanoparticles in materials applied in foundry engineering. Archives of Foundry Engineering. 17(3), 205-209.
[7] Jemielewski, J. (1970). Casting of non-ferrous metals. Warsaw: Ed. WNT. (In Polish)
[8] Perzyk, M., Waszkiewicz, S., Kaczorowski, M., Jopkiewicz, A. (2000). Casting. Warsaw: Ed. WNT. (In Polish)
[9] Kozana, J., Piękoś, M., Maj, M., Garbacz-Klempka, A. & Żak, P.L. (2020). Analysis of the microstructure, properties and machinability of Al-Cu-Si alloys. Archives of Foundry Engineering. 20(4), 145-153.
[10] Matejka, M., Bolibruchová, D. & Kuriš, M. (2021). Crystallization of the structural components of multiple remelted AlSi9Cu3 alloy. Archives of Foundry Engineering. 21(2), 41-45.
[11] Łągiewka, M. & Konopka, Z. (2012). The influence of material of mould and modification on the structure of AlSi11 alloy. Archives of Foundry Engineering. 12(1), 67- 70.
[12] Ščur, J., Brůna, M., Bolibruchová, D. & Pastirčák, R. (2017). Effect of technological parameters on the alsi12 alloy microstructure during crystallization under pressure. Archives of Foundry Engineering. 17(2), 75-78.
[13] Deev, V., Prusov, E., Prikhodko, O., Ri, E., Kutsenko, A. & Smetanyuk, S. (2020). crystallization behavior and properties of hypereutectic Al-Si alloys with different iron content. Archives of Foundry Engineering. 20(4), 101-107.
[14] Piątkowski, J. & Czerepak, M. (2020). The crystallization of the AlSi9 alloy designed for the alfin processing of ring supports in engine pistons. Archives of Foundry Engineering. 20(2), 65-70.
[15] Tupaj, M., Orłowicz, A.W., Trytek, A. & Mróz, M. (2019). Improvement of Al-Si alloy fatigue strength by means of refining and modification. Archives of Foundry Engineering. 19(4), 61-66.
[16] Soiński M.S., Jakubus A. (2020). Changes in the production of ferrous castings in Poland and in the world in the XXI century. Scientific and Technical Conference ‘Technologies of the Future’. Ed. of the Jacob of Paradies University in Gorzów Wielkopolski. Gorzów Wielkopolski, 25.09.2020. Forthcoming.
[17] Soiński M.S., Jakubus A. (2019). Structure of foundry production in Poland against the world trends in XXI century. in: Industry 4.0. Algorithmization of problems and digitalization of processes and devices. Ed. of the Jacob of Paradies University in Gorzów Wielkopolski. 2019. pp. 113-124. ISBN 978-83-65466-55-6.
[18] Soiński M.S, Jakubus A.(2019). Production of castings in Poland and in the world over the years 2000-2017. in: Industry 4.0. Algorithmization of problems and digitalization of processes and devices 2019. Conference 2018. Ed. of the Jacob of Paradies University in Gorzów Wielkopolski. pp. 73-92. ISBN 978-83-65466-90-7.
[19] Soiński, M.S., Skurka, K., Jakubus, A. & Kordas, P. (2015). Structure of foundry production in the world and in Poland over the 1974-2013 Period. Archives of Foundry Engineering. 15(spec.2), 69-76.
[20] Soiński, M.S., Skurka, K., Jakubus, A. (2015). Changes in the production of castings in Poland in the past half century in comparison with world trends”. in: Selected problems of process technologies in the industry. Częstochowa. Ed. Faculty of Production Engineering and Materials Technology of the Częstochowa University of Technology, 2015. Monograph. pp.71-79. ISBN: 978-83-63989-30-9.
[21] Soiński, M.S., Jakubus, A., Kordas, P. & Skurka, K. (2015). Production of castings in the world and in selected countries from 1999 to 2013. Archives of Foundry Engineering. 15(spec.1), 103-110. DOI: 10.1515/afe-2016-0017.
[22] Modern Casting. 35th Census of World Casting Production. December 2001. 38-39.
[23] Modern Casting. 36th Census of World Casting Production. December 2002. 22-24.
[24] Modern Casting. 37th Census of World Casting Production. December 2003. 23-25.
[25] Modern Casting. 38th Census of World Casting Production. December 2004. 25-27.
[26] Modern Casting. 39th Census of World Casting Production. December 2005. 27-29.
[27] Modern Casting. 40th Census of World Casting Production. December 2006. 28-31.
[28] Modern Casting. 41st Census of World Casting Production. December 2007. 22-25.
[29] Modern Casting. 42nd Census of World Casting Production. December 2008. 24-27
[30] Modern Casting. 43rd Census of World Casting Production. December 2009. 17-21.
[31] Modern Casting. 44th Census of World Casting Production. December 2010. 23-27.
[32] Modern Casting. 45th Census of World Casting Production. December 2011. 16-19.
[33] Modern Casting. 46th Census of World Casting Production. December 2012. 25-29.
[34] Modern Casting. 47th Census of World Casting Production. Dividing up the Global Market. December 2013. 18-23.
[35] Modern Casting. 48th Census of World Casting Production. Steady Growth in Global Output. December 2014. 17-21.
[36] Modern Casting. 49th Census of World Casting Production. Modest Growth in Worldwide Casting Market. December 2015. 26-31
[37] Modern Casting. 50th Census of World Casting Production. Global Casting Production Stagnant. December 2016. 25-29.
[38] Modern Casting. Census of World Casting Production. Global Casting Production Growth Stalls. December 2017. 24-28.
[39] Modern Casting. Census of World Casting Production. Global Casting Production Expands. December 2018. 23-26.
[40] Modern Casting. Census of World Casting Production. Total Casting Tons. Hits 112 Million. December 2019. 22- 25.
[41] Modern Casting. Census of World Casting Production Total Casting Tons Dip in 2019. January 2021. 28-30.
Go to article

Authors and Affiliations

M.S. Soiński
1
A. Jakubus
1
ORCID: ORCID

  1. The Jacob of Paradies University in Gorzów Wielkopolski, ul. Teatralna 25, 66-400 Gorzów Wielkopolski, Poland
Download PDF Download RIS Download Bibtex

Abstract

Foundry sand is the main element of sand mixtures from which molds or sand cores are made. Due to the continuous development of coremaking technologies, the selection of the right type of base sand becomes more and more important. The major features of foundry sand are determined by the following factors: chemical and mineralogical composition, sand grain size, grain size distribution, sand grain shape, and surface quality. The main goal of our research was to develop a qualification method that can be used to predict the characteristics of sand cores made from different sand types. Samples made from different types of foundry sand were used during the research whose properties were examined with a new qualification system, and then its connection with the gas permeability of sand cores was analyzed. Based on the research results, a strong correlation could be established between the suggested quality indicators: CQi (Core Quality Index), CG (Coefficient of Granulometry), and permeability.
Go to article

Bibliography

[1] Stauder, B.J. (2018). Investigation on the removal of internal sand cores from aluminium castings. Dissertation, Montanuniversitäte, University of Leoben, Leoben, Austria.
[2] Schindelbacher, G. & Kerber H. (2013). Umfassende Charakterisierung von Formstoffen mit einer neuen Prüfmethode. Giesserei Rundschau. 60 Heft 3/4, 58-66.
[3] Geraseva, O. (2016). P otential alternativer Formstoffe zur Kernherstellung. Masterarbeit, Montanuniversitäte, University of Leoben, Leoben, Austria.
[4] Conev, M., Vasková, I., Hrubovčáková, M. & Hajdúch, P. (2016). Impact of Silica Sand Granulometry on Bending Strength of Cores Produced by ASK Inotec Process. Manufacturing Technology. 16(2), 327-334. DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/2/327.
[5] Vasková, I., Varga, L., Prass, I., Dargai, V., Coney, M., Hrubovčáková, M., Bartošová, M., Buľko, B. & Demeter P. (2020). Examination of Behavior from Selected Foundry Sands with Alkali Silicate-Based Inorganic Binders. Metals. 10(2), 235. DOI: 10.3390/met10020235.
[6] Flemming, E., Tilch, W. (1993). Formstoffe und Formverfahren. Deutscher Verlag fur Grundstoffindustrie, Leipzig – Stuttgart.
[7] Dańko, R. (2017). Influence of the Matrix Grain Size on the Apparent Density and Bending Strength of Sand Cores. Archives of Foundry Engineering. 17(1), 27-30. DOI: 10.1515/afe-2017-0005.
[8] Beňo, J. & Adamusová K. & Merta V. & Bajer T. (2019) Influence of Silica Sand on Surface Casting Quality. Archives of Foundry Engineering. 19(2), 5-8. DOI: 10.24425/afe.2019.127107.
[9] Marinšek, M., Zupan, K. (2011). Influence of the granulation and grain shape of quartz sands on the quality of foundry cores, Materials and Technology. 45 (5), 451-455.
[10] Löchte, K. (1998.) Working with the Cold Box Process in the Coremaking Department of a Foundry. Retrieved January 29, 2021, from: http://metkoha.com/documents/Working% 20with%20the%20Coldbox%20Process1.pdf.
[11] Bechný, V. (2012). Zukünftige Herausforderungen an Gießereisande. Giesserei-Rundschau. 59. Heft 3/4, 81-83.
[12] Kotzmann, J. & Bechný V. (2013). Die Zukunft der Form- und Kernherstellung. Retrieved January 29, 2021, from: http://www.giba.at/pdf/giba-de.pdf.
[13] Iden, F., Pohlmann, U., Tilch, W. & Wojtas, H.J. (2011). Strukturen von Cold-Box-Bindersystemen und die Möglichkeitihrer Veränderung. Giesserei Rundschau. 58, 1/2, 3-8.
[14] Iden, F., Tilch, W. & Wojtas, H.J. (2011). Die Haftungsmechanismen von Cold-Box-Bindemitteln auf der Formstoffoberfläche. Giesserei. 5/2011, 24-36.
[15] Dargai, V., Polzin, H., Varga, L., Dúl, J. (2015). Determination of granulometric properties of foundry sands with image analysis. (Öntödei homokok granulometriai tulajdonságainak meghatározása képelemzéssel). MultiScience - XXIX. microCAD International Multidisciplinary Scientific Conference, 9-10 April 2015. University of Miskolc – Miskolc, Hungary.
[16] Dargai, V., Polzin, H. & Varga, L. (2018). Die Bestimmung der granulometrischen Eigenschaften von Gießereisanden mittels dynamischer Bildanalyse. Giesserei Praxis. 4/2018, 19-22.
[17] Bodycomb, J. (2018). Size and shape of Particles from Dynamic Image Analysis. Retrieved January 29, 2021, from: https://www.slideshare.net/HORIBA/size-and-shape-of-particles-from-dynamic-image-analysis.
[18] Microtrac MRB (2017). Comparison Between Dynamic Image Analysis, Laser Diffraction and Sieve Analysis. Retrieved January 29, 2021, from: https://www.azom.com/article.aspx?ArticleID=14331.
[19] Raatz, G. (2014). Trends in der Partikelgrößenanalyse. Powtech / Technopharm – Messtechnik. 9/2014, 25-28. [20] Ridsdale and Ridsdale DieterT. Foundry sand testing equipment operating instructions (AFS). Catalogue No. 800, Retrieved January 29, 2021, from: https://www.basrid.co.uk/ridsdale/images/pdf/AFS_OIM.pdf

Go to article

Authors and Affiliations

H. Hudák
1
G. Gyarmati
1
L. Varga
1

  1. Institute of Foundry, Faculty of Materials Science and Engineering, University of Miskolc, Hungary
Download PDF Download RIS Download Bibtex

Abstract

The article presents the new technology of the refractory materials used for the ladles and pouring devices. The aim for solving the majority of the problems that originated from the refractory lining was to develop the group of cement-free TRIAD products by Vesuvius company. The cement-free setting system in the TRIAD products eliminates calcium oxide (CaO) that occurs in low and extra low cement concretes resulting in its higher strength at higher temperatures. The features of the new cement-free castables were described. One of the most unique features of this technology is the porous material structure. Small venting microchannels are formed during the concrete setting process. These micro-channels allow for removing water vapor from the lining without affecting its refractory properties. On the other hand, the diameter of pores is so low that it disallows the penetration of slag and metal into the lining, extends its operating life at the same time facilitates cleaning and removing build-ups. The procedure of the preparation of these materials, as well as the method of building of the lining, were presented. An example of the practical use of these materials in the ductile cast iron foundry was presented, showing the advantages of the new refractory materials over the traditional ones.
Go to article

Bibliography

[1] Drevin, J. (2014). Triad – a new range of user-friendly, high-strength refractory concretes. Przegląd Odlewnictwa. 9-10, 390-393. (in Polish).
[2] Rybak, M. (2011). Influence of alumina cement hydration conditions on concrete properties. Piece Przemysłowe & Kotły. 1, 21-25. (in Polish).
[3] Drevin J. (2011). Triad – Triad high-performance castable linings. Foundry Practice. 253(6) 16-20.
[4] Cygan B., Dorula J., Jezierski J. (2018). TRIAD - modern technology of non-cement concrete in cast iron foundry. In Congress Proceedings of the 73rd World Foundry Congress "Creative Foundry", 23rd–27th September 2018 (pp. 561-562). Krakow, Poland: Polish Foundrymen's Association.

Go to article

Authors and Affiliations

B. Cygan
1 2
J. Dorula
3
J. Jezierski
1
ORCID: ORCID

  1. Silesian University of Technology, Department of Foundry Engineering, 7 Towarowa, 44-100 Gliwice, Poland
  2. Teksid Iron Poland Sp. z o.o., 49 Ciężarowa, 43-430 Skoczów, Poland
  3. Vesuvius Poland Sp. z o.o. , Foundry Division - Biuro Handlowe, Portowa Business Center, 8 Portowa, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Protective coatings have direct contacts with hot and liquid alloys. As the result of such contacts gases are emitted from coatings. Gas forming is a tendency of the tested material to emit gases under a temperature influence. In order to assess the gas forming tendency either direct or indirect methods are applied. In the hereby work, the measurements of the gas forming tendency were performed under laboratory conditions, by means of the developed indirect method. The research material constituted samples of six selected protective coatings dissolved either in alcohol or in water. These coatings are applied in sand moulds and cores for making cast iron castings. The assessment of their gas forming tendency was presented in relation to temperatures and heating times. The occurrence and changes of oxygen and hydrogen contents in gases outflowing from the measuring flask during tests, were measured by means of gas sensors. The process of the carbon monoxide (CO) emission during tests was also assessed. The following gas sensors were installed in flow-through micro chambers: for oxygen - lambda probe, for hydrogen – pellistor, for carbon monoxide - sensor (dedicated for CO) FIGARO TGS 822 TF. The results of direct CO measurements were recalculated according to the algorithm supplied by the producer of this sensor.
Go to article

Bibliography

[1] Di Muoio G.L., Skat Tiedje N., Budolph Johansen B. (2014). Automatic vapour sorption analysis as new methodology for assessing moisture content of water based foundry coating and furan sands. Mar del Plata, BS. As., Argentina
[2] Nwaogu, U. & Tiedje, N. (2011). Foundry coating technology: A Review. Materials Sciences and Applications. 2(8), 1143-1160. DOI: 10.4236/msa.2011.28155.
[3] Scarber Jr, P., Bates, C. & Griffin, J. (2006). Avoiding gas defects through mold and core package design. Modern Casting. 96(12), 38-40.
[4] Zych, J, Mocek, J. (2019). Thermal Volumetric Analysis (TVA): a new test method of the kinetics of gas emissions from moulding sands and protective coatings heated by liquid alloy. London: IntechOpen, 13-33. ISBN: 978-1- 78985-161-8; e-ISBN: 978-1-78985-162-5. https://www.intechopen.com/chapter/pdf-download/62133.
[5] Z.B.P. SENSOR GAZ Andrzej Rejowicz. Explosimetric sensing head. Retrieved January 15, 2021 from http://sensorgaz.com.pl/wp-content/uploads/2017/06/EKP1WH.pdf
[6] Figaro Engineering Inc. Tentative product information TGS822TF. Retrieved January 15, 2021 from https://cdn.sos.sk/productdata/ad/97/a7c71525/tgs-822tf.pdf
[7] HA International. Refractory Coating Products. Retrieved January 15, 2021 from https://www.ha.international.com/content/products/refractory _coatings/refractory_coatings.aspx
[8] Marć, A.W. (2018). Multi-parameter assessment of gas formation of selected protective coatings for sand forms. Master thesis. Kraków: AGH WO. (in Polish).
[9] Mocek, J. (2019). Multiparameter assessment of the gas forming tendency of foundry sands with alkyd resins. Archives of Foundry Engineering. 19(2), 41-48.
[10] Zych, J., Mocek, J. & Snopkiewicz, T. (2014). Gas generation properties of materials used in the sand mould technology – modified research method. Archives of Foundry Engineering. 14(3), 105-109.
[11] Lewandowski, J.L., Solarski, W. & Pawłowski, Z. (1993). Classification of molding and core sands in terms of gas formation. Przegląd Odlewnictwa. 5, 143-149. (in Polish).
[12] Lewandowski, J.L. (1997). Foundry mold materials. Kraków. (in Polish).
[13] Mocek, J. & Chojecki, A. (2009). Evolution of the gas atmosphere during filing the sand moulds with iron alloys. Archives of Foundry Engineering. 9(4), 135-140.
[14] Pietkun-Greber I. Janka R. (2010). Effect of hydrogen on metals and alloys. Proceedings of EC Opole. 4(2), 471-476. (in Polish).
[15] Bobrowski, A., Holtzer, M., Dańko, R. & Żymankowska-Kumon S. (2013). Analysis of gases emitted during a thermal decomposition of the selected phenolic binders. Metalurgia International. 18(si.7), 259-261.
[16] Holtzer, M., Kwaśniewska-Królikowska, D., Bobrowski, A., Dańko, R., Grabowska, B., Żymankowska-Kumon, S., & Solarski, W. (2012). Investigations of a harmful components emission from moulding sands with bentonite and lustrous carbon carriers when in contact with liquid metals. Przegląd Odlewnictwa. 62(3-4), 124-132.
[17] Holtzer, M., Dańko, R., Kmita, A., Drożyński, D., Kubecki, M., Skrzyński, M., Roczniak, A. (2020). Environmental Impact of the Reclaimed Sand Addition to Molding Sand with Furan and Phenol-Formaldehyde Resin-A Comparison. Materials. 13, 4395, 1-12. DOI: 10.3390/ma13194395 www.mdpi.com/journal/materials.
Go to article

Authors and Affiliations

J. Mocek
1

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Cast Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Though normal air cooling and green sand mold-casted gray iron convey an essentially pearlitic matrix, ferritic gray iron is used in some electro-mechanical applications to have better magnetic properties, ductility, and low hardness. Conventionally, to produce ferritic gray iron, foundryman initially produces pearlitic gray iron, then it is carried through a long annealing cycle process for ferritic transformation. This experiment is conducted to eliminate the long annealing cycle from the conventional process. A process is developed to produce as-cast ferritic gray cast iron by air cooling in the green sand mold. In this experiment, Si content is kept high, but Mn content is kept low based on sulfur content; a unique thermodynamic process is established for decreasing the Mn content from the melt. After a successful preconditioning and optimum foundry return charging, the melt is specially inoculated, and metal is poured into the green sand mold. An extra feeder is added for slowing down the cooling rate where casting thickness is around 15mm. Finally, hardness and metallographic images are observed for final confirmation of the ferritic matrix.
Go to article

Bibliography

[1] Callister, W.D. Jr. (2007). Applications and processing of metal alloys. Materials Science and Engineering, An introduction. John Wiley & Sons, Inc. 367-370.
[2] All Sister Concern of WALTON Group (2021). Component of GVM38AA model Compressor. Retrieved June 6, 2021, from https://waltonbd.com/compressor/walpha-series r134a /gvm38aa.
[3] Fox, M.A.O. & Adams, R.D. (1973). Correlation of the damping capacity of cast iron with its mechanical properties and microstructure. Journal of Mechanical Engineering Science. 15(2), 81-94.
[4] Buschow K.H.J., de Boer F.R. (2003) Soft-Magnetic Materials. Physics of Magnetism and Magnetic Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48408-0_14.
[5] Mozetic, H., Fonseca, E., Schneider, E. L., Kindlein Jr, W., & Schaeffer, L. (2011). The use of magnetic field annealing on nodular cast iron for speaker cores. International Journal of Applied Electromagnetics and Mechanics. 37(1), 51-65.
[6] Dura-Bur, Metal Service (2021). G1A gray iron. Retrieved June 8, 2021 from https://www.dura-barms.com/products/dura-bar/gray-iron/g1a.
[7] Wensheng, L. (1995). Production of as-cast ferritic nodular cast iron. Journal of Zhengzhou Textile Institute. 3, 50-52.
[8] Guzik, E., Kopyciński, D., & Wierzchowski, D. (2014). Manufacturing of ferritic low-silicon and molybdenum ductile cast iron with the innovative 2PE-9 technique. Archives of Metallurgy and Materials. 59(2), 687-691.
[9] Stefanescu, D.M. (1981). Production of as-cast ferritic and ferritic-pearlitic ductile iron in green sand molds. AFS International Cast Metals Journal. June 1981, 23-32.
[10] Fraś, E. & Górny, M. (2012). An inoculation phenomenon in cast iron. Archives of Metallurgy and Materials. 57(3), 767- 777. DOI: https://doi.org/10.2478/v10172-012-0084-6.
[11] Riposan, I., Chisamera, M., Stan, S. & White, D. (2009). Complex (Mn, X) S compounds-major sites for graphite nucleation in grey cast iron. China Foundry. 6(4), 352-358.
[12] Ghosh, S. (1995), Micro-structural characteristics of cast irons. Retrieved July 10, 2019, from http://eprints.nmlindia.org/4334/1/E1-18.pdf.
[13] Lacaze, J. & Sertucha, J. (2016). Effect of Cu, Mn, and Sn on pearlite growth kinetics in as-cast ductile irons. International Journal of Cast Metals Research. 29(1-2), 74-78. DOI: 10.1080/13640461.2016.1142238.
[14] Stefanescu, D. M., Alonso, G., & Suarez, R. (2020). Recent developments in understanding nucleation and crystallization of spheroidal graphite in iron-carbon-silicon alloys. Metals. 10(2), 221. DOI: 10.3390/met10020221.
[15] Ghosh, S. (1994). Heat Treatment of Cast Irons. In: Workshop on Heat Treatment & Surface Engineering of Iron & Steels (HTIS-94), May 11-13, 1994, NML, Jamshedpur.
[16] Electro-Nite. Thermal analysis of cast iron. Retrieved June 8, 2021 from https://www.heraeus.com/media/media/hen/media_hen/products_hen/iron/thermal_analysis_of_cast_iron.pdf.
[17] Koriyama, S., Kanno, T., Iwami, Y., & Kang, I. (2020). Investigation of the difference between carbon equivalent from carbon saturation degree and that from liquidus. International Journal of Metalcasting, 1-8.
[18] Sekowski, K., Piaskowski, J., Wojtowicz, Z. (1972). Atlas of the standard microstructures of foundry alloys. Warszawa: WNT, Poland.
[19] Mampaey, F. (1981). The manganese: sulfur ratio in gray irons. Fonderie Belge – De Belgische Gieterej. 51(1), 11-25 (March 1981).
[20] Gundlach, R., Meyer, M. & Winardi, L. (2015). Influence of Mn and S on the properties of cast iron part III—testing and analysis. International Journal of Metalcasting. 9(2), 69-82.
[21] Behnam, M. J., Davami, P. & Varahram, N. (2010). Effect of cooling rate on microstructure and mechanical properties of gray cast iron. Materials Science and Engineering: A. 528(2), 583-588. DOI: 10.1016/j.msea.2010.09.087.
Go to article

Authors and Affiliations

Md Sojib Hossain
1

  1. Bangladesh University of Engineering and Technology, Shahbagh, Dhaka – 1000, Bangladesh
Download PDF Download RIS Download Bibtex

Abstract

The paper compares changes in the structure and mechanical properties due to the synergistic effect of alloying elements Zr and Ti. It is assumed that by increasing the content of Zr and Ti in the aluminium alloy, better mechanical properties will be achieved. Paper focuses on description of the differences between the samples casted into the shell mold and the metal mold. Main difference between mentioned molds is a different heat transfer coefficient during pouring, solidification and cooling of the metal in the mold. The main goal was to analyse the influence of Zr and Ti elements and compare the mechanical properties after the heat treatment. Curing and precipitation aging were used during the experiment. The effect of the elements on AlSi7Mg0.3 alloy created differences between the excluded Zr phases after heat treatment. Evaluation of the microstructure pointed to the decomposition of large predominantly needle Zr phases into smaller, more stable formations.
Go to article

Bibliography

[1] Bolibruchová, D., Tillová, E. (2005). Al-Si foundry alloys. Žilina.
[2] Michna, Š., Lukáč, I. (2005). et al. Encyclopedia of aluminum.
[3] Bechný, L. (1990). Foundry metallurgy and technology. ALFA Bratislava.
[4] Bolibruchová, D., Kuriš, M. & Matejka, M. (2019). Effect of Zr on selected properties and porosity of AlSi9Cu1Mg alloy for the purpose of production of high-precision castings. Manufacturing Technology. 19(4), 1213-2489.
[5] Bolibruchova, D., Macko, J. & Bruna, M. (2014). Elimination of negative effect of Fe in secondary alloys AlSi6Cu4 (EN AC 45 000, A 319) by nickel. Archives of Metallurgy and Materials, 59, 717-721
[6] Mahmudi, R., Sepehrband, P. & Ghasemi, H.M. (2006). Improved properties of A319 aluminum casting alloy modified with Zr. Materials Letters. 2606-2610. DOI 10.1016/j.matlet. 2006.01.046
[7] Peng, G., Chen, K., Fang, H. & Chen, S. (2012). A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy. Materials Science and Engineering. Volume 535, 311-315.
[8] Sha, G. & Cerezo, A. (2004). Early-stage precipitation in Al−Zn−Mg−Cu alloy (7050). Acta Materialia. 52(15), 4503-4516.
[9] Lü, X., Guo, E., Rometsch, P. & Wang, L. (2012). Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy. Transactions of Nonferrous Metals Society of China. 22, 2645-2651. Science Direct.
[10] STN EN 1706. AC–42100. Aluminium alloy for general purpose castings.
[11] Liu, S., Zhang, X.M. & Chen, M.A. & You, J. H. (2008). Influence of aging on quench sensitivity effect of 7055 aluminium alloy. Materials Characterization, 59(1), 53-60.
[12] Pourkia, N., Emamy, M., Farhangi, H. & Seyed, E. (2010). The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminium alloy. Materials Science and Engineering A. 527, 5318-5325.
[13] Tillova, E., Chalupova, M. (2009). Structural analysis of Al-Si alloys. Žilina: EDIS ŽU UNIZA.

Go to article

Authors and Affiliations

E. Kantoríková
1
ORCID: ORCID
M. Kuriš
1
R. Pastirčák
1
ORCID: ORCID

  1. Department of Technological Engineering, University of Žilina in Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The presented work discusses the influence of material of foundry mould on the effect of modification of AlSi11 alloy. For this purpose castings were produced in moulds made of four various materials. Castings of the first type were cast in a metal die, the second ones in the conventional mould of bentonite-bound sand, those of the third type in the sand mould with oil binder, the last ones in a shell mould where phenol-formaldehyde resin was applied as a binder. All the castings were made of AlSi11 alloy modified with strontium. For a purpose of comparison also castings made of the non-modified alloy were produced. The castings were examined with regard to their microstructures. The performed investigations point out that the addition of strontium master alloy results in refining of the alloy structure, particularly of the α-phase, causes some morphological changes in the alloy and the refinement of eutectics. The advantageous influence of modifier on the structure of the examined silumin was observed particularly in the case of alloy cast either in the conventional oil-bound sand mould or in the shell mould. The non-modified alloy cast into a metal die exhibits a structure similar to those of modified alloy solidifying in the other moulds. The improvement in both tensile strength and unit elongation suggests that the modification was carried out correctly. The best mechanical properties were found for the alloy cast in a metal die, both with and without modification treatment.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
Download PDF Download RIS Download Bibtex

Abstract

The paper analyses the as-cast state structure of chromium cast iron designed for operation under harsh impact-abrasive conditions. In the process of chromium iron castings manufacture, very strong influence on the structure of this material have the parameters of the technological process. Among others, adding to the Fe-Cr-C alloy the alloying elements like tungsten and titanium leads to the formation of additional carbides in the structure of this cast iron, which may favourably affect the casting properties, including the resistance to abrasive wear.

Go to article

Authors and Affiliations

D. Kopyciński
S. Piasny
Download PDF Download RIS Download Bibtex

Abstract

The article is focused on thermomechanical and plastic properties of two high-manganese TRIPLEX type steels with an internal marking 1043 and 1045. Tensile tests at ambient temperature and at a temperature interval 600°C to 1100°C were performed for these heats with a different chemical composition. After the samples having been ruptured, ductility was observed which was expressed by reduction of material after the tensile test. Then the stacking fault energy was calculated and dilatation of both high-manganese steels was measured. At ambient temperature (20°C), 1043 heat featured higher tensile strength by 66MPa than 1045 heat. Microhardness was higher by 8HV0,2 for 1045 steel than for 1043 steel (203HV0,2). At 20°C, ductility only differed by 3% for the both heats. Decrease of tensile properties occurred at higher temperatures of 600 up to 1100°C. This tensile properties decrease at high temperatures is evident for most of metals. The strength level difference of the both heats in the temperature range 20°C up to 1100°C corresponded to 83 MPa, while between 600°C and 1100°C the difference was only 18 MPa. In the temperature range 600°C to 800°C, a decrease in ductility values down to 14 % (1045 heat), or 22 % (1043 heat), was noticed. This decrease was accompanied with occurrence of complex Aluminium oxides in a superposition with detected AlN particles. Further ductility decrease was only noted for 1043 heat where higher occurrence of shrinkag porosity was observed which might have contributed to a slight decrease in reduction of area values in the temperature range 900°C to 1100°C, in contrast to 1045 heat matrix.

Go to article

Authors and Affiliations

P. Lichý
J. Beňo
M. Cagala
E. Mazancová
M. Břuska
N. Špirutová
Download PDF Download RIS Download Bibtex

Abstract

Porosity is one of the major defects in aluminum castings and results in a decrease of the mechanical properties of Al-Si alloys. It is induced by two mechanisms: solidification shrinkage and gas segregation. One of the methods for complex evaluation of macro and micro porosity in Al-Si alloys is using the Tatur test technique. This article deals with the evaluation of porosity with the help of Tatur tests for selected Al-Si alloys. These results will be compared with results obtained from the ProCAST simulation software.

Go to article

Authors and Affiliations

A. Sládek
M. Brůna
L. Kucharčík
Download PDF Download RIS Download Bibtex

Abstract

Fabrication and microstructure of the AlSi11 matrix composite containing 10 % volume fraction of CrFe30C8 particles were presented in this paper. Composite suspension was manufactured by using mechanical stirring. During stirring process the temperature of liquid metal, time of mixing and rotational speed of mixer were fixed. After stirring process composite suspension was gravity cast into shell mould. The composites were cast, applying simultaneously an electromagnetic field. The aim of the present study was to determine the effect of changes in the frequency of the current power inductor on the morphology of the reinforcing phase in the aluminum matrix. The concept is based on the assumption that a chromium-iron matrix of CrFe30C8 particles dissolves and residual carbide phases will substantially strengthen the composite. The microstructure and interface structure of the AlSi11/CrFe30C8 composite has been studied by optical microscopy, scanning microscopy and X-ray diffraction.

Go to article

Authors and Affiliations

A. Dulęba
M. Cholewa
D. Scelina
Download PDF Download RIS Download Bibtex

Abstract

The dimensional accuracy of a final casting of Inconel 738 LC alloy is affected by many aspects. One of them is the choice of method and time of cooling the wax model for precision investment casting. The main objective of this work was to study the initial deformation of the complex shape of a rotor blades casting. Various approaches have been tested for cooling a wax pattern. When wax models are air cooled and without clamping in the jig for cooling, deviations from the ideal shape of the casting are very noticeable (up to 8 mm) and most are in extreme positions of the model. When the blade is cooled in the fixing jig in a water environment, the resulting deviations compared to those of air cooling are significantly larger, sometimes up to 10 mm. This itself does not mean that the final shape of the casting is dimensionally more accurate with the usage of wax models, which have smaller deviations from the ideal position. Another deformation occurs when the shell mould is produced around the wax pattern and further deformations emerge while cooling the blade casting. This paper demonstrates the first steps in describing the complex process of deformations occurring in Inconel alloy blades produced with investment casting technology by comparing results of thermal imagery, simulations in foundry simulation software ProCAST 2010, and measurements from a CNC scanning system using a Carl Zeiss MC 850. Conclusions are so far not groundbreaking, but it seems that deformations of the wax pattern and deformations of the castings do in some cases cancel each other by having opposite directions. Describing the whole process of deformations will help increase the precision of blade castings so that the models at the beginning and the blades in the end are the same.

Go to article

Authors and Affiliations

A. Herman
M. Česal
P. Mikeš
Download PDF Download RIS Download Bibtex

Abstract

The results of studies on the use of magnesium alloy in modern Tundish + Cored Wire injection method for production of vermicular graphite cast irons were described. The injection of Mg Cored Wire length is a treatment method which can be used to process iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire for the production of vermicular graphite cast irons at the; Tundish + Cored Wire to be injected methods (PE) for pearlitic-ferritic matrix GJV with about 25 %ferrite content. The results of calculations and experiments have indicated the length of the Cored Wire to be injected basing on the initial sulfur content and weight of the treated melt. The paper presents a microstructure matrix and vermicular graphite in standard sample and different walled castings. The results of numerous trials have shown that the magnesium Tundish + PE Method process can produce high quality vermicular graphite irons under the specific industrial conditions of the above mentioned foundries.

Go to article

Authors and Affiliations

E. Guzik
D. Kopyciński
T. Kleingartner
M. Sokolnicki
Download PDF Download RIS Download Bibtex

Abstract

Changes of gas pressure in the moulding sand in the zone adjacent to mould cavity were analysed during pouring of cast iron. No significant effect of pressure on the surface quality of castings was observed. In the second series of tests, the concentration of hydrogen in the gas atmosphere was measured. It has been found that the value of this concentration depends on metal composition and is particularly high in cast iron containing magnesium. This is due to the reduction of water vapour with the element that has high affinity to oxygen. The presence of hydrogen causes the formation of gas-induced defects on the casting surface.

Go to article

Authors and Affiliations

A. Chojecki
J. Mocek
Download PDF Download RIS Download Bibtex

Abstract

A comprehensive understanding of melt quality is of paramount importance for the control and prediction of actual casting characteristics. Among many phenomenon that occur during the solidification of castings, there are four that control structure and consequently mechanical properties: chemical composition, liquid metal treatment, cooling rate and temperature gradient. The cooling rate and alloy composition are most important among them. This paper investigates the effect of the major alloying elements (silicon and copper) of AlSi-Cu alloys on the size of secondary dendrite arm spacing. It has been shown that both alloying elements have reasonable influence on the refinement of this solidification parameter

Go to article

Authors and Affiliations

M. Djurdjevič
M. Grzinčič
Download PDF Download RIS Download Bibtex

Abstract

Statistical Process Control (SPC) based on the well known Shewhart control charts, is widely used in contemporary manufacturing

industry, including many foundries. However, the classic SPC methods require that the measured quantities, e.g. process or product

parameters, are not auto-correlated, i.e. their current values do not depend on the preceding ones. For the processes which do not obey this

assumption the Special Cause Control (SCC) charts were proposed, utilizing the residual data obtained from the time-series analysis. In the

present paper the results of application of SCC charts to a green sand processing system are presented. The tests, made on real industrial

data collected in a big iron foundry, were aimed at the comparison of occurrences of out-of-control signals detected in the original data

with those appeared in the residual data. It was found that application of the SCC charts reduces numbers of the signals in almost all cases

It is concluded that it can be helpful in avoiding false signals, i.e. resulting from predictable factors.

Go to article

Authors and Affiliations

M. Perzyk
A. Rodziewicz
Download PDF Download RIS Download Bibtex

Abstract

The paper proposes a methodology useful in verification of results of dilatometric tests aimed at determination of temperatures defining

the start and the end of eutectoid transformation in the course of ductile cast iron cooling, based on quenching techniques and

metallographic examination. For an industrial melt of ductile cast iron, the effect of the rate of cooling after austenitization at temperature

900°C carried out for 30 minutes on temperatures TAr1

start and TAr1

end was determined. The heating rates applied in the study were the

same as the cooling rates and equaled 30, 60, 90, 150, and 300°C/h. It has been found that with increasing cooling rate, values of

temperatures TAr1

start and TAr1

end decrease by several dozen degrees.

Go to article

Authors and Affiliations

A. Trytek
M. Tupaj
M. Mróz
A.W. Orłowicz
Download PDF Download RIS Download Bibtex

Abstract

The chosen, typical causes of quality defects of cast-iron „alphin” rings embedded in aluminum cast are being presented in this paper.

Diffusive joint of those inserts with the pistons casts is being used, due to extreme work conditions of destructive influence of the fuel mix

and variable thermo-mechanical loads, which reign in the combustion motor working chamber.

Go to article

Authors and Affiliations

J. Piątkowski
P. Kamiński
Download PDF Download RIS Download Bibtex

Abstract

The results of structure observations of Ni base superalloy subjected to long-term influence of high pressure hydrogen atmosphere at 750K

and 850K are presented. The structure investigation were carried out using conventional light-, scanning- (SEM) and transmission electron

microscopy (TEM). The results presented here are supplementary to the mechanical studies given in part I of this investigations. The

results of study concerning mechanical properties degradation and structure observations show that the differences in mechanical

properties of alloy subjected different temperature are caused by more advanced processes of structure degradation during long-term aging

at 850K, compare to that at 750K. Higher service temperature leads to formation of large precipitates of δ phase. The nucleation and

growth of needle- and/or plate-like, relative large delta precipitates proceed probably at expense strengthening γ" phases. Moreover, it can't

be excluded that the least stable γ" phase is replaced with more stable γ' precipitates. TEM observations have disclosed differences in

dislocation structure of alloy aged at 750K and 850K. The dislocation observed in alloy subjected to 750K are were seldom observed only,

while in that serviced at high stress and 850K dislocation array and dislocation cell structure was typical.

Go to article

Authors and Affiliations

M. Kaczorowski
P. Skoczylas
A. Krzyńska

This page uses 'cookies'. Learn more