Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 53
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper a cross-shaped isolator consisting of cuboidal magnets and a cylindrical isolator are compared by resonance frequency to volume ratio and shape. Both isolators are capable of obtaining a low resonance frequency, i.e. 0.15 Hz and 0.01 Hz for the cross and cylinder, respectively. The volume of both isolators is comparable, only the shape is different, resulting in a tall structure with a small footprint for the cross and a flat with a large diameter cylindrical structure. A sensitivity analysis shows that due to the large amount of magnets, the cross-shaped isolator is less sensitive to manufacturing tolerances.

Go to article

Authors and Affiliations

D.T.E.H. Van Casteren
J.J.H. Paulides
E.A. Lomonova
Download PDF Download RIS Download Bibtex

Abstract

With the rapid advancement of digital processors, filters have been commonly implemented using microcomputers. In this study, a low-cost and compact Arduino Uno development board was used to realize digital lead and lag compensators. Arduino boards are very affordable. Consequently, they were investigated to see if they were capable of preserving the frequency response of continuous-time compensators. The experiments required a set of equipment including a function generator, an Arduino Uno development board, a PC-based oscilloscope, and a laptop. The signal frequency was varied from 0 to 500 Hz. Two discretization methods were employed, namely bilinear transformation and matched pole-zero mapping. The results showed that an Arduino Uno board can be utilized to implement lead and lag compensators to some extent. The discrete-time compensator preserved the capability of filtering out certain frequencies. The change in DC gain was negligible, however, there was a significant difference in the cut-off frequency and transient slope. For both discretization methods, the frequency responses at high frequency experienced a rippling profile.

Go to article

Authors and Affiliations

Gunawan Dewantoro
Irwin Shauma Rizky
Budihardja Murtianta
Download PDF Download RIS Download Bibtex

Abstract

Thermal image drift is observed in prevalent industrial-level cameras because their optomechanical design is not optimised to reduce this phenomenon. In this paper, the effect of temperature on industrial-level cameras is investigated, focusing on the thermal image drift resulting from ambient temperature changes and warming-up process. Standard methods for reducing thermal image drift are reviewed, concentrating on the lack of repeatability aspect of this drift. Repeatable thermal image drift is crucial for applying a compensation model as random thermal deformations in sensors cannot be compensated. Moreover, the possible cause of this issue is explored, and novel optomechanical camera modifications are proposed that maintain the thermal degrees of freedom for the deforming sensor, limiting the lack of repeatability aspect of thermal image drift to a low level. The improvement is verified by conducting experiments using a specialised test stand equipped with an invar frame and thermal chamber. Considering the results from the application of the polynomial compensation model, the standard deviation of the central shifts of image drift is reduced by ×3.99, and the absolute range of image drift is reduced by ×2.53.
Go to article

Authors and Affiliations

Marcin Adamczyk
1
ORCID: ORCID
Kohei Nimura
1

  1. Warsaw University of Technology, Faculty of Mechatronics, Institute of Micromechanics and Photonics, ul. Andrzeja Boboli 8,02-525 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper, a feedforward linearization method for differential-pair operational transconductance amplifier (OTA) is discussed.

The proposed technique is developed using simple differential pair transconductors and linear reference resistor. The concept leads not only to very efficient linearization ofa transfer characteristic oft he OTA but also others the possibility of effffective phase compensation. Due to this, the circuit can be used in applications requiring precise phase response (e.g. filters). SPICE simulations show that for the circuit working with a ±1.25V power supply, total harmonic distortion (THD) at 0.8Vpp is less then 0.1% in comparison to 10.2% without linearization. Moreover, the input voltage range ofline ar operation is increased. Power consumption oft he overall circuit is 0.94mW. The 3rd order elliptic filter example has been designed and simulated. It turns out that the proposed compensation scheme significantly improves the performance of the filter at higher frequencies.

Go to article

Authors and Affiliations

S. Szczepański
S. Kozieł
Download PDF Download RIS Download Bibtex

Abstract

Single-branch filters are still popular and are commonly used for power quality improvement purposes. Analysis of a single-branch filter is a relatively simple task. Although individual filters tuned to specific harmonics can be easily designed, after connecting them into a group it turns out that the capacitance and inductance mutually influence each other, distorting the resulting frequency characteristics. This article presents a matrix method for design a group of single-branch filters, so that the resultant frequency characteristic satisfies the design requirements including the requirements for location of the frequency characteristic maxima. Designer indicates the frequencies of the parallel resonances.

Go to article

Authors and Affiliations

Ryszard Klempka
Download PDF Download RIS Download Bibtex

Abstract

Amendment to the Act on special rules of preparation and implementation of investment in public roads resulted in an accelerated mode of acquisition of land for the development of roads. The decision to authorize the execution of road investment issued on its basis has several effects, i.e. determines the location of a road, approves surveying division, approves construction design and also results in acquisition of a real property by virtue of law by the State Treasury or local government unit, among others. The conducted study revealed that over 3 years, in this mode, the city of Krakow has acquired 31 hectares of land intended for the implementation of road investments. Compensation is determined in separate proceedings based on an appraisal study estimating property value, often at a distant time after the loss of land by the owner. One reason for the lengthy compensation proceedings is challenging the proposed amount of compensation, unregulated legal status of the property as well as imprecise legislation. It is important to properly develop geodetic and legal documentation which accompanies the application for issuance of the decision and is also used in compensation proceedings.
Go to article

Authors and Affiliations

Anna Trembecka
Download PDF Download RIS Download Bibtex

Abstract

A dynamic weighing system or a checkweigher is an automated inspection system that measures the weight of objects while transferring them between processes. In our previous study, we developed a new electromagnetic force compensation (EMFC) weighing cell using magnetic springs and air bearings. This weighing cell is free from flexure hinges which are vulnerable to shock and fatigue and also eliminates the resonance characteristics and implements a very low stiffness of only a few N/m due to the nature of the Halbach array magnetic spring. In this study, we implemented a checkweigher with the weighing cell including a loading and unloading conveyor to evaluate its dynamic weighing performances. The magnetic springs are optimized and re-designed to compensate for the weight of a weighing conveyor on the weighing cell. The checkweigher has a weighing repeatability of 23 mg (1σ) in static situation. Since there is no lowfrequency resonance in our checkweigher that influences the dynamic weighing signal, we could measure the weight by using only a notch filter at high conveyor speeds. To determine the effective measurement time, a dynamic weighing process model is used. Finally, the proposed checkweigher meets Class XIII of OIML R51-1 of verification scale e 0.5 g at a conveyor speed of up to 2.7 m/s.
Go to article

Bibliography

[1] Schwartz, R. (2000). Automatic weighing-principles, applications and developments. Proceedings of XVI IMEKO, Austria, 259–267.
[2] Yamazaki, T., & Ono, T. (2007). Dynamic problems in measurement of mass-related quantities. Proceedings of the SICE Annual Conference, Japan, 1183–1188. https://doi.org/10.1109/SICE.2007.4421164.
[3] Mettler-Toledo GmbH. (2021, June 13). https://www.mt.com/.
[4] Yamakawa, Y., Yamazaki, T., Tamura, J., & Tanaka, O. (2009). Dynamic behaviors of a checkweigher with electromagnetic force compensation. Proceedings of the XIX IMEKO, Portugal, 208– 211. https://www.imeko.org/publications/wc-2009/IMEKO-WC-2009-TC3-184.pdf.
[5] Yamakawa, Y., & Yamazaki, T. (2010). Dynamic behaviors of a checkweigher with electromagnetic force compensation (2nd report). Proceedings of the XIX IMEKO, Portugal. https://www.imeko.org/publications/tc3-2010/IMEKO-TC3-2010-001.pdf.
[6] Yamakawa, Y., & Yamazaki, T. (2013). Simplified dynamic model for high-speed checkweigher. International Journal of Modern Physics. 24, 1–8. https://doi.org/10.1142/S2010194513600367.
[7] Yamakawa, Y., & Yamazaki, T. (2015). Modeling and control for checkweigher on floor vibration. Proceedings of the XXI IMEKO, Czech Republic. https://www.imeko.org/IMEKO-WC-2015- TC3-093.pdf.
[8] Yamazaki, T., Sakurai, Y., Ohnishi, H., Kobayashi, M., & Kurosu, S. (2002). Continuous mass measurement in checkweighers and conveyor belt scales. Proceedings of the SICE Annual Conference, 470–474. https://doi.org/10.1109/SICE.2002.1195446.
[9] Sun, B., Teng, Z., Hu, Q., Lin, H., & Tang, S. (2020). Periodic noise rejection of checkweigher based on digital multiple notch filter. IEEE Sensors Journal, 20(13), 7226–7234. https://doi.org/10.1109/JSEN.2020.2978232.
[10] Piskorowski, J., & Barcinski, T. (2008). Dynamic compensation of load cell response: A timevarying approach. Mechanical Systems and Signal Processing, 22(7), 1694–1704. https://doi.org/10.1016/j.ymssp.2008.01.001.
[11] Pietrzak, P., Meller, M., & Niedzwiecki, M. (2014). Dynamic mass measurement in checkweighers using a discrete time-variant low-pass filter. Mechanical Systems and Signal Processing, 48(1–2), 67–76. https://doi.org/10.1016/j.ymssp.2014.02.013.
[12] Umemoto, T., Sasamoto, Y., Adachi, M., Kagawa, Y. (2008). Improvement of accuracy for continuous mass measurement in checkweighers with an adaptive notch filter. Proceedings of the SICE Annual Conference, 1031–1035. https://doi.org/10.1109/SICE.2008.4654807.
[13] Boschetti, G., Caracciolo, R., Richiedei, D., & Trevisani, A. (2013). Model-based dynamic compensation of load cell response in weighing machines affected by environmental vibrations. Mechanical Systems and Signal Processing, 34(1–2), 116–130. https://doi.org/10.1016/j.ymssp.2012.07.010.
[14] Sun, B., Teng, Z., Hu, Q., Tang, S., Qiu, W., & Lin, H. (2020). A novel LMS-based SANC for conveyor belt-type checkweigher. IEEE Transactions on Instrumentation and Measurement, 70, 1– 10. https://doi.org/10.1109/TIM.2020.3019618.
[15] Niedzwiecki, M., Meller, M., & Pietrzak, P. (2016). System identification -based approach to dynamic weighing revisited. Mechanical Systems and Signal Processing, 80, 582–599. https://doi.org/10.1016/j.ymssp.2016.04.007.
[16] Choi, I. M., Choi, D. J., & Kim, S. H. (2001). The modelling and design of a mechanism for micro-force measurement. Measurement Science and Technology, 12(8), 1270–1278. https://doi.org/10.1088/0957-0233/12/8/339.
[17] Hilbrunner, F., Weis, H., Fröhlich, T., & Jäger, G. (2010). Comparison of different load changers for EMFC-balances. Proceedings of the IMEKO TC3, TC5, and TC22 Conferences Metrology in Modern Context, Thailand. https://www.imeko.org/publications/tc3-2010/IMEKO-TC3-2010-016.pdf.
[18] Yoon, K. T., Park, S. R., & Choi, Y. M. (2020). Electromagnetic force compensation weighing cell with magnetic springs and air bearings. Measurement Science and Technology, 32(1). https://doi.org/10.1088/1361-6501/abae8e.
[19] Zhang, H., Kou, B., Jin, Y., & Zhang, H. (2014). Modeling and analysis of a new cylindrical magnetic levitation gravity compensator with low stiffness for the 6-DOF fine stage. IEEE Transactions on Industrial Electronics, 62(6), 3629–3639. https://doi.org/10.1109/TIE.2014.2365754.
[20] Choi, Y. M., & Gweon, D. G. (2010). A high-precision dual-servo stage using Halbach linear active magnetic bearings. IEEE/ASME Transactions on Mechatronics, 16(5), 925–931. https://doi.org/10.1109/TMECH.2010.2056694.
[21] Lijesh, K. P., & Hirani, H. (2015). Design and development of Halbach electromagnet for active magnet bearing. Progress in Electromagnetics Research C, 56, 173–181. https://doi.org/10.2528/PIERC15011411.
Go to article

Authors and Affiliations

Hyun-Ho Lee
1
Kyung-Taek Yoon
1
Young-Man Choi
1

  1. Ajou University, Department of Mechanical Engineering, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea, Suwon, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The article presents a new discretization method of a continuous-time linear model of sensor dynamics. It can be useful to reduce measuring errors related to the inertia of the sensor. For example it is important in the measurement of rapid processes as temperature changes in combustion chambers, or for shortening the time needed to establish the sensor readings in a transition state. There is assumed that sensor dynamics can be approximated by linear differential equation or transfer function. The searched coefficients of equivalent difference equation or discrete transfer function are obtained from Taylor expansion of a sensor output signal and then on the solution of the linear set of equations. The method does not require decomposition of sensor transfer function for zeros and poles and can be applied to the case of transfer function with zeros equal to zero. The method was used to compensate the dynamics of sensor measuring fast signals. The Bode characteristics of a compensator were compared with others derived using classical methods of discretization of linear models. Additionally, signals in time were presented to show the dynamic error before and after compensation.
Go to article

Authors and Affiliations

Sławomir Gryś
1
Waldemar Minkina
2

  1. University of Technology, Faculty of Electrical Engineering, Poland
  2. Jan Dlugosz University in Czestochowa, Faculty of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article is a continuation of a study on the synthesis of matching multi-terminal networks, also known as compensators. The reactive four-terminal-network compensators for linear loads were introduced in previous publications, but it appeared that they operate effectively with nonlinear loads too. The methods to create a compensator for a mono-harmonic source, which allows complete independence of input from output waveforms, ensuring optimal operating conditions for the source, are presented herein. The work for the first time presents the optimal four-terminal-network compensator applied to a nonlinear load.

Go to article

Authors and Affiliations

M. Jaraczewski
Download PDF Download RIS Download Bibtex

Abstract

The absorption of sound in air represents one of the main problems of the scale model measurements. This absorption, especially at higher frequencies, is considerably greater than the value determined by the law of acoustical similarity between the full scale and the scale model. Different alternatives are applied for compensation of the excess air absorption including a numerical compensation. In this paper, a modified approach to numerical compensation is proposed. It is based on compensation of the sound decay only, and not background noise. As a consequence, there is no an increase of background noise in the compensated impulse response. The results obtained by the proposed procedure are compared to the corresponding ones obtained by the other procedures.

Go to article

Authors and Affiliations

Dejan Ćirić
Aleksandar Pantić
Download PDF Download RIS Download Bibtex

Abstract

Reliable estimation of longitudinal force and sideslip angle is essential for vehicle stability and active safety control. This paper presents a novel longitudinal force and sideslip angle estimation method for four-wheel independent-drive electric vehicles in which the cascaded multi-Kalman filters are applied. Also, a modified tire model is proposed to improve the accuracy and reliability of sideslip angle estimation. In the design of longitudinal force observer, considering that the longitudinal force is the unknown input of the electric driving wheel model, an expanded electric driving wheel model is presented and the longitudinal force is obtained by a strong tracking filter. Based on the longitudinal force observer, taking into consideration uncertain interferences of the vehicle dynamic model, a sideslip angle estimation method is designed using the robust Kalman filter and a novel modified tire model is proposed to correct the original tire model using the estimation results of longitudinal tire forces. Simulations and experiments were carried out, and effectiveness of the proposed estimation method was verified.

Go to article

Authors and Affiliations

Long Chen
Te Chen
Xing Xu
Yingfeng Cai
Haobin Jiang
Xiaoqiang Sun
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a low-cost and smart measurement system to acquire and analyze mechanical motion parameters. The measurement system integrates several measuring nodes that include one or more triaxial accelerometers, a temperature sensor, a data acquisition unit and a wireless communication unit. Particular attention was dedicated to measurement system accuracy and compensation of measurement errors caused by power supply voltage variations, by temperature variations and by accelerometers’ misalignments. Mathematical relationships for error compensation were derived and software routines for measurement system configuration, data acquisition, data processing, and self-testing purposes were developed. The paper includes several simulation and experimental results obtained from an assembled prototype based on a crank-piston mechanism

Go to article

Authors and Affiliations

J.M. Dias Pereira
Vítor Viegas
Octavian Postolache
Pedro Silva Girão
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a concept of an active filter with energy storage. This solution can be used for the compensation of momentary one phase high power loads with discontinued power consumption (e.g. spot welding machines). Apart from the typical filtering capabilities, the system’s task is also the continuity of the input power from the feeder line and limiting its fluctuation. The proposed by the author’s solution can produce measurable economic benefits by reducing the rated power necessary to energize periodically operating loads and improving the indicators of electrical energy quality. The developed method of active power surges compensation enables a flexible approach to requirements concerning the rated power of the point to which the periodically operating loads with high peak current value are connected. The tests were conducted on a simulation model specially developed in Matlab & Simulink environment, proving high effectiveness of the presented solution.

Go to article

Authors and Affiliations

Kacper Sowa
Stanisław Piróg
Marcin Baszyński
Download PDF Download RIS Download Bibtex

Abstract

The presented paper concerns the issues of communication networks applied to monitoring and control of reactive power compensator for small hydroelectric plants installed in areas distant from urban agglomerations. Ethernet, CAN, Modbus and GPRS transmission protocols has been used. Industrial programmable controller as a data collector has been used also.

Go to article

Authors and Affiliations

Remigiusz Olesiński
Paweł Hańczur
Janusz Wiśniewski
Włodzimierz Koczara
Download PDF Download RIS Download Bibtex

Abstract

With the increasing penetration rate of grid-connected renewable energy generation, the problem of grid voltage excursion becomes an important issue that needs to be solved urgently. As a new type of voltage regulation control method, electric spring (ES) can alleviate the fluctuations of renewable energy output effectively. In this paper, the background and basic principle of the electric spring are introduced firstly. Then, considering the influence of an electric spring on noncritical load voltage, noncritical loads are classified reasonably, and based on the electric spring phasor diagram, the control method to meet the noncritical load voltage constraint is proposed. This control method can meet the requirements of voltage excursions of different kinds of noncritical load, increase the connection capacity of the noncritical load and improve the voltage stabilization capacity of the electric spring. Finally, through the simulation case, the feasibility and validity of electric spring theory and the proposed control method are verified.

Go to article

Authors and Affiliations

Yixi Chen
Gang Ma
Uchao Xu
Hang Zhang
Rong Ju
Download PDF Download RIS Download Bibtex

Abstract

Most receiving antenna arrays suffer from the mutual coupling problem between antenna elements, which can critically influence the performance of the array. In this work, a novel and accurate form of compensation matrix is applied to compensate the mutual coupling in a uniform linear array (ULA). This is achieved by applying a new method based on solving a boundary value problem for the whole ULA. In this method, both self and mutual impedances are exploited in an accurate characterization of mutual impedance matrix which results in a perfect mutual coupling compensation method, and hence a very accurate direction of arrival (DOA) estimation. In the new scheme, the compensation ma- trix is obtained by using the relationship between measured voltage and theoretical coupled voltage based on the MOM. Numerical results show that using DOA estimation algorithms to the decoupled voltage obtained by using this method leads to an excellent performance of DOA estimation with higher accuracy and resolution.
Go to article

Authors and Affiliations

Naser Parhizgar
Download PDF Download RIS Download Bibtex

Abstract

The article discusses problems related to rules and regulations determining compensations for the mining usufruct of mineral deposits covered by the so called “state mining ownership”. Specific acts of law framing agreements on mining usufruct between government and mining enterprises were analyzed. Rules and algorithms applied to calculate an appropriate compensation are evaluated leading to several conclusions, including the one about lack of a direct legal grounding for them. Such a situation creates disputes and may be risky for all involved. It was also indicated that, in parallel, the State lets another class of mineral deposits, namely the ones owned as a result of real estate ownership and the related Civil Code regulations confirmed by the mining law. In such cases, a mining entrepreneur gets usufruct of a real estate, but only the one with mineral rights. Subsequently a comparison of the rules and algorithms established for determining compensation for mining usufruct and for usufruct of real-estates comprising rights for mineral assets was performed. Arguments for a far going harmonization between these two were put forward. This implies that a starting point for determining any compensation has to be a valuation of a relevant mineral deposit market value as opposed to any universal, however complicated, prescribed algebraic formula. Such a process is complicated and demands competences in geology, mining and finance. Consequently, regulations set in the Polish Mineral Asset Valuation Code shall be applied to both a running a valuation process and indicating competent persons. As a result, recommendations leading to correlate rules applied in both cases are put forward including the adoption of mineral asset valuation as a fundament to determine the level of compensation for the mining usufruct. The closing section contains recommendations regarding necessary changes in the legal framework.

Go to article

Authors and Affiliations

Ryszard Uberman
Robert Uberman
Download PDF Download RIS Download Bibtex

Abstract

The time delay element present in the PI controller brings dead-time compensation capability and shows improved performance for dead-time processes. However, design of robust time delayed PI controller needs much responsiveness for uncertainty in dead-time processes. Hence in this paper, robustness of time delayed PI controller has been analyzed for First Order plus Dead-Time (FOPDT) process model. The process having dead-time greater than three times of time constant is very sensitive to dead-time variation. A first order filter is introduced to ensure robustness. Furthermore, integral time constant of time delayed PI controller is modified to attain better regulatory performance for the lag-dominant processes. The FOPDT process models are classified into dead-time/lag dominated on the basis of dead-time to time constant ratio. A unified tuning method is developed for processes with a number of dead-time to time constant ratio. Several simulation examples and experimental evaluation are exhibited to show the efficiency of the proposed unified tuning technique. The applicability to the process models other than FOPDT such as high-order, integrating, right half plane zero systems are also demonstrated via simulation examples.
Go to article

Bibliography

[1] A. Ingimundarson and T. Hagglund: Robust tuning procedures of deadtime compensating controllers. Control Engineering Practice, 9(11), (2001), 1195–1208, DOI: 10.1016/s0967-0661(01)00065-x.
[2] A. O’Dwyer: Handbook of PI and PID Controller Tuning Rules. Imperial College Press, London. 2006.
[3] A.R. Pathiran and J. Prakash: Design and implementation of a modelbased PI-like control scheme in a reset configuration for stable single-loop systems. The Canadian Journal of Chemical Engineering, 92(9), (2014), 1651–1660, DOI: 10.1002/cjce.22014.
[4] B.D. Tyreus and W.L. Luyben: Tuning PI controllers for integrator/dead time processes. Industrial & Engineering Chemistry Research, 31(11), (1992), 2625–2628, DOI: 10.1021/ie00011a029.
[5] D. Efimov, A. Polyakov, L. Fridman,W. Perruquetti, and J.P. Richard: Delayed sliding mode control. Automatica, 64 (2016), 37–43, DOI: 10.1016/j.automatica.2015.10.055.
[6] D.E. Rivera, M. Morari, and S. Skogestad: Internal model control: PID controller design. Industrial & Engineering Chemistry Process Design and Development, 25(1), (1986), 252–265, DOI: 10.1021/i200032a041.
[7] F. Gao, M. Wu, J. She, and Y. He: Delay-dependent guaranteedcost control based on combination of Smith predictor and equivalentinput- disturbance approach. ISA Transactions, 62, (2016), 215–221, DOI: 10.1016/j.isatra.2016.02.008.
[8] F.G. Shinskey: PID-deadtime control of distributed processes. Control Engineering Practice, 9(11), (2001), 1177–1183. DOI: 10.1016/s0967- 0661(01)00063-6.
[9] F.G. Shinskey: Process Control Systems – Application, Design, and Tuning. McGraw-Hill, New York. 1998.
[10] I.L. Chien: IMC-PID controller design-an extension. IFAC Proceedings, 21(7), (1988), 147–152, DOI: 10.1016/s1474-6670(17)53816-1.
[11] J. Lee and T.F. Edgar: Improved PI controller with delayed or filtered integral mode. AIChE Journal, 48(12), (2002), 2844–2850, DOI: 10.1002/aic.690481212.
[12] J. Na, X. Ren, R. Costa-Castello, and Y. Guo: Repetitive control of servo systems with time delays. Robotics and Autonomous Systems, 62(3), (2014), 319–329, DOI: 10.1016/j.robot.2013.09.010.
[13] J.E. Normey-Rico, C. Bordons and E.F. Camacho: Improving the robustness of dead-time compensating PI controllers. Control Engineering Practice, 5(6), (1997), 801–810, DOI: 10.1016/s0967-0661(97)00064-6.
[14] J.E.Normey-Rico, R. Sartori, M. Veronesi, and A. Visioli: An automatic tuning methodology for a unified dead-time compensator. Control Engineering Practice, 27, (2014), 11–22, DOI: 10.1016/j.conengprac.2014.02.001.
[15] J.E. Normey-Rico, R.C.C. Flesch, T.L.M. Santos and E.F. Camacho: Comments on A novel dead time compensator for stable processes with long dead times. Journal of Process Control, 22(7), (2012), 1404–1407, DOI: 10.1016/j.jprocont.2012.05.009.
[16] K. Kirtania and M.A.A.S. Choudhury: A novel dead time compensator for stable processes with long dead times. Journal of Process Control, 22(3), (2012), 612–625, DOI: 10.1016/j.jprocont.2012.01.003.
[17] K.J. Astrom and T. Hagglund: Advanced PID Control. Instrument Society of America, Research Triangle Park, N.C. 2006.
[18] K.J. Åstrom and T. Hagglund: The future of PID control. Control Engineering Practice, 9(11), (2001), 1163–1175, DOI: 10.1016/s0967- 0661(01)00062-4.
[19] R. Arun, R. Muniraj, and M.S. Willjuice Iruthayarajan: A new controller design method for single loop internal model control systems. Studies in Informatics and Control, 29(2), (2020), 219–229, DOI: 10.24846/v29i2y202007.
[20] R. Gudin and L. Mirkin: On the delay margin of dead-time compensators. International Journal of Control, 80(8), (2007), 1316–1332, DOI: 10.1080/00207170701316616.
[21] T. Hagglund: An industrial dead-time compensating PI controller. Control Engineering Practice, 4(6), (1996), 749–756, DOI: 10.1016/0967- 0661(96)00065-2.
[22] W.K. Ho, C.C. Hang, and L.S. Cao: Tuning of PID controllers based on gain and phase margin specifications. Automatica, 31(3), (1995), 497–502, DOI: 10.1016/0005-1098(94)00130-b.
[23] X. Sun, J. Xu, and J. Fu: The effect and design of time delay in feedback control for a nonlinear isolation system, Mechanical Systems and Signal Processing, 87, (2017), 206–217, DOI: 10.1016/j.ymssp.2016.10.022.
[24] Y. Wang, F. Yan, S. Jiang, and B. Chen: Time delay control of cabledriven manipulators with adaptive fractional-order nonsingular terminal sliding mode. Advances in Engineering Software, 121, (2018), 13–25, DOI: 10.1016/j.advengsoft.2018.03.004.
Go to article

Authors and Affiliations

Arun R. Pathiran
1
R. Muniraj
2
ORCID: ORCID
M. Willjuice Iruthayarajan
3
ORCID: ORCID
S.R. Boselin Prabhu
4
T. Jarin
5
ORCID: ORCID

  1. Department of Electrical and Electronics Technology, Ethiopian Technical University, Addis Ababa, Ethiopia
  2. Department of Electrical and Electronics Engineering, P.S.R. Engineering College, Sivakasi, Virudhunagar District, Tamilnadu, India
  3. Department of Electrical and Electronics Engineering, National Engineering College, Kovilpatti, India
  4. Department of Electronics and Communication Engineering, Surya Engineering College, Mettukadai, India
  5. Department of Electrical and Electronics Engineering, Jyothi Engineering College, Thrissur, India
Download PDF Download RIS Download Bibtex

Abstract

In order to guarantee the accuracy of turntable angle measurement, a real-time compensation method for turntable positioning precision based on harmonic analysis is proposed in this paper. Firstly, the principle and feasibility of the real-time compensation method are analysed, and a detailed description of harmonic compensation is provided herein. Secondly, we analyse the relationships between the surface number of the polygon with the compensation order of the harmonic function and its corresponding compensation accuracy. The effects of the iterations number and the data width on calculation accuracy in the coordinate rotation digital computer (CORDIC) algorithm are analysed and the quantization models of the approximation error and rounding error of the CORDIC algorithm are established. Then, the calculation of the harmonic error function and real-time compensation processes are implemented on a field programmable gate array (FPGA) chip. The resource occupation and time delay of the phase angle calculation and the harmonic component calculation are discussed separately. Finally, the validity of the harmonic compensation method is proven through comparing the compensation effect with that of linear interpolation and the polynomial compensation method. The influences of the compensation order, the iterations number and the data width on the compensation results are demonstrated by simulation. A test platform with a laboratory-made FPGA circuit is built to evaluate the effect of real-time compensation with the harmonic function and the positioning error compensation can be performed within 760 ns. The results confirmed the effectiveness of the harmonic compensation method, revealing an improvement of the positioning precision from 54.21″ to 1.63″, equivalent to 96.99% reduction in positioning error.
Go to article

Authors and Affiliations

Yi Zhou
1
Weibin Zhu
1
Yi Shu
1
Yao Huang
2 3
ORCID: ORCID
Wei Zou
3
Zi Xue
3

  1. China Jiliang University, School of Measurement and Testing Engineering, Hangzhou, 310018, China
  2. Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou 310027, China
  3. National Institute of Metrology, Beijing, 100029, China
Download PDF Download RIS Download Bibtex

Abstract

In direct-detection OFDM systems, the nonlinear effects caused by optical modulation and fiber transmission can degrade the system performance severely. In this study, we propose a new nonlinear companding transform to improve the performance of direct detection optical OFDM transmission systems. The demonstration is realized by Monte-Carlo simulation of the intensity modulation and direct detection DCOOFDM optical transmission system at 40 Gbps over a 80 km of standard single mode fiber link. The influence of the companding parameters on the performance of system in different nonlinear transmission conditions has been investigated via simulation.

Go to article

Authors and Affiliations

Trang T. Ngo
Nhan D. Nguyen
Download PDF Download RIS Download Bibtex

Abstract

In order to meet the application requirements of high-power mobile inductively-coupled power transfer (ICPT) equipment, the structure of the dual transmitter and pickup can be used to improve the transmission power of the ICPT system. However, this structure cannot easily describe the change of the mutual inductance parameter in the moving state, making the mathematical model difficult to establish. The change of load parameters during the movement will affect the current and voltage at the transmitter and pickup coils. Aiming at these problems, this paper proposes a dual transmitter and pickup ICPT system based on inductor-capacitor-inductor (LCL) compensation network, and analyzes its power trans- mission efficiency. By setting the shape and size of the coil, the influence of the change of the mutual inductance parameters on the system efficiency during the movement is reduced. The changes of the mutual inductance parameters of the ICPT system under the moving state are simulated by changing the coupling coefficient in the PSpice software. The results show that the structure of the ICPT system used in this paper can improve the output power and reduce the influence of the system when the load changes.

Go to article

Authors and Affiliations

Xin Gao
Xin Li
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This work focuses on the concept of operation and possibility of using a tuned inductor in electrical power systems with adaptive features. The idea presented here for the operation of the inductor is a new approach to the design of such devices. An example of a power adaptive system is a device for improving the quality of electricity. The negative impact of nonlinear loads on the operation of a power grid is a well-documented phenomenon. Hence, various types of “compensators” for reactive power, or for both reactive and distortion power, are used in electrical systems as a preventive measure. The concept of an inductor presented here offers wider possibilities for power compensation in power supply systems, compared to traditional solutions involving compensators based on fixed inductors. The use of the proposed solution in an adaptive compensator is only one example of its possible implementation in the area of power devices. In this work, we discuss the structure of the compensator, the basic aspects of the operation of the inductor, the results of simulation studies and the results of measurements obtained from a prototype.
Go to article

Authors and Affiliations

Michał Gwóźdź
1
ORCID: ORCID
Rafał M. Wojciechowski
1
ORCID: ORCID

  1. Institute of Electrical Engineering and Electronics, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

To reduce the recoil and improve the stability of small arms, a muzzle brake compensator is attached to the muzzle of the barrel. This device uses the kinetic energy of the powder gas escaping from the bore after the bullet is fired. In this paper, the authors present the determination of the thermo-gas-dynamic model of the operation of a muzzle brake compensator and an example of calculating this type of muzzle device for the AK assault rifle using 7.62x39 mm ammunition. The results of the calculation allowed for obtaining the parameters of the powder gas flow in the process of flowing out of the muzzle device, as well as the change in the momentum of the powder gas's impact on the muzzle device. The model proposed in the article provides the basis for a quantitative evaluation of the effectiveness of using the muzzle device in stabilizing infantry weapons when firing.
Go to article

Bibliography

[1] V.V. Alferov. Design and Calculation of Automatic Weapons. Moscow, Mechanical Engineering, 1977 (in Russian).
[2] M. Stiavnicky and P. Lisy. Influence of barrel vibration on the barrel muzzle position at the moment when bullet exits barrel. Advances in Military Technology, 8(1):89–102, 2013.
[3] D.M. Hung. Study on the dynamics of the AGS-17 30mm grenade launcher and the effect of some structural factors on gun stability when fired. PhD Thesis, Military Technical Academy, Hanoi, 2016 (in Vietnamese).
[4] J. Balla. Contribution to determining of load generated by shooting from automatic weapons. International Conference on Military Technologies (ICMT), pages 1–6, Brno, Czech Republic, 30-31 May 2019. doi: 10.1109/MILTECHS.2019.8870116.
[5] V.B. Vo, J. Balla, H.M. Dao, H.T. Truong, D.V. Nguyen, and T.V. Tran. Firing stability of automatic grenade launcher mounted on tripod. International Conference on Military Technologies (ICMT), pages 1–8, Brno, Czech Republic, August 2021. doi: 10.1109/ICMT52455.2021.9502836.
[6] M. Macko, B.V. Vo, and Q.A. Mai. Dynamics of short recoil-operated weapon. Problems of Mechatronics. Armament, Aviation, Safety Engineering, 12(3):9–26, 2021. doi: 10.5604/01.3001.0015.2432.
[7] N.T. Dung, N.V. Dung, T.V. Phuc, and D.D. Linh. biomechanical analysis of the shooter-weapon system oscillation. International Conference on Military Technologies (ICMT), Brno, Czech Republic, pages 48–53, 2017. doi: 10.1109/MILTECHS.2017.7988729.
[8] V.B. Vo, M. Macko, and H.M. Dao. Experimental study of automatic weapon vibrations when burst firing. Problems of Mechatronics. Armament, Aviation, Safety Engineering, 12(4):9–28, 2012. doi: 10.5604/01.3001.0015.5984.
[9] T.D. Van, T.L. Minh, D.N. Thai, D.T. Cong, and P.V. Minh. The application of the design of the experiment to investigate the stability of special equipment. Mathematical Problems in Engineering, 2022: 8562602, 2022. doi: 10.1155/2022/8562602.
[10] Instructions on shooting. Gun shooting basics. 7.62 mm Modernized Kalashnikov assault rifle (AKM and AKMS), 7.62 mm Kalashnikov light machine gun (RPK and RPKS), 7.62 mm Kalashnikov machine gun (PK, PKS, PKB and PKT), 9 mm Makarov pistol. Hand grenades. Military Publishing House of the USSR Ministry of Defense, 1973 (in Russian).
[11] D.N. Zhukov, V.V. Chernov, and M.V. Zharkov. Development of an algorithm for calculating muzzle devices in the CFD package, Fundamentals of ballistic design. All-Russian Scientific and Technical Conference, St. Petersburg, pages 126-129, 2012. (in Russian).
[12] R. Cayzac, E. Carette, and T. Alziary de Roquefort. 3D unsteady intermediate ballistics modelling: Muzzle brake and sabot separation, In Proceedings of the 24th International Symposium on Ballistics, New Orleans, LA, USA, pages 423–430, 2008.
[13] J.S. Li, M. Qiu, Z.Q. Liao, D.P. Xian, and J. Song. Dynamic modeling and simulation of Gatling gun with muzzle assistant-rotating and recoil absorber. Acta Armamentarii, 35(9):1344–1349, 2014. doi: 10.3969/j.issn.1000-1093.2014.09.003.
[14] N.A. Konovalov, O.V. Pilipenko, Yu.A. Kvasha, G.A. Polyakov, A.D. Skorik, and V.I. Kovalenko. On thermo-gas-dynamic processes in devices for reducing the sound level of a small arms shot. Technical Mechanics, pp. 69-81, 2011 (in Russian).
[15] E.N. Patrikov. Mathematical modeling of the functioning process of service weapons in the mode of non-lethal action. Technical Sciences, News of TulGU, pp. 33-39, 2012 (in Russian).
[16] X.Y. Zhao, K.D. Zhou, L. He, Y. Lu, J. Wang, and Q. Zheng. Numerical simulation and experiment on impulse noise in a small caliber rifle with muzzle brake. Shock and Vibration, 2019: 5938034, 2019. doi: 10.1155/2019/5938034.
[17] P.F. Li and X.B. Zhang. Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion. Defence Technology, 17(4):1178–1189, 2021. doi: 10.1016/j.dt.2020.06.019.
[18] H.H. Zhang, Z.H. Chen, X.H. Jiang, and H.Zh. Li. Investigations on the exterior flow field and the efficiency of the muzzle brake. Journal of Mechanical Science and Technology, 27: 95–101, 2013. doi: 10.1007/s12206-012-1223-8.
[19] I. Semenov, P. Utkin, I. Akhmedyanov, I. Menshov, and P. Pasynkov. Numerical investigation of near-muzzle blast levels for perforated muzzle brake using high performance computing. International Conference "Parallel and Distributed Computing Systems" PDCS 2013, pages 281–289, Ukraine, Kharkiv, March 13-14, 2013. (in Russian).
[20] S.Q. Uong. Investigating the effect of gas compensator combined with brake device on the stability of automatic hand-held weapons when firing in series by experiment. Military Technical and Technological Science Research, 23:80–83, 2008. (in Vietnamese).
[21] L.E. Mikhailov. Designs of Small Automatic Arms Weapons. Central Research Institute of Information, USSR, 1984. (in Russian).
[22] Theory and Calculation of Automatic Weapons. V.M. Kirillov (editor). Penza: PVAIU, 1973. (in Russian).
[23] V.I. Kulagin and V.I. Cherezov. Gas Dynamics of Automatic Weapons. Central Research Institute of Information, USSR, 1985. (in Russian).
[24] Yu.P. Platonov. Thermo-gas-dynamics of Automatic Weapons. Mechanical Engineering, USSR, 2009. (in Russian).
[25] M.I. Gurevich. Theory of Jets of an Ideal Fluid. Fizmatgiz, USSR, 1961. (in Russian).
[26] Guiding Technical Material, Small Arms, Methods of Thermo-Gas-Dynamic Calculations. RTM-611-74, 1975. (in Russian).
Go to article

Authors and Affiliations

Dung Van Nguyen
1
ORCID: ORCID
Viet Quy Bui
1
ORCID: ORCID
Dung Thai Nguyen
1
ORCID: ORCID
Quyen Si Uong
1
ORCID: ORCID
Hieu Tu Truong
1
ORCID: ORCID

  1. Faculty of Special Equipment, Le Quy Don Technical University, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Paintings inevitably bear severe mechanical loads during transportation.Understanding the dynamic characteristics of paintings helps to avoid damage during transportation and to effectively slow down their aging.In this contribution, the vibration characteristics of canvas and primed canvas of paintings and their influencing factors are studied experimentally.For this reason, two dummy paintings with canvas in a common orientation and a tilted orientation are investigated, and an experimental setup using an excitation mechanism and a laser Doppler vibrometer is developed.In order to avoid changes of the modal parameters related to humidity or temperature, all experiments were conducted in a climate box.The modal parameters of dummy paintings are identified by means of experimental modal analysis.Also, the difference in modal properties of the two dummy paintings before and after applying the primer are compared.The identified modal parameters are used to reconstruct their eigenmodes.From the identified modal parameters a numerical model is derived, which is then compared to measurements.The comparison shows a good agreement, hence is a hint for the correctness of assuming a modal structure and the quality of the modal parameter identification.Lastly, with the help of the climate box, the influences of humidity and temperature on the eigenfrequencies of dummy paintings are studied.
Go to article

Bibliography

[1] M.F. Mecklenburg. Art in transit: Studies in the transport of paintings. In Proceedings of International Conference on the Packing and Transportation of Paintings, London, 1991.
[2] E. Tsiranidou, E. Bernikola, V. Tornari, T. Fankhauser, M. Läuchli, C. Palmbach, and N. Bäschlin. Holographic monitoring of transportation effects on canvas paintings. SPIE Newsroom, pages 1–3, 2011. doi: 10.1117/2.1201106.003767 .
[3] N. Hein. Die materielle Veränderung von Kunst durch Transporte–Monitoring und Transportschadensbewertung an Gemälden durch das Streifenprojektionsverfahren. Ph.D. Thesis, Staatliche Akademie der Bildenden Künste Stuttgart, Stuttgart, 2015. (in German).
[4] C. Krekel and N. Hein. Kunsttransport: Gibt es eine Grenze zwischen Schaden und beschleunigter Alterung? In Proceedings of ICOM International Council of Museums, Köln, volume 4, pages 12–17, 2014.
[5] C. Krekel and Heinemann C. Wenn Kunstwerke auf Reisen gehen: Mikroschäden mithilfe hochauflösender 3D-Modelle finden und dokumentieren. Das Magazin der Deutschen Forschungsgemeinschaft, 4:12–17, 2020. (in German).
[6] K. Kracht. Die Untersuchung des Schwingungsverhaltens von Ölgemälden in Abhängigkeit der Alterung. Ph.D. Thesis, Technische Universität, Berlin, 2011. (in German).
[7] A. Gmach. Erschütternde Umstände – Schwingungsbelastung von Kunst- und Bauwerken. M.Sc. Thesis, Technische Universität München, 2010. (in German).
[8] M. Läuchli, N. Bäschlin, A. Hoess, T. Fankhauser, C. Palmbach, and M. Ryser. Packing systems for paintings: Damping capacity in relation to transport-induced shock and vibration. In Proceedings of ICOM-CC 17th Trienniel Conference, Melbourne, pages 1–9, 15–19 Sep. 2014.
[9] K. Kracht and T. Kletschkowski. From art to engineering: a technical review on the problem of vibrating canvas part i: excitation and efforts of vibration reduction. Facta Universitatis, Series: Mechanical Engineering, 15(1):163–182, 2017. doi: /10.22190/FUME161010009K .
[10] C. Palmbach. Messung transportbedingter Schwingungen an textilen Bildträgern. M.Sc. Thesis, 2007. (in German).
[11] C. Heinemann, P. Ziegler, N. Hein, C. Krekel, and P. Eberhard. Objektiviertes Gemäldetransportmonitoring unter Berücksichtigung mechanischer Einflussfaktoren. Zeitschrift für Kunsttechnologie und Konservierung, 33(1):178–198, 2019. (in German).
[12] P.G. Chiriboga Arroyo. Finite Element Modeling of Vibrations in Canvas Paintings. Ph.D. Thesis, Delft University of Technology, Delft, 2013.
[13] S. Michalski. Paintings: Their response to temperature, relative humidity, shock, and vibration. Art in Transit: Studies in the Transport of Paintings, pages 223–248, 1991.
[14] M.F. Mecklenburg. Some aspects of the mechanical behavior of fabric supported paintings. Smithsonian Institution, 1982.
[15] E.W. Hagan, M.N. Charalambides, C.T. Young, T.J. Learner, and S. Hackney. Tensile properties of latex paint films with TiO2 pigment. Mechanics of Time-Dependent Materials, 13(2):149–161, 2009. doi: 10.1007/s11043-009-9076-y .
[16] E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, 10 edition, 2009.
[17] D.J. Ewins. Modal Testing: theory, practice and application. John Wiley & Sons, 2009.
[18] R.J. Allemang and D.L. Brown. A complete review of the complex mode indicator function (CMIF) with applications. In Proceedings of ISMA International Conference on Noise and Vibration Engineering, Katholieke Universiteit Leuven, Belgium, pages 3209–3246, 2006.
[19] N.R. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons, 3 edition, 1998.
Go to article

Authors and Affiliations

Yulong Gao
ORCID: ORCID
Pascal Ziegler
ORCID: ORCID
Carolin Heinemann
ORCID: ORCID
Eva Hartlieb
ORCID: ORCID
Peter Eberhard
ORCID: ORCID

This page uses 'cookies'. Learn more