Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 155
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article discusses examples of concrete houses made in Poland after 2000. The aim of the article is to present the thesis on the increasing importance of concrete for the creation of architecture of single-family houses. After decades of rejecting concrete as a material to live and live in, concrete has once again become an intermediary material in the search for new elementary residential structures in the Polish landscape. An important element in this mental transformation is the belief in the essence of the importance of forms and technologies of concrete architectural details. A detail is a tool that shows the originality of the idea and the meaning of concrete formations.
Go to article

Bibliography

Charciarek, M. (2015), Detale architektury betonowej, Kraków: Stowarzyszenie Producentów Cementu.
Forty, A. (2012), Concrete and Culture: A Material History, Reaktion Books: London.
van Doesburg, T. (1971), ‘Towards a Plastic Architecture’ [in:] Jaffé, H.L.C., De Stijl, New York: H.N. Abrams.
Zabalbeascoa, A., Marcos J.R. (2000), Minimalism, Editorial Gustavo Gili: Barcelona.

Go to article

Authors and Affiliations

Marcin Charciarek
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Architecture
Download PDF Download RIS Download Bibtex

Abstract

“Polyurea coatings as a possible structural reinforcement system” is a research project aimed at exploring possible applications of polyurea coatings for improving structural performance (including steel, concrete, wooden and other structures used in the construction industry). As part of the project, this paper focuses on evaluating the performance of bent reinforced concrete (RC) beams covered with a polyurea coating system. Easy polyurea application and its numerous advantages can prove very useful when existing RC structural elements are repaired or retrofitted. Laboratory tests of three types of RC beams with three different longitudinal reinforcement ratios were performed for the purposes of this paper. The tests were designed to determine the bending strength, performance and cracking patterns of the coated RC beams. In addition, a theoretical model was developed to predict the impact of the polyurea coating on the bending strength of the RC beams. On this basis, the effect of the coating on the bending strength and the performance of the coated beams at the ultimate limit state (ULS) was examined and analyzed. The results showed that the use of the polyurea coating has a positive impact on the cracking state of the RC beams subject to bending and little effect on their bending strength.
Go to article

Authors and Affiliations

Jacek Szafran
1
ORCID: ORCID
Artur Matusiak
1
Katarzyna Rzeszut
2
ORCID: ORCID
Iwona Jankowiak
3

  1. Department of Structural Mechanics, Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Aleja Politechniki 6, 90-924 Łódź, Poland
  2. Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland
  3. Institute of Civil Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

Large floors of industrial enterprises, warehouses, stores, and shopping centres are quite heavily loaded with production technologies, transport mechanisms, stored material or shelf stackers. Regarding simple reinforcement and construction, industrial floors have been used in recent decades mainly reinforced with fibres from so-called fibre-reinforced concrete. Most slab failures are caused by extreme loads on the unbearable subsoil, a small amount of fibres, or by the shrinkage of concrete due to insufficient structural design of sliding, shrinking and expansion joints. Recently, however, in several constructions, structural failures have occurred caused by a volume-unstable subsoil in the form of a mixture of slag or metallurgical debris. The article deals with some failures of fibre concrete floors in practice, their methods of diagnostics and laboratory analysis of samples. The results are supplemented by practical examples of floor failures with respect to their origin.
Go to article

Authors and Affiliations

Radim Cajka
1
ORCID: ORCID
Jana Vaskova
1
ORCID: ORCID
Martina Smirakova
1
ORCID: ORCID
Kamil Burkovic
1
ORCID: ORCID
Zdenka Neuwirthova
1
ORCID: ORCID

  1. VSB Technical University of Ostrava, Faculty of Civil Engineering, Ludvíka Podéšte 1875/17708 00 Ostrava-Poruba, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

In the latest period hundreds of concrete viaducts were built in Poland within a short time range. The cases of destruction of concrete road viaducts described by the author in the article concern in the construction of such structures in various parts of our country, such as central regions of Poland, Warmia-Masuria, south – east - a total of about 30 objects. The occurring phenomenon is related to the micro cracks of the cement matrix which are not visible on the surface of the elements and become visible only after the cyclic freezing process as a result of the standard F150 frost resistance test, the so-called the standard method according to Annex N to the PN-B-06265: 2018 standard. The destruction took an unprecedented course and aroused much discussion in the scientific community. This article summarizes this discussion and indicates the root cause of the destruction.

Go to article

Authors and Affiliations

Józef Jasiczak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The scope of the paper is to investigate analytically and determine experimentally the shear resistance of low height reinforced precast concrete lintels. The chosen procedures included in national and international standards applied for the design of structural concrete elements to an estimation of shear behaviour of reinforced concrete elements are described. The characteristic and designed shear strength of precast concrete lintels are determined and compared with experimentally obtained results. The shear resistance for precast concrete lintels was determined by laboratory tests according to a European standard. The assessment of the in-situ compressive strength of concrete in precast concrete lintel is specified. The designed compressive strength class is confirmed. The real reinforcement distribution is verified to assess the wide scatter of experimentally obtained failure forces. A short literature outlook of the papers concerning investigations on lintels and shear resistance of concrete is given also. The paper can provide scientists, engineers, and designers a theoretical and experimental basis in the field of precast concrete lintels shear resistance.

Go to article

Authors and Affiliations

Andrzej Ambroziak
ORCID: ORCID
Jarosław Kondrat
Marek Wesołowski
Download PDF Download RIS Download Bibtex

Abstract

This paper discussed the effect of the addition of silica fume (2 wt.% and 4 wt.%) and alumina (2 wt.% and 4 wt.%) on the properties of fly ash geopolymer concrete. The fly ash geopolymer concrete achieved the highest 28-day compressive strength with 2 wt.% of silica fume (39 MPa) and 4 wt.% of alumina (41 MPa). The addition of 2 wt.% of silica fume increased the compressive strength by 105% with respect to the reference geopolymer (without additive). On the other hand, the compressive strength surged by 115% with 4 wt.% of alumina compared to the reference geopolymer. The addition of additives improved the compactness of the geopolymer matrix according to the morphology analysis.
Go to article

Authors and Affiliations

Fong Sue Min
1
Heah Cheng Yong
1 2
ORCID: ORCID
Liew Yun Ming
1 3
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 3
ORCID: ORCID
Hasniyati Md Razi
4
Foo Wah Low
5
Ng Hui-Teng
1 2
Ng Yong-Sing
1 2

  1. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), 01000 Perlis, Malaysia
  2. Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600 Perlis, Malaysia
  3. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 01000 Perlis, Malaysia
  4. Reactor Technology Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Malaysia
  5. Department of Electrical & Electronic Engineering, Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, 43000 Kajang, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The subject of the article is a comparison of two types of concrete carbonation models: self-limited carbonation and infinite carbonation. The results of the research on the progress of carbonation during six years of sample exposure in natural atmospheric conditions were used to determine the detailed models for a set of concretes with different w/c and different types of cement, and two scenarios of initial curing. It has been established that the model of self-limiting carbonation (i.e. hyperbolic) is more adequate for describing laboratory tests results in natural conditions.

Go to article

Authors and Affiliations

D. Stańczak
J. Kuziak
P. Woyciechowski
L. Czarnecki
Download PDF Download RIS Download Bibtex

Abstract

The by-products of wood sawdust and wood fiber are considered to be waste material. It is utilized in the construction of buildings in the form of sawdust concrete or wood fiber concrete. It is used to make lightweight concrete and possesses heat transfer of a long duration. In this study, wood concrete was made at eleven different mix proportions of cement to wood waste by weight, to produce a lightweight concrete aggregate that has the density 1508-2122 kg/m3. The experimental work consists of 330 concrete specimens as 99 cubes (150 * 150 * 150) mm, 165 cylinders (150 * 300) mm, 33 prisms (50 * 100 * 200) mm, and 33 prisms (100 * 100 * 500) mm. Mechanical and thermal properties such as stiffness, workability, compressive strength, static elasticity modulus, flexural forces, splitting tensile strength and density were examined in the specimens after 28 days of 20 oC curing. Also, compressive strength was investigated at 7 and 14 days of curing at 20 oC. The basic observation of the results shows the values with the limitations of ACI and ASTM. Moreover, it is the perfect way to reduce solid wood waste and produce lightweight concrete to be used in industrial construction. It was found that with the increase in the quantity of wood waste, the strength decreased; however, in terms of workability and concrete with a higher quantity of wood waste held very well. Lightweight concrete aggregate is around 25 percent lighter in dead load than standard concrete. Given all the physical and mechanical properties, the study finds that wood concrete can be used in the construction of buildings.

Go to article

Authors and Affiliations

Salam Salman Chiad Alharishawi
ORCID: ORCID
Haitham Jameel Abd
Suha Rasheed Abass
Download PDF Download RIS Download Bibtex

Abstract

In recent years, carbon fibres have been extensively used to strengthen concrete structures. In most cases, the lamination process is carried out using epoxy resin as matrix. In some cases, especially when strengthen structural elements made of weak concrete, it is possible to replace the epoxy resin with an inorganic, cement matrix, while at the same time maintaining a sufficient efficiency of strengthen understood as the percentage increase in the compressive strength of concrete samples due to the applied reinforcement in relation to the reference concrete. In these studies, elements of carbon fibres mats that are reinforced with a cement matrix were used as the starting product for fibre recovery. The laminate, which was used to reinforce concrete elements, was detached from the concrete surface and subjected to processing in order to obtain clean carbon fibre scraps without cement matrix. Then, the obtained carbon material, in shaped form, was used to strengthen self-compacting, high performance, fibre reinforced concrete (SCHPFRC). For comparative purposes, this concrete was also strengthened by carbon fibre mats (with one and three layers of CFRP). Each samples were tested in uniaxial compression test. The compressive strength of concrete reinforced with 1 and 3 layers of CFRP was higher by 37.9 and 96.3%, respectively, compared to the reference concrete. On the other hand, the compressive strength of concrete reinforced with 1 and 3 layers of carbon fibre scrapswas higher by 11.8 and 40.1%, respectively. Regardless of the reinforcement technique used, the composite elements showed a higher deformability limit in comparison plain concrete. The obtained results showed that it is possible to reuse carbon fibre to strengthen structural elements made of SCHPFRC effectively, using simple processing methods.
Go to article

Authors and Affiliations

Krzysztof Ostrowski
1
ORCID: ORCID
Kazimierz Furtak
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the physical and chemical mechanisms of the carbonation phenomenon itself, as well as points out the synergistic effect of frost destruction and concrete carbonation on reinforced concrete elements. Examples of structural damage from engineering practice in the diagnosis of reinforced concrete structures are presented. Two cases of frost and carbonation damage of precast reinforced concrete elements are analyzed. It was noted that the most common cause of damage to concrete structures is the lack of frost resistance. Carbonation of concrete leads to deprivation of the protective properties of the concrete lagging against the reinforcing steel. The examples cited include precast elements that, for technical reasons, had a relatively small lagging thickness. The first one relates to the thin walled elevation elements, which are exploited during 60 years and the second relates to the energetic poles with very advanced concrete corrosion damage. The examples given of corrosion of concrete and reinforcement of elements indicate that synergistic environmental interactions can intensify the destruction of elements.
Go to article

Authors and Affiliations

Kaja Kłos
1
ORCID: ORCID
Grzegorz Adamczewski
2
ORCID: ORCID
Piotr Woyciechowski
2
ORCID: ORCID
Paweł Łukowski
2
ORCID: ORCID

  1. TPA Sp. z o.o., ul. Parzniewska 8 05-800 Pruszków, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Modern construction standards, both from the ACI, EN, ISO, as well as EC group, introduced numerous statistical procedures for the interpretation of concrete compressive strength results obtained on an ongoing basis (in the course of structure implementation), the values of which are subject to various impacts, e.g., arising from climatic conditions, manufacturing variability and component property variability, which are also described by specific random variables. Such an approach is a consequence of introducing the method of limit states in the calculations of building structures, which takes into account a set of various factors influencing structural safety. The term “concrete family” was also introduced, however, the principle of distributing the result or, even more so, the statistically significant size of results within a family was not specified. Deficiencies in the procedures were partially supplemented by the authors of the article, who published papers in the field of distributing results of strength test time series using the Pearson, ��-Student, and Mann–Whitney U tests. However, the publications of the authors define neither the size of obtained subset and their distribution nor the probability of their occurrence. This study fills this gap by showing the size of a statistically determined concrete family, with a defined distribution of the probability of its isolation.
Go to article

Bibliography

[1] A. Sarja, “Durability design of cocnrete structures – Committee report 130-CSL”, Materials and Structures, 2017, vol. 33, pp. 14–20, DOI: 10.1007/BF02481691.
[2] Concrete according to standard PN EN 206-1 – commentary – collective work supervised by prof. Lech Czarnecki. Kraków: Polski Cement, 2004.
[3] I. Skrzypczak,W.Kokoszka, J. Zieba, A. Lesniak, D. Bajno, Ł. Bednarz, “AProposal of a Method for Ready- Mixed Concrete Quality Assessment Based on Statistical-Fuzzy Approach”, Materials, 2020, vol. 13, no. 24, DOI: 10.3390/ma13245674.
[4] I. Skrzypczak, L. Buda-Ozóg, J. Zieba, “Dual CUSUM chart for the quality control of concrete family”, Cement Wapno Beton, CWB, 2019, vol. 24, no. 4, pp. 276–285, DOI: 10.32047/CWB.2019.24.4.3.
[5] I. Skrzypczak, L. Buda-Ozóg, T. Pytlowany, “Fuzzy method of conformity control for compressive strength of concrete on the basis of computational numerical analysis”, Meccanica, 2016, vol. 51, pp. 383–389, DOI: 10.1007/s11012-015-0291-0.
[6] J. Jasiczak, “Probabilistic Criteria for the Control of Compressive Strength Stabiilization in Concrete”, Foundations of Civil and Environmental Engineering, 2011, no. 14, pp. 47–61.
[7] J. Jasiczak, M. Kanoniczak, Ł. Smaga, “Standardized concept of a concrete family on the example of continuous Spiroll board production”, Budownictwo i Architektura, 2014, vol. 13, no. 2, pp. 99–108.
[8] J. Jasiczak, M. Kanoniczak, Ł. Smaga, “Statistical division of compressive strength results on the aspect of concrete family concept”, Computers and Concrete, 2014, vol. 14, no. 2, pp. 145–161.
[9] J. Jasiczak, M. Kanoniczak, L. Smaga, “Stochastic identity of test result series of the compressive strength of concrete in industrial production conditions”, Archives of Civil and Mechanical Engineering, 2015, vol. 15, pp. 584–592.
[10] J. Jasiczak, M. Kanoniczak, Ł. Smaga, “Division of Series of Concrete Compressive Strength Results into Concrete Families in Terms of Seasons within Annual Work Period”, Journal of Computer Engineering& Information Technology, 2017, vol. 6, no. 3, pp. 1–9, DOI: 10.4172/2324-9307.1000198.
[11] J. Jasiczak, M. Kanoniczak, “Justified adoption of normative values ������ and ������ in the estimation of concrete classification for small samples”, Journal of Civil Engineering, Environment and Architecture, JCEEA, 2017, vol. XXXIV, no. 64 (3/I/17), pp. 203–212, DOI: 10.7862/rb.2017.115.
[12] J. Jasiczak, “The concept of ’over-strength of concrete’ in the tender procedure for concrete objects of communication infrastructure”, BTA, 2017, no. 1, pp. 64–68 (in Polish).
[13] L. Taerwe, “Basic aspect of quality control of concrete”, in “Utilizing Redy Mix Concrete and Mortar”, Proceedings of the International Conference. UK, Scotland, 1999, pp. 221–235.
[14] N.K. Nagwani, “Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques”, The Scientific World Journal, 2014, vol. 2014, DOI: 10.1155/2014/381549.
[15] R. Caspeele, L. Taerwe, “Conformity control of concrete based on the ’concrete family’ concept”, in Proceedings of the 5th International Probabilistic Control, 28–29 Nov.2007. Ghent, 2007, pp. 241-252.
[16] R Core Team: A language and environment for statistical computing.RFoundation for Statistical Computing, Vienna, Austria, 2015. [Online]. Available: http://www.R-project.org/.
[17] S.Wolinski, “Evaluating the quality of concrete using standardized methods and according to fuzzy logic”, in “Dni Betonu” Conference, Kraków: Polski Cement, 2006, pp. 1121–1131 (in Polish).
[18] T. Górecki, Basics of statistics with examples in R. Legionowo: BTC, 2011.
[19] Z. Kohutek, “Concrete family – concept genesis, terminology, criteria and general creation principles”, Przeglad Budowlany, 2010, no. 10, pp. 26–31 (in Polish).
[20] EN 1992:2008 Eurocode 2: Design of concrete structures.
[21] ISO 2394:2000 General principles on reliability for structures.
[22] PN–EN 206–1: 2003 Concrete. Part 1: Requirements, properties, production and conformity.
[23] PN-EN 206¸A1:2016-12. Concrete. English version.
Go to article

Authors and Affiliations

Józef Jasiczak
1
ORCID: ORCID
Marcin Kanoniczak
1
ORCID: ORCID
Łukasz Smaga
2
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 5, 60-965 Poznan, Poland
  2. Adam Mickiewicz University, Faculty of Mathematics and Computer Science, 61-614 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

Due to the large amount of binder and low water-cement ratio, high-performance cement composites have high compressive strength and a dense hardened cement paste microstructure. External curing is insufficient, as it cannot reach the interior parts of the structure, which allows autogenous shrinkage to occur in the inside. Lack of prevention of autogenous shrinkage and high restraint causes structural microcracks around rigid components (aggregate, rebars). Consequently, this phenomenon leads to the propagation of internal microcracks to the surface and reduced concrete durability. One way to minimize autogenous shrinkage is internal curing. The use of soaked lightweight aggregate to minimize the risk of cracking is not always sufficient. Sorption and desorption kinetics of fine and coarse fly ash aggregate were tested and evaluated. The correlation between the development of linear autogenous shrinkage and the tensile stresses in the restrained ring test is assessed in this paper. A series of linear specimens, with cross-section and length custom designed to match the geometry of the concrete ring, were tested and analyzed. Determination of the maximum tensile stresses caused by the restrained autogenous shrinkage in the restrained ring test, together with the approximation of the tensile strength development of the cement composites were used to evaluate the cracking risk development versus time. The high-performance concretes and mortars produced with mineral aggregates and lightweight aggregates soaked with water were tested. The use of soaked granulated fly ash coarse lightweight aggregate in cementitious composites minimized both the autogenous shrinkage and cracking risk.
Go to article

Authors and Affiliations

Adam Zieliński
1
ORCID: ORCID
Anton K. Schindler
2
ORCID: ORCID
Maria Kaszyńska
1
ORCID: ORCID

  1. West Pomeranian University of Technology, Faculty of Civil Engineering and Environmental, al. Piastów 50a, 70-311 Szczecin, Poland
  2. Department of Civil and Environmental Engineering, Auburn University, 237 Harbert Center, Alabama 36849, Auburn, USA
Download PDF Download RIS Download Bibtex

Abstract

Hollow Lightweight Concrete (HLC) beams are gaining popularity due to low cost and low weight as compared with the Solid Lightweight Concrete (SLC) beams. HLC and SLC beams decrease in weight, without losing strength and durability. Flexural and shear behavior of reinforced HLC and SLC beams made with sawdust under two-point load is investigated in this study. The ultimate deformation efficiency and shear resistant mechanism of HLC beams are discussed experimentally and compared with other SLC beams. The beams, tested in this research, are rectangular. Beams were designed and constructed as 12 * 23 * 100 cm. Six concrete beam models were prepared including three SLC beams without the hollow and the other three HLC beams poured hollow 50 * 7.5 cm throughout the all beam of 100 cm. All beams were split according to the distance between vertical stirrups, these stirrups were divided into three specimens 45, 13, and 6 cm. By analyzing six experimental test beams, in this research, investigated the effect of diverse factors on the shear of beams. On comparison with normal concrete beams, this work describes the failure of mechanism, process, and ductility. The first crack loads, ultimate loads, load-deflection behavior, crack patterns and shapes of failure were investigated in this study. The experimental results show the ultimate performance of HLC beams are pure shear and controlled by yielding tension and compression steel bars. Also, it is found that the measured size and configuration of the hollow opening had an effect on the load-carry capacity and mid-span deflection of HLC beams. Thus, the design and construction details of beams can be additionally customized to reduce the total cost and weight of the HLC beams.
Go to article

Authors and Affiliations

Salam Salman Chiad Alharishawi
1
ORCID: ORCID
Nagham Rajaa
2
ORCID: ORCID
Lina Abdulsalam Shihab
3

  1. Mustansiriyah University, College of Engineering, Environmental Engineering Department, Baghdad, Iraq
  2. Mustansiriyah University, College of Engineering, Highway and Transportation Engineering Department, Baghdad, Iraq
  3. Mustansiriyah University, College of Engineering, Civil Engineering Department, Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this study is to highlight the performance of beams composed of lightweight concretefilled steel tubes (square and circle sections) composite with reinforced concrete deck slab. A total of nine composite beams were tested included two circular and seven square concrete-filled steel tubes. Among the nine composite beams, one beam, S20-0-2000, was prepared without a deck slab to act as a reference specimen. The chief parameters investigated were the length of the specimen, the compressive strength of the concrete slab, and the effect of the steel tube section type. All beams were tested using the three-point bending test with a concentrated central point load and simple supports. The test results showed that the first crack in the concrete deck slab was recorded at load levels ranging from 50.9% to 77.2% of the ultimate load for composite beams with square steel tubes. The ultimate load increased with increasing the compressive strength of the concrete slab. Shorter specimens were more stiffness than the other specimens but were less ductile. The slip values were equal to zero until the loads reached their final stages, while the specimen S20-55-1100 (short specimen) exhibited zero slip at all stages of the load. The ultimate load of the hollow steel tube composite beam was 13.2% lower than that of the reference beam. Moreover, the ductility and stiffness of the beam were also higher for beams with composite-filled steel tubes.

Go to article

Authors and Affiliations

Khawala A. Farhan
Muhaned A. Shallal
Download PDF Download RIS Download Bibtex

Abstract

For ages, concrete has been used to construct underwater structures. Concrete laying underwater is a very complex procedure important to the success or failure of underwater projects. This paper elucidates the influence of alkali activator ratios on geopolymers for underwater concreting; focusing on the geopolymer concrete synthesized from fly ash and kaolin activated using sodium hydroxide and sodium silicate solutions. The geopolymer mixtures were designed to incorporate multiple alkali activator ratios to evaluate their effects on the resulting geopolymers’ properties. The fresh concrete was molded into 50 mm cubes in seawater using the tremie method and tested for its engineering properties at 7 and 28 days (curing). The control geopolymer and underwater geopolymers’ mechanical properties, such as compressive strength, water absorption density, and setting time were also determined. The differences between the control geopolymer and underwater geopolymer were determined using phase analysis and functional group analysis. The results show that the geopolymer samples were optimally strengthened at a 2.5 alkali activator ratio, and the mechanical properties of the control geopolymer exceeded that of the underwater geopolymer. However, the underwater geopolymer was determined to be suitable for use as underwater concreting material as it retains 70% strength of the control geopolymer.
Go to article

Authors and Affiliations

Fakhryna Hannanee Ahmad Zaidi
1
ORCID: ORCID
Romisuhani Ahmad
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3 2
ORCID: ORCID
Wan Mastura Wan Ibrahim
1 2
ORCID: ORCID
Ikmal Hakem Aziz
3 2
ORCID: ORCID
Subaer Junaidi
4
ORCID: ORCID
Salmabanu Luhar
5 2
ORCID: ORCID

  1. Universiti Malaysia Perlis, Faculty of Engineering Technology, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  3. Universiti Malaysia Perlis, Faculty of Chemical Engineering Technology, Taman Muhibbah, 02600 Jejawi, Arau, Perlis, Malaysia
  4. Universitas Negeri Makassar, Geopolymer & Green Material Group, Physics Department, FMIPA, Indonesia
  5. Frederick Research Center, P.O Box 24729, 1303 Nicosia, Cyprus
Download PDF Download RIS Download Bibtex

Abstract

Non-destructive testing (NDT) is generally used to estimate the compressive strength of concrete material without compromising its structural integrity. However, the available testing methods on the market have particular limitations that may restrict the accuracy of the results. Therefore, this study aimed to develop a new technique for measuring the compressive strength of geopolymer concrete using infrared imaging analysis and Thermal Diameter Variation (TDV) rate. The compressive strength range was designed within the target strength of 20, 30 and 40 MPa. The infrared image was captured on the preheated concrete surface using FLIR-ONE infrared camera. Based on the correlation between TDV rate and compressive strength, higher accuracy was obtained in the orange contour with an R2 of 0.925 than in the red contour with an R2 of 0.8867. It is apparent that infrared imaging analysis has excellent reliability to be used as an alternative NDT by focusing on the warmer region during the procedure.
Go to article

Authors and Affiliations

Andri Kusbiantoro
ORCID: ORCID
A.H. Ismail
1
ORCID: ORCID
S.K. Jema’in
1
ORCID: ORCID
K. Muthusamy
2
ORCID: ORCID
F.F. Zainal
3
ORCID: ORCID

  1. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Johor, Malaysia
  2. Universiti Malaysia Pahang, Faculty of Civil Engineering Technology, Pahang, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer & Green Technology (CEGeoGTech), Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

Recently, textile reinforced concrete (TRC) has been intensively studied for strengthening reinforced concrete (RC) and masonry structures. This study is to experimentally explore the effectiveness of application of carbon TRC to strengthen RC beam in flexure and shear. Concerning the cracks formation, failure modes, ultimate strength and overall stiffness, the performance of the strengthened beams compared to the control beams were evaluated from two groups of tests. The test results confirm that the TRC layers significantly enhance both shear and flexural capacity of RC beams in cracking, yielding and ultimate loads. All of the tested specimens were also modelled using ABAQUS/CAE software, in order to validate the experimental results. The numerical results show that the simulation models have good adaptability and high accuracy.

Go to article

Authors and Affiliations

Cuong Huy Nguyen
Quang Dang Ngo
Download PDF Download RIS Download Bibtex

Abstract

The general standards and guidelines recommendations for PCC suggest alternating conditions of curing: starting with wet conditions for effective hydration of Portland cement followed by air-dry conditions for polymer hardening. The often accepted curing regime of PCC covers 5 days of wet curing and then the air-dry curing but it is not the optimum one. The aim of the investigation was to find the best scenario for PCC with two types of polymer modifiers: two-component epoxy resin and water dispersion of polyacrylates. The following exploitation properties were accepted as the criteria of evaluation of PCC curing effectiveness: compressive strength, tensile splitting strength, surface tensile strength (by pull-off method), wear resistance, water penetration under pressure and resistance to carbonation. The optimum time of PCC wet curing is possibly between 7 and 14 days, however, it have to be verified experimentally for specific PCC composition.

Go to article

Authors and Affiliations

P. Woyciechowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper was to analyse the possibility to use waste material which is created during the production of mineral-asphalt mixes as a side effect of the process of drying and dedusting diabase aggregate in high temperature. Experimental studies included the analysis of the influence of the addition of diabase dust on the improvement of the properties of cement concrete destined for the construction of local roads. The mineral additive in the form of diabase dust, which constitutes natural waste, was inserted into the concrete mix as a mineral additive substituting a part of the aggregate with the constant amount of cement and water, and additionally as the substitute for cement. The performed studies resulted in the conclusion that adding diabase dust significantly increased the tightness and density of concrete, which impacts the increase of compressive strength by 7, 21 and 28% in reference to model concrete. The insertion of the waste diabase dust into the concrete mix significantly improved the freeze-thaw resistance of concrete after 150 cycles of testing and reduced the water absorption by 6, 15 and 21%. Using diabase dust as a substitute in the following amount: 50, 100 and 150 kg/m3 did not cause significant changes in the scope of density and water absorption, whereas the reduction of the compressive strength was from 8, 23 and 33% in reference to the model concrete. The application of dust as the substitute for cement resulted in the reduction of the costs of concrete by 6, 12 and 18% and resulted in the possibility to fully apply waste material, which confirms the justness of undertaking implementation research. Concrete with the use of waste rock dusts may be qualified as concrete that is environmentally friendly and compliant with the sustainable development of modern construction materials.
Go to article

Authors and Affiliations

Tomasz Rudnicki
1
ORCID: ORCID
Robert Jurczak
2
ORCID: ORCID

  1. Faculty of Civil Engineering and Geodesy, Military University of Technology in Warsaw, ul. Gen. S. Kaliskiego 2, 01-476 Warsaw, Poland
  2. Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 50a, 70-311 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Both shrinkage reducing admixtures (SRA) and expansive admixture (EXP) can be used to reduce the risk of cracking in concrete. Synergistic effect of using both of those admixtures simultaneously was a was found, however little information can be found on the effects of using both EXP and SRA on the properties of mortars and concrete other than shrinkage. Therefore in this paper, effect of adding both EXP and SRA on properties of mortars outside of their effect on shrinkage is researched. Mortars with Portland cement CEM I were modified by adding EXP and SRA in amount of full dose recommended by the producer, and half of the recommended dose. Research consisted of tests of properties of fresh mortars (consistency, initial setting time, hydration heat) and hardened mortars (compressive strength and drying shrinkage). It has been found that using both SRA and EXP admixtures leads to maintaining the same setting time which can be prolonged if only SRA is used, decreased compressive strength, possibility of increased consistency. Synergistic effect on shrinkage was also confirmed.
Go to article

Authors and Affiliations

Jacek Gołaszewski
1
ORCID: ORCID
Małgorzata Gołaszewska
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, ul. Akademicka 5, 44-100 Gliwice
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is to present the possibilities and limitations of using the Digital Image Correlation systems. In order to assess the measurement inaccuracies the measuring volume 1250 × 1100 mm was analysed using two cameras with sensor resolution 6 megapixels. It was stated very good accuracy of the line segment length change. It causes that observation of crack widths can be considered as precisely. Some practical information concern how determine the compatibility between crack width measured traditionally and by using DIC are given. In the second part of the paper the results of the tests concerning capacity of interface between two concrete casting at the same time were presented. Use of the optical measurement system Aramis enables the analysis of the deformation, determination of failure mode of the tested specimens and limit displacement between edges of the interface.

Go to article

Authors and Affiliations

Ł. Krawczyk
Michał Gołdyn
ORCID: ORCID
Tadeusz Urban
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of laboratory tests of SCB (semi-circular beam) samples of asphalt concrete, subjected to the destructive effect of water and frost as well as the aging processes. The determined values of material parameters show significant dispersions, which makes the design of mixtures difficult. Statistical analysis of the test results supplemented by computer simulations made with the use of the proprietary FEM model was carried out. The main distinguishing feature of the model is the assignment of material parameters of coarse aggregate and bituminous mortar to randomly selected finite elements. The parameters of the mortar are selected by trial and error to match the numerical results to the experimental ones. The stiffness modulus of the bituminous mortar is, therefore, a substitute parameter, taking into account the influence of many factors, including material degradation resulting from the aging and changing environmental conditions, the influence of voids, and contact between the aggregate and the bituminous mortar. The use of the Monte Carlo method allows to reflect the scattering of the results obtained based on laboratory tests. The computational algorithm created in the ABAQUS was limited only to the analysis of the global mechanical bending response of the SCB sample, without mapping the failure process in detail. The combination of the results of laboratory tests usually carried out on a limited number of samples and numerical simulations provide a sufficiently large population of data to carry out a reliable statistical analysis, and to estimate the reliability of the material designed.
Go to article

Authors and Affiliations

Cezary Szydłowski
1
ORCID: ORCID
Łukasz Smakosz
2
ORCID: ORCID
Marcin Stienss
1
ORCID: ORCID
Jarosław Górski
2
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Highway and Transportation Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
  2. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Structural Mechanics, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research results of bond tests in completely concrete encased steel Isection columns made of self-compacting concrete (SCC). The results of push-out tests obtained by elements made of SCC were compared with those elements, which were made of vibrated concrete. The influence of selected factors on resistance to the vertical shear was considered in this study. The analysis of research results shows that the resistance to the vertical shear between steel I-section and SCC concrete depends on distance between stirrups and concrete age. Shrinkage has important influence on interfacial bond forces. The test results were compared with a recommendations given in the Design code – Eurocode 4. This standard can be used only for composite elements made of lightweight and vibrated concrete. In the case of completely concrete encased I-section composite columns the shear resistance after 28 days and after concrete shrinkage was higher than design resistance strength given in the standard. This means that the design value of the shear strength given in the standard should be verified and checked, if it can be applied to elements made of SCC concrete. Further tests should be carried out to determine the value of shear resistance for such elements.
Go to article

Authors and Affiliations

Magdalena Szadkowska
1
ORCID: ORCID
Elżbieta Szmigiera
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

With the development of the society in recent years, there are more and more housing construction areas. The traditional concrete has not been able to satisfy the demand of housing construction. In this study, prefabricated concrete was applied in the design of assembling style houses considering their characteristics, and its economic, environmental and social benefits were analyzed combining risk matrix evaluation method and management strategy. It was found that the use of prefabricated concrete as a building material could effectively shorten the construction period, reduce the construction cost and improve the construction safety, playing a role of energy saving and environmental protection. Therefore it was concluded that prefabricated concrete can improve the efficiency of construction, reduce environmental pollution and save energy. This work provides a reference for the application of prefabricated concrete in residential buildings and its safety management.

Go to article

Authors and Affiliations

L. Jiao
X.D. Li

This page uses 'cookies'. Learn more