Applied sciences

Archives of Environmental Protection

Content

Archives of Environmental Protection | 2020 | vol. 46 | No 3

Download PDF Download RIS Download Bibtex

Abstract

Per- and polyfl uoroalkyl substances (PFASs) are human-invented chemicals that were created in the middle of the 20th century. They were synthesized for the fi rst time in 1949, and because of their exceptional surfactant properties, they have been widely used in many industrial applications and daily life products. The common use of PFASs resulted in their worldwide dissemination in natural environment. PFASs are reported to be ubiquitous in surface and drinking waters, but also may be present in soils, animals, milk and milk-products, plants, food. Contaminated drinking water and food are the most signifi cant exposure sources to these chemicals. Ingested PFASs are bio-accumulative and have adverse eff ect on health of humans as well as animal organisms. This paper reviews the most signifi cant information on the origin, properties, distribution, environmental fate, human exposure, health eff ects, and the environmental regulations on PFASs and summarizes the latest advances in the development of novel methods for the eff ective removal of these chemicals from the aqueous environment. Recognized (reverse osmosis, adsorption on activated carbon) and most promising developing removal methods such as adsorption on biomaterials (plant proteins, chitosan beds), mineral adsorbents (LDHs, hydrotalcite), ionexchange resins, and photocatalytic degradation have been emphasized.

Go to article

Authors and Affiliations

Mariusz Grabda
1
Sylwia Oleszek
2
Michiaki Matsumoto
3

  1. General Tadeusz Kosciuszko Military University of Land Forces, Wroclaw, Poland
  2. Department of Environmental Engineering, Kyoto University, Kyoto, Japan
  3. Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto, Japan
Download PDF Download RIS Download Bibtex

Abstract

The removal of nitrates from aqueous solutions is cumbersome because of their high solubility in water. The use of zero-valent iron (ZVI) for the reduction of nitrates is the chemical process and it is an alternative method to the biological ones. The aim of the present study was to evaluate the eff ectiveness of nitrates removal from water solution by using the ZVI process. The process was coupled with the removal of COD, phosphates and turbidity by using by-products of nitrates reduction. Batch tests were performed to evaluate the eff ectiveness of ZVI in the removal of nitrates from aqueous solutions. The eff ectiveness of nitrates removal was analyzed after 5, 10, 20, 30 and 60 min. and compared to the initial concentration of pollutants. Simultaneously analysis of ammonium nitrogen and nitrites was controlled to identify products of nitrates reduction under various pH. The removal of COD, phosphates and turbidity was also performed in batch tests. The eff ectiveness of the emoval by using three types of chemicals was compared – PIX, FeSO4, and waste Fe2+/Fe3+ from the ZVI process. The results obtained in the study indicate that ZVI can be eff ectively used in the treatment of water polluted with nitrates and the by-products of the process could be further applied in the removal of COD, phosphates and turbidity. Based on the results the method should be advised as a promising alternative to the technologies used nowadays under technical scale as a technology that fits with a circular economy.

Go to article

Authors and Affiliations

Ewa Wiśniowska
1
Maria Włodarczyk-Makuła
1

  1. Częstochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to analyze the effi ciency and reliability of pollutants removal (total suspended solids – TSS, BOD5, COD) in a collective wastewater treatment plant with activated sludge and hydroponic lagoon during its long term operation. The tested object was designed to treat wastewater in flowing through the sewerage system and wastewater delivered by the septic truck. The projected capacity of the treatment plant was 1200 m3∙d-1. The technological system for wastewater treatment consisted of a mechanical part, a flowing biological reactor working according to the BARDENPHO process, a secondary settling tank and a hydroponic lagoon. The efficiency and reliability of pollutants removal in the analyzed treatment plant were assessed on the basis of the data concerning influent and effluent wastewater collected during the years 2011–2018. On the basis of the measurements results, there were determined characteristic values of the selected pollution indicators in wastewater and the average efficiency of pollutants removal. The technological reliability of the wastewater treatment plant was assessed for the basic pollution parameters (BOD5, COD, TSS) in accordance with the elements of the Weibull’s reliability theory, with regard to normative values of the indicators specified in the Regulation of the Minister of Environment. The analysis was carried out using the Statistica 13.1 software. It was proved that in the wastewater treatment plant with an activated sludge and hydroponic lagoon the level of organic pollutants removal expressed by BOD5 was on average 99.5%, COD – 98.1% and TSS – 99.4%. The technological reliability of the system was 100% in terms of the removal of pollutants from the basic group, which means that during the long term operation (8 years) it provided failure-free operation and guaranteed the fulfillment of the requirements that can be found in the Polish law regulations concerning the analyzed pollutants.

Go to article

Authors and Affiliations

Karolina Jóźwiakowska
1
Michał Marzec
2

  1. Student, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Poland
  2. Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purifi cation system. A study was performed using modifi ed swirl sedimentation tanks. The vortex separators containing baffle have been studied under laboratory conditions at hydraulic load from 21 to 64 [m3/(m2·h)]. Analyzed disperser phases were municipal water and glycerol solutions of varying concentration. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the one where baffle is located in the middle of in- and outlet due to the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the constructions of heavy fraction separators.

Go to article

Authors and Affiliations

Małgorzata Markowska
1
Marek Ochowiak
1
Sylwia Włodarczak
1
Magdalena Matuszak
1

  1. Poznan University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

An increasing number of municipal sewage treatment plants in Poland, desirable from an environmental perspective, raises the problem of managing the growing volume of sewage sludge. The thermal treatment of municipal sewage sludge (TTMSS) method, by greatly reducing the waste volume, increases the heavy metal concentration in fly ash (primary, end product of the treatment process), which may constitute a risk factor when attempting to utilize them economically. The research paper concentrates on determining the TTMSS fly ash heavy metal leaching level. For this purpose, ash samples were subjected to leaching with the batch and percolation tests, and the heavy metal content in eluates was determined by the FAAS method. The obtained results served as a base to determine the level of heavy metal immobilization in the ash, the element release mechanism (percolation test), and the impact of the L/S (liquid to solid) ratio and pH on the heavy metal leaching intensity (percolation test). The conducted research indicated high immobilization of heavy metals in TTMSS fly ash, regardless of the applied study method, which corresponds to the results of other researchers. Lead was the most intensively eluted metal.

Go to article

Authors and Affiliations

Łukasz Szarek
1
ORCID: ORCID

  1. Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Biogas plants processing municipal waste are very important investments from the point of view of waste management and also the sustainable development of urban infrastructures. They may also have a potentially negative impact on the environment in the form of odour emission. Olfactometry is the main method for odour impact assessment. Field olfactometry allows for performing a wide range of tests, the results of which are practically instantaneous. The purpose of this work is to provide a tool for assessing the odour impacts of municipal management facilities, including biogas plants processing municipal waste and evaluating the correctness of processes carried out in these plants, namely the method of field olfactometry. In order to compare obtained olfactometric results with the concentration of chemical compounds, chromatographic tests were also carried out using the Photovac Voyager portable chromatograph (hydrogen sulphide – H2S and dimethyl sulphide – (CH3)2S. The results of the odour concentration tests are in line with the results of odorant concentration tests and indicate that cod is strongly related to the concentration of hydrogen sulphide. Thanks to this method, it is possible to find a relationship between odour nuisance, technological processes used in the plant and the type of treated waste.

Go to article

Authors and Affiliations

Marta Wiśniewska
1
Andrzej Kulig
1
Krystyna Lelicińska-Serafin
1

  1. Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was the application of the geo-accumulation index and geostatistical methods to the assessment of forest soil contamination with heavy metals in the Babia Góra National Park (BGNP). For the study, 59 sample plots were selected to reflect all soil units (soil subtypes) in the studied area and take into account various forms of terrain. The content of organic carbon and total nitrogen, pH, hydrolytic acidity, the base cations and heavy metals content were determined in the soil samples. The geo-accumulation index (Igeo) was calculated, enabling estimation of the degree of soil pollution. The tested soils are characterized by strong contamination with heavy metals, especially with lead. The concentration of heavy metals in the surface horizons of the tested soils exceeds allowable concentration. The content of heavy metals was related to the content of soil organic matter, soil acidity and altitude. Higher altitudes are dominated by coniferous tree stands, which are accompanied by acidic, poorly decomposed organic horizons. Our study has confirmed the impact of pollutants transported from industrial areas on the amount of heavy metals in soils of the BGNP.

Go to article

Authors and Affiliations

Stanisław Łyszczarz
1
Ewa Błońska
1
Jarosław Lasota
1

  1. University of Agriculture in Krakow, Faculty of Forestry, Department of Ecology and Silviculture, Poland
Download PDF Download RIS Download Bibtex

Abstract

The pesticide persistence, in particular in soils, often significantly exceeding the declarations of their manufacturers is surprising. There are many publications devoted to the explanation of this phenomenon in the field literature, but the diverse research methodologies used may lead to the ambiguous conclusions. On the basis of the collected literature, the attempt was made to systematize the available information on the interactions of commonly used groups of pesticides with individual soil components. The complex mechanisms of interactions between pesticides and soil based on van der Waals forces, ionic and covalent bonding, ligand exchange and charge transfer complexes formation were demonstrated. It was also proved that the nature of interactions is strictly dependent on the structure of the pesticide molecule. The conclusion of the review may contribute to the choice of plant protection products that, in addition to their effectiveness, are as little ballast for the environment as possible.

Go to article

Authors and Affiliations

Hanna Barchańska
1
Marianna Czaplicka
2
ORCID: ORCID
Joanna Kyzioł-Komosińska
2

  1. Silesian University of Technology, Poland
  2. Institute of Environmental Engineering, Polish Academy of Sciences
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to validate the applicability of specialized microbial consortium for the degradation of lipids in wastewater. An experimental model of the process is proposed that enables prediction of the required batch length. This model can be used for supervision of the process and to control cycles of the batch reactor. The study involved 4 reactors with microbial consortium obtained by inoculation from a commercially available biopreparate. Each reactor was fed a different load of lipid containing substrate. The biodiversity, settling characteristics and COD reductions were measured. The biodiversity of the microbial consortium changed within a range of ±15% depending on lipids concentration, as shown by the Shannon index and increasing amount of β-proteobacteria. Higher concentrations of lipids increased the biodiversity suggesting higher growth of microorganisms capable of utilizing lipids as energy and carbon source by producing lipid hydrolyzing enzymes. High lipid concentrations degrade the settling capabilities of the biomass. Higher lipid concentrations (0.5–2.0 [g/l]) increase the final COD (1445–2160 [mg O2/l]). The time necessary for substrate degradation changes with the initial concentration and can be predicted using the proposed model. The study showed that specialized microbial consortium is capable of reducing the lipids containing substrate and maintains its biodiversity suggesting that utilization of such consortia in multiple cycles of a batch reactor is possible. Future research should concentrate on assessing the biodiversity and effectiveness of substrate reduction after an increased number of batch reactor cycles.

Go to article

Authors and Affiliations

Witold Nocoń
1
ORCID: ORCID
Anna Węgrzyn
1
Mieczysław Metzger
1

  1. Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cytostatic drugs have become one of the greatest environmental hazards. They exhibit toxic, carcinogenic, mutagenic and teratogenic effects on flora and fauna, including people. They are poorly eliminated in conventional wastewater treatment plants and their mixtures could possess higher ecotoxicity than individual drugs. Fungi are organisms with enormous potential for biodegradation of a variety of toxic chemical pollutants. The aim of this work was to estimate tolerance of five fungal strains to selected anticancer drugs, which will be useful to determine the potential for their possible use in cytostatics removal and may be significant in the context of wastewater treatment application. Test was conducted on Fomes fomentarius (CB13), Hypholoma fasciculare (CB15), Phyllotopsis nidulans (CB14), Pleurotus ostreatus (BWPH) and Trametes versicolor (CB8) and the chosen drugs were bleomycin and vincristine. Their ability to grow in the presence of selected cytostatics was evaluated in cultures conducted on two solid media which differed in the richness of nutrient compounds. Fungal strains tolerance was expressed as a half maximal effective concentration. Results showed that fungi display better tolerance to high cytostatics’ concentrations in the medium rich in carbon source. Regardless of the medium used, the differences in growth ability were lower for bleomycin (the tolerance was higher). The greatest tolerance for bleomycin was shown by Pleurotus ostreatus. Results suggest that more efficient elimination of bleomycin would be possible to obtain, strain BWPH seems to be the best fungal candidate for this drug degradation assay and, probably, in wastewater treatment application tests in a longer perspective.

Go to article

Authors and Affiliations

Marcelina Jureczko
1
Wioletta Przystaś
1
Monika Urbaniak
2
Anna Banach-Wiśniewska
1
Łukasz Stępień
2

  1. Silesian University of Technology, Poland
  2. Institute of Plant Genetics, Polish Academy of Sciences

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Reviewers

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more