Applied sciences

Archives of Environmental Protection

Content

Archives of Environmental Protection | 2024 | 50 | 2

Download PDF Download RIS Download Bibtex

Abstract

The necessity of rational water resource management and reduction of water consumption demandsthat water utilities address water losses during water treatment. Therefore, the backwash water generated during the filtration process is often the focus of research aimed at its reuse within the water treatment system. The studies outlined here were conducted in a large water treatment plant (100,000 m3), focusing on the backwash water produced from sand bed filter flushing. Prior to its reintroduction into the treatment train, the backwash water underwent pre-treatment using ultrafiltration (UF) process with two different modules: a spiral module with a PVFD (200kDa) membrane and a capillary module with a PES (80kDa) membrane. The effectiveness of the process was evaluated based on the degree of retention of organic substances and microorganisms, which pose health risks in backwash water recirculation. The capillary membrane exhibited greater effectiveness in retaining these contaminants, thereby ensuring the complete elimination of pathogenic microorganisms. The study findings indicate that pre-treating backwash water using UF membranes and reintroducing it into the water treatment system before the ozonation process can lead to a reduction of environmental fees. However, this process results in a 1.5% increase in water treatment costs
Go to article

Bibliography

  1. Ahmed, A.E., Majewska-Nowak, K. & Grzegorzek, M. (2021). Removal of reactive dyes from aqueous solutions using ultrafiltration membranes, Environment Protection Engineering 47, 3, pp. 109-120. DOI:10.37190/epe210309.
  2. Alhussaini, M.A., Binger, Z., M. Souza-Chaves, B. M., Amusat, O.O., Park, J., Bartholomew, T.V., Gunter, D. & Achilli, A. (2023). Analysis of backwash settings to maximize net water production in an engineering-scale ultrafiltration system for water reuse, Journal of Water Process Engineering 53, 103761. DOI:10.1016/j.jwpe.2023.103761.
  3. Chen, M., Shen, S., Zhang, F., Zhang, C. & Xiong, J. (2022). Biodegradable dissolved organic carbon (BDOC) removal from micro-polluted water source using ultrafiltration: comparison with conventional processes, operation conditions and membrane fouling control, Polymers. 14, 21, 4689. DOI:10.3390/polym14214689.
  4. Clostridium perfringens- An overview. https://microbenotes.com/clostridium-perfringens/ Accessed January 19, 2024.
  5. Collivignarelli, M.C., Abbà, A., Benigna, I., Sorlini, S. & Torretta, V. (2017) Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 10, 86.
  6. Cordier, C., Stavrakakis, C., Morga, B., Degrémont, L., Voulgaris, A., Bacchi, A., Sauvade, P., Coelho, F. & Moulin, P. (2020). Removal of pathogens by ultrafiltration from sea water, Environment international, 142, 105809. DOI:10.1016/j.envint.2020.105809.
  7. Ćurko, J., Mijatović, I., Rumora, D., Crnek, V., Matošić, M. & Nežić, M. (2013). Treatment of spent filter backwash water from drinking water treatment with immersed ultrafiltration membranes, Desalination and Water Treatment, 51, 25-27, pp. 4901-4906. DOI:10.1080/19443994.2013.774142.
  8. de Souza, F.H., Pizzolatti, B.S. & Sens, M.L. (2021). Backwash as a simple operational alternative for small-scale slow sand filters: From conception to the current state of the art, Journal of Water Process Engineering 40, 101864. DOI:10.1016/j.jwpe.2020.101864.
  9. Ebrahimi, M.M., Amin, H., Pourzamani, Y., Hajizadeh, A.H., Mahvi, M.M. & Rad, M.H.R. (2017). Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl 3 as a pre-treatment, Environmental monitoring and assessment, 189, pp. 1-15.DOI:10.1007/s10661-017-6091-3. [Online]. Available: link.springer.com/article/10.1007/s10661-017-6091-3. Accessed 26 March 2024
  10. EPA United States Environmental Protection Agency. Drinking Water Treatment Plant Residuals Management Technical Report, Summary of Residuals Generation, Treatment, and Disposal at Large Community Water Systems. 2011.
  11. Gottfried, A., Shepard, A.D., Hardiman, K. & Walsh, M.E. (2008). Impact of recycling filter backwash water on organic removal in coagulation–sedimentation processes, Water Research, 42, 18, pp. 4683–4691. DOI:10.1016/j.watres.2008.08.011.
  12. Guidelines for drinking-water quality. 4th edition. 2017. Accessed January 19, 2024. https://www.who.int/publications/i/item/9789241549950.
  13. Guidelines to support the application of Regulation 2020/741 on minimum requirements for water reuse (including Annexes). (2022/C 298/01). 2020. Accessed January 19, 2024. https://environment.ec.europa.eu/publications/minimum-requirements-water-reuse-guidelines_en.
  14. Howe, K.J. & Clark, K. (2002). Fouling of microfiltration and ultrafiltration membranes by natural waters, Environ. Sci. Technol. 36, 16, pp. 3571-3576. DOI:10.1021/es025587r
  15. Li, W., Liang, X., Duan, J., Beechamb, S. & Mulcahy, D. (2018). Influence of spent filter backwash water recycling on pesticide removal in a conventional drinking water treatment process, Environmental Science Water Research & Technology, 4, pp. 1057-1067. DOI:10.1039/C7EW00530J.
  16. Lin, T., Zhang, J. & Chen, W. (2017). Recycling of activated carbon filter backwash water using ultrafiltration: membrane fouling caused by different dominant interfacial forces, Journal of Membrane Science, 544, pp. 174-185. DOI:10.1016/j.memsci.2017.09.028.
  17. Liu, P.Y., Chin, L.K., Ser, W., Ayi, T.C., Yap, P.H., Bourouina, T. & Leprince-Wang, Y. (2014). Real-time measurement of single bacterium’s refractive index using optofluidic immersion refractometry, Procedia Engineering, 87, pp. 356-359. DOI:10.1016/j.proeng.2014.11.743.
  18. Mahdavi, M., Ebrahimi, A., Azarpira, H., Tashauoei, H.R. & Mahvi, A.H. (2017). Dataset on the spent filter backwash water treatment by sedimentation, coagulation and ultrafiltration, Data in Brief, 15, pp. 916-921. DOI:10.1016/j.dib.2017.10.062.
  19. Mahmud, M., Elma, M., Rampun, E.L.A., Rahma, A., Pratiwi, A.E., Abdi, C. & Rossadi, R. (2020). Effect of two stages adsorption as pre-treatment of natural organic matter removal in ultrafiltration process for peat water treatment, Materials Science Forum, 988, pp. 114–121. DOI:10.4028/www.scientific.net/msf.988.114.
  20. Masotti, L. (2011). Depurazione Della Acque—Tecniche ed Impianti per il Trattamento Delle Acque di Rifiuto; Ed. Calderini: Milano, Italy.
  21. Mazuki Mohamad, N.I., Teow, Y.H., Ho, K.C. & Mohammad, A.W. (2020). Techno-economic analysis of single disinfection units and integrated disinfection systems for sewage effluent reclamation, J. Water Proc. Eng. 36, 101398. DOI:10.1016/j.jwpe.2020.101398.
  22. Microbentos. https://microbenotes.com/clostridium-perfringens/ Accessed 20.12.2023.
  23. Peters, C.D., Rantissi, T., Gitis, V. & Hankins, N.P. (2021). Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning -A review, Journal of Water Process Engineering, 44, 102374. DOI:10.1016/j.jwpe.2021.102374.
  24. Qian, Y., Shi, Y., Guo, J., Chen, Y., Hanigan, D. & Dong, A.(2023) Molecular characterization of disinfection byproduct precursors in filter backwash water from 10 drinking water treatment plants. Science of The Total Environment, 856, 159027. DOI:10.1016/j.scitotenv.2022.159027
  25. Radzymińska-Lenarcik, E., Urbaniak, W. & Totczyk, G. (2019). Sludge management after water treatment processes, Water Supply and Water Quality: pp. 995-1004. (in Polish). https://www.researchgate.net/publication/331967930_ZAGOSPODAROWANIE_OSADOW_POKOAGULACYJNYCH_POWSTALYCH_W_PROCESIE_UZDA_TNIANIA_WODY. Accessed January 19, 2024.
  26. Reissmann, F. G. & Uhl, W. (2006). Ultrafiltration for the reuse of spent filter backwash water from drinking water treatment, Desalination 198, 1–3, pp. 225-235. DOI:10.1016/j.desal.2006.03.517
  27. Shafiquzzaman, M., AlSaleem, S.S., Haider, H., Alresheedi, M.T. & Thabit H. (2021). Experimental study for sand filter backwash water management: low-cost treatment for recycling and residual sludge utilization for radium removal, Water, 13, 2799. DOI:10.3390/w13202799.
  28. Sosnowski, T., Suchecka, T. & Piątkiewicz, W. (2004). Penetration of the cell through the microfitration membrane, in Environmental Engineering Committee Monographs. [ed.] Polish Academy of Sciences. Environmental Engineering Committee. 22: pp. 359-367.
  29. Subasi, Y. & Cicek, C. (2017). Recent advances in hydrophilic modification of PVDF ultrafiltration membranes – a review: part I, Membrane Technology 10, pp. 7-12. DOI:10.1016/S0958-2118(17)30191-X.
  30. Sun, Y., Wu, M., Tong, T., Liu, P., Tang, P., Gan, Z., Yang, P., He, H. & Liu B. (2021). Organic compounds in Weiyuan shale gas produced water: identification, detection and rejection by ultrafiltration-reverse osmosis processes, Chemical Engineering Journal, 412, 128699. DOI:10.1016/j.cej.2021.128699.
  31. Turan, M. (2023). Backwashing of granular media filters and membranes for water treatment: a review, AQUA-Water Infrastructure, Ecosystems and Society, 72, 3, pp. 274-298. DOI:10.2166/aqua.2023.207.
  32. Wang, D., Zhou, J., Lin, H., Chen, J., Qi, J., Bai, Y. & Qu, J. (2023). Impacts of backwashing on micropollutant removal and associated microbial assembly processes in sand filters, Frontiers of Environmental Science & Engineering, 17, 3, 34. DOI:10.1007/s11783-023-1634-z.
  33. Wolska, M. & Urbańska-Kozłowska, H. (2023). Assessing the Possibilities of Backwash Water Reuse Filters in the Water Treatment System—Case Analysis, Water, 15, 13, 2452. DOI:10.3390/w15132452.
  34. Zhou, Z., Yang, Y., Li, X., Su, Z., Liu, Y., Ren, Y. & Zhang, Y. (2015) Effect of recycling filter backwash water on characteristic variability of dissolved organic matter in coagulation sedimentation process, Desalination and Water Treatment, 53, pp. 48-56, DOI:10.1080/19443994.2013.836994.
  35. Zielina, M. & Dąbrowski, W. (2021). Energy and water savings during backwashing of rapid filter plants, Energies, 14, 13, 3782. DOI:10.3390/en14133782.
Go to article

Authors and Affiliations

Małgorzata Wolska
1
ORCID: ORCID
Małgorzata Kabsch-Korbutowicz
1
ORCID: ORCID
Małgorzata Solipiwko-Pieścik
1
ORCID: ORCID
Halina Urbanska-Kozłowska
2
ORCID: ORCID
Zbigniew Ferenc
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Poland
  2. MPWiK S.A we Wrocławiu, Poland
Download PDF Download RIS Download Bibtex

Abstract

The measurements of the concentrations of gaseous and dust pollutants in the anthropogenic environment are an important element of environmental monitoring and for determining directions of preventive activities in the field of health protection. The article presents the results involving the concentrations of suspended dust and gaseous pollutants in the outdoor air, which were recorded at three measuring stations of air quality in the Silesian and Opole voivodeships (Wodzisław Śląski, Zabrze, Kędzierzyn-Koźle). The results were supplemented with the values recorded by the mobile laboratory located at the Center for Continuing Education - Branch of the Silesian University of Technology in Rybnik. The research results were used for a synthetic assessment of the threat level to the anthropogenic environment. In the computational layer, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was employed, which is included in the group of methods for solving multi-criteria decision-making problems (Multi Attribute Decision Making).
Go to article

Bibliography

  1. Air Quality Index – AQI, https://powietrze.uni.wroc.pl/base/t/indeks-jakosci-powietrza
  2. Bąk, A. (2016). Linear ordering of objects using the Hellwig and TOPSIS methods – comparative analysis. PRACE NAUKOWE Uniwersytetu Ekonomicznego we Wrocławiu. Nr 426. Taksonomia 26 Klasyfikacja i analiza danych – teoria i zastosowania. Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław, pp. 22-31. (in Polish)
  3. Behzadian, M., Otaghsara, S.K., Yazdani, M. & Ignatius, J. (2012). A state-of the art survey of TOPSIS applications, Expert Systems with Applications, 39, 17, pp. 13051- 13069. DOI:10.1016/j.eswa.2012.05.056.
  4. Boran, F.E., Genc, S., Kurt, M. & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Systems with Applications, 36, 8, pp. 11363-11368. DOI:10.1016/j.eswa.2009.03.039.
  5. Chen, C.T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems, 114, 1, pp. 1-9. DOI:10.1016/S0165-0114(97)00377-1.
  6. Dymova, L., Sevastjanova, P. & Tikhonenko, A. (2013). A direct interval extension of TOPSIS method, Expert Systems with Applications, 40, 12, pp. 4841-4847. DOI:10.1016/j.eswa.2013.02.022.
  7. EEA. Air Quality in Europe 2022, https://www.eea.europa.eu//publications/air-quality-in-europe-2022 (14. 11.2023).
  8. Geoportal2.pl, https://polska.geoportal2.pl/map/www/mapa.php?mapa=polska
  9. Holnicki, P., Kałuszko, A. & Nahorski, Z. (2021). Analysis of emission abatement scenario to improve urban air quality, Archives of Environmental Protection, 47, 2, pp. 103–114. DOI:10.24425/aep.2021.137282.
  10. Hwang, C.-L. & Yoon, K. (1981). Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, 186, Springer 1981.
  11. ISGlobal—Ranking of Cities. 2021. https://isglobalranking.org/ranking/#air (14.11.2023).
  12. Juginović, A., Vuković, M., Aranza, I. & Biloš, V. (2021). Health Impacts of Air Pollution Exposure from 1990 to 2019 in 43 European Countries, Scientifc Reports, 11, 22516. DOI:10.1038/s41598-021-01802-5.
  13. Kaczmarczyk, M. (2016) Low emissions. Energy efficiency in municipalities and local governments, Geosystem.(in Polish)
  14. Lopuszanska-Dawid, M., Kołodziej, H., Lipowicz, A., Szklarska, A., Kopiczko, A. & Bielicki, T. (2020). Social class-specific secular trends in height among 19-year old Polish men: 6th national surveys from 1965 till 2010, Economics and Human Biology, 37, 100832. DOI:10.1016/j.ehb.2019.100832
  15. Machaczka, O., Jiřík, V., Janulková, T., Michalík, J., Siemiatkowski, G., Osrodka, L., Krajny, E. & Topinka, J. (2023). Comparisons of lifetime exposures between differently polluted areas and years of life lost due to all-cause mortality attributable to air pollution, Environmental Sciences Europe, 35, 73. DOI:10.1186/s12302-023-00778-5.
  16. Meo, S.A., Ahmed Alqahtani, S., Saad Binmeather, F., Abdulrhman, Al., Rasheed, R., Mohammed, A.G. & Mohammed, A.R. (2022). Effect of environmental pollutants PM2.5, CO, O3 and NO2, on the incidence and mortality of SARS-COV-2 in largest metropolitan cities, Delhi, Mumbai and Kolkata, India Sultan, Journal of King Saud University – Science, 34, 1, 101687. DOI:10.1016/j.jksus.2021.101687.
  17. Paplinska-Goryca, M., Misiukiewicz-Stepien, P., Proboszcz, M. Nejman-Gryz, P., Gorska, K. Zajusz-Zubek, E. & Krenke, R. (2021). Interactions of nasal epithelium with macrophages and dendritic cells variously alter urban PM-induced inflammation in healthy, asthma and COPD, Scientifc Reports, 11, 13259. DOI:10.1038/s41598-021-92626-w.
  18. Roszkowska, E. & Kacprzak, D. (2016). The fuzzy SAW and fuzzy TOPSIS procedures based on ordered fuzzy numbers, Information Sciences, 369, pp. 564-584. DOI:10.1016/j.ins.2016.07.044.
  19. Shih, H.S., Shyur, H.J. & Lee, E.S. (2007). An extension of TOPSIS for group decision making, Mathematical and Computer Modelling, 45, 7-8, pp. 801-813. DOI:10.1016/j.mcm.2006.03.023.
  20. Wang ,T.C. & Chang, T.H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment, Expert Systems with Applications, 33, 4, pp. 870- 880. DOI:10.1016/j.eswa.2006.07.003.
  21. WHO Global Air Quality Guidelines, 2021, https://apps.who.int/iris/handle/10665/345329 (14.11.2023).
  22. WHO. Air Quality Database (Update 2022), https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (14.11.2023).
  23. Yazdi, M.D., Wang, Y., Di, Q., Requia, W.J., Wei, Y., Shi, L., Sabath, M.B., Dominici, F., Coull, B., Evans, J.S., Koutrakis, P. & Schwartz, J.D. (2021). Long-term effect of exposure to lower concentrations of air pollution on mortality among US Medicare participants and vulnerable subgroups: a doubly-robust approach, The Lancet Planetary Health, e689–e697. DOI:10.1016/s2542-5196(21)00204-7.
  24. Yazdi, M.M. (2015). TOPSIS method for multiple-criteria decision making (MCDM) – package topsis, https://cran.r-project.org/web/packages/tops
  25. Zoran, M.A., Savastru, R.S., Savastru, Dan, M. & Tautan, M.N. (2020). Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy, Science of The Total Environment, 738, 139825. DOI:10.1016/j.scitotenv.2020.139825.
Go to article

Authors and Affiliations

Elwira Zajusz-Zubek
1
ORCID: ORCID
Zygmunt Korban
2

  1. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Poland
  2. Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Poland
Download PDF Download RIS Download Bibtex

Abstract

Plastic pollution in the hydrosphere ranks among the most pervasive environmental issues since the inception of the plastic industry and its widespread use in our daily lives. Nowadays, numerous countries worldwide suffer from this pollution not only along coastlines but also in deep-sea ecosystems. Our study carried out in the Gulf of Annaba aims to assess the prevalence and spatial distribution of plastic waste. Sampling was conducted at four coastal sites: El Battah, Seybousse, Rizzi Amor, and Ain Achir, both before and after the Covid-19 pandemic. The results reveal varying rates of macro and microplastic contamination, influenced by geographical differences, urban activities, and hydrodynamic factors. Moreover, the proportions of contamination depend on the types of waste. Furthermore, our study showed a clear divergence, particularly in two periods before and after the pandemic. Due to the lockdown, implemented in 2020, there was a marked decrease in the percentage of sediment plastic pollution, attributed to reduced human activity and partial cessation of industrial operations in these areas.
Go to article

Bibliography

  1. Anderson, J.C., Park, B.J. & Palace, V.P. (2016). Microplastics in aquatic environments: Implications for Canadian ecosystems. Environmental Pollution 218, pp. 269–280. DOI:10.1016/j.envpol.2016.06.074
  2. Ang, L., Hernández-Rodríguez, E., Cyriaque, V. & Yin, X. (2023). COVID-19's environmental impacts: Challenges and implications for the future. Science of The Total Environment, 899, 165581. DOI:10.1016/j.scitotenv.2023.165581
  3. Barrett, J., Chase, Z., Zhang, J., Holl, M.M.B., Willis, K., Williams, A., Hardesty, B.D. & Wilcox, C. (2020). Microplastic Pollution in Deep-Sea Sediments from the Great Australian Bight. Frontiers in Marine Science, 7, 808. DOI:10.3389/fmars.2020.576170
  4. Baztan, J., Carrasco, A., Chouinard, O., Cleaud, M., Gabaldon, J.E., Huck, T., Jaffres, L., Jorgensen, B., Miguelez, A., Paillard, C. & Vanderlinden, J.P. (2014). Protected areas in the Atlantic facing the hazards of micro-plastic pollution: First diagnosis of three islands in the Canary Current. Mar. Pollut. Bull, 80, pp. 302-311. DOI:10.1016/j.marpolbul.2013.12.052
  5. Blair, R.M., Waldron, S., Phoenix, V.R. & Gauchotte-Lindsay, C. (2019). Microscopy and elemental analysis characterisation of microplastics in sediment of a freshwater urban river in Scotland, UK. Environmental Science and Pollution Research, 26, pp. 12491–12504. DOI:10.1007/s11356-019-04678-1
  6. Blumenroder, J., Sechet, P., Kakkonen, J.E. & Hartl, M.G.J. (2017). Microplastic contamination of intertidal sediments of Scapa Flow, Orkney: A first assessment. Mar. Pollut. Bull. 124,1, pp. 112-120. DOI:10.1016/j.marpolbul.2017.07.009
  7. Bordós, G., Urbányi, B., Micsinai, A., Kriszt, B., Palotai, Z., Szabó, I., Hantosi, Z. & Szoboszlay, S. (2019). Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin, Europe. Chemosphere 216, pp. 110–116. DOI:10.1016/j.chemosphere.2018.10.110
  8. Chowdhury, H., Chowdhury, T. & Sait, S.M. (2021). Estimating marine plastic pollution from COVID-19 face masks in coastal regions. Mar Pollut Bull. 168, 112419. DOI:10.1016/j.marpolbul.2021.112419
  9. Cózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, Á. T., Navarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M. L. & Duarte, C. M. (2015). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America. 111, pp. 10239-10244. DOI:10.1073/pnas.1314705111
  10. Di, M., Liu, X., Wang, W. & Wang, J. (2019). Manuscript prepared for submission to environmental toxicology and pharmacology pollution in drinking water source areas: Microplastics in the Danjiangkou Reservoir, China. Environmental Toxicology and Pharmacology, 65, pp. 82–89. DOI:10.1016/j.etap.2018.12.009
  11. Frère, L., Paul-Pont, I., Rinnet, E., Petton, S., Jaffré, J., Bihannic, I., Soudant, P., Lambert, C. & Huvet, A. (2017). Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay of Brest (Brittany, France). Env. Pollut. pp. 211-222. DOI:10.1016/j.envpol.2017.03.023
  12. Galgani, F., Hanke, G., Werner, S., Oosterbaan, L., Nilsson, P., Fleet, D., Kinsey, S., Thompson, R. C., VanFraneker, J., Vlachogianni, T., Scoullos, M., Veiga, J.M., Palatinus, A., Matiddi, M., Maes, T., Korpinen, S., Budziak, A., Leslie, H., Gago, H. & Liebezeit, G. (2013). Guidance on monitoring of marine litter in European seas. EUR- Scientific and Technical Research series-ISSN 1831-9424 (online), Luxembourg Publications Office of the European Union, [eds.] Hanke G., Werner S., Galgani F., Veiga J.M. & Ferreira M. (ISBN: 978-92-79-32709-4). DOI:10.2788/99475
  13. Galgani, F., Mendoza, A., Osa, J.L., Basurko, O.C., Rubio, A., Santos, M., Gago, J. & Rodriguez, C.P. (2020). Microplastics in the Bay of Biscay: An overview. Mar. Polut. Bull.153, 110996. DOI:10.1016/j.marpolbul.2020.110996
  14. Global Carbon Project. (2020). Budget carbone [Document WWW]. Glob. Carbone Proj. URL https://www.globalcarbonproject.org/carbonbudget/index
  15. Graca, B., Szewc, K., Zakarzewska, D., Dolega, A. & Szczerbowska-Boruchowska, M. (2017). Sources and fate of microplastics in marine and beach sediments of the Southern Baltic Sea - a preliminary study. Environ. Sci. Pollut. Res.24(8), pp. 7650 - 7661. DOI:10.1007/s11356-017-8419-5
  16. Horton, A.A., Svendsen, C., Williams, R.J., Spurgeon, D.J. & Lahive, E. (2017a). Large microplastic particles in sediments of tributaries of the River Thames, UK – Abundance, sources and methods for effective quantification. Marine Pollution Bulletin, 114, pp. 218–226. DOI:10.1016/j.marpolbul.2016.09.004
  17. Hudson, A. (2020). L’effet COVID-19 sur nos océans. Head of Water and Ocean Governance Programme, UNDP. L’effet COVID-19 sur nos océans | Programme De Développement Des Nations Unies (undp.org)
  18. Imhof, H. K., Sigl, R., Brauer, E., Feyl, S., Giesemann, P., Klink, S., Leupolz, K., Loder, M. G., Loschel, L. A., Missun, J., Muszynski, S., Ramsperger, A. F., Schrank, I., Speck, S., Steibl, S., Trotter, B., Winter, I. & Laforsch, C. (2017). Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Mar. Pollut. Bull,15, 116(1-2), pp. 340-347. DOI:10.1016/j.marpolbul.2017.01.010.
  19. Klein, S., Worch, E. & Knepper, T.P. (2015). Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany. Environ. Sci. Technol. 49, pp. 6070–6076. DOI:10.1021/acs.est.5b00492
  20. Lippiatt, S., Opfer, S. & Arthur, C. (2013). Marine Debris Monitoring and Assessment. NOAA Technical Memorandum NOS-OR&R-46. https://pub-data.diver.orr.noaa.gov/marine-debris/pacificislands/Lippiatt%20et%20al.%202013
  21. Okuku, E., Kiteresi, L., Owato, G., Otieno, K., Mwalugha, C., Mbuche, M., Gwada, B., Nelson, A., Chepkemboi, P., Achieng, Q., Wanjeri, V., Ndwiga, J., Mulupi, L. & Omire, J. (2021). The impacts of COVID-19 pandemic on marine litter pollution along the Kenyan Coast: A synthesis after 100 days following the first reported case in Kenya. Mar Pollut Bull. 162: 111840. https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-1065433#
  22. Ormaza-Gonzalez, F. & Castro-Rodas, D. (2020). COVID-19 Impacts on Beaches and Coastal Water Pollution: Management Proposals Post-pandemic. 2020, 2020060186. Preprints 2020060186. DOI:10.20944/PREPRINTS202006.0186.V1.
  23. Pedrotti, M. L., Petit, S., Elineau, A., Bruzaud, S., Crebassa, J. C., Dumontet, B., Marti, E., Gorsky, G. & Cozar, A. (2016). Changes in the Floating Plastic Pollution of the Mediterranean Sea in Relation to the Distance to Land. PLoS One. 1-14. DOI:10.1371%2Fjournal.pone.0161581
  24. Phuong, N.N., Fauvelle, V., Grenz, C., Ourgaud, M., Schmidt, N., Strady, E. & Sempéré, R. (2021). Highlights from a review of microplastics in marine sediments, Science of the Total Environment. DOI:10.1016/j.scitotenv.2021.146225
  25. The Economist, 2021. ttps://ocean.economist.com/?RefID=EM1707WS_Email_edm2
  26. Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J. & Janssen, C. R. (2015b). Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 5-17. DOI:10.1016/j.marenvres.2015.06.007
  27. Vandermeersch, G., Van Cauwenberghe, L., Janssen, C. R., Marques, A., Granby, K.Fait, G., Kotterman, M. J., Diogene, J., Bekaert, K., Robbens, J. & Devriese, L. (2015). A critical view on microplastic quantification in aquatic organisms. Environ. Res. pp. 46-55. DOI:10.1016/j.envres.2015.07.016
  28. Vermeiren, P., Muñoz, C. & Ikejima, K. (2020). Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environ. Pollut.114298. DOI:10.1016/j.envpol.2020.114298
  29. Waller, C.L., Griffiths, H.J., Waluda, C.M., Thorpe, S.E., Loaiza, I, Moreno, B., Pacherres, C.O. & Hughes, K.A. (2017). Microplastis in the Antarctic marine system: An emerging area of research. Mar. Pollut. Bull. pp. 220-227. DOI:10.1016/j.scitotenv.2017.03.283
  30. Yang, H., Sun, F., Liao, H., Guo, Y., Pan, T., Wu, F. & Giesy, J.P. (2023). Distribution, abundance, and risks posed by microplastics in surface waters of the Yangtze River Basin, China. Environmental Pollution. 333, 122086. DOI:10.1016/j.envpol.2023.122086
  31. Yuan, Q., Qi, B., Hu, D., Wang, J., Zhang, J., Yang, H., Zhang, S., Liu, L., Xu, L. & Li, W. (2020). Spatiotemporal variations and reduction of air pollutants during the COVID- 19 pandemic in a megacity of Yangtze River Delta in China. Sci. Total Environ. 751. DOI:10.1016%2Fj.scitotenv.2020.141820
  32. Zambrano-Monserrate, M.A., Ruano, M.A. & Sanchez-Alcalde, L. (2020). Indirect effects of COVID-19 on the environment. Sci. Total Environ. 138813. DOI:10.1016/j.scitotenv.2020.138813.
Go to article

Authors and Affiliations

Lakbar Chanez
1
Djennane Rania
1
Trea Fouzia
1
ORCID: ORCID
Samar Faouzi
2
Ouali Kheireddine
1
ORCID: ORCID

  1. Laboratory of Environmental Biosurveillance, Badji Mokhtar University, BP 12 Sidi Amar, Annaba 23000, Algeria
  2. University Chadli Bendjedid, El Tarf 36000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

This study represents the first culture-independent profiling of microbial diversity in post-processing wastewater from underground coal gasification (UCG) processes. Three types of post-processing wastewater, named W1, W2 and W3, were obtained from three UCG processes involving two types of coal and two gasification agents, namely oxygen-enriched air and oxygen. Very high concentrations of BTEX (benzene, toluene, ethylbenzene, xylene), polyaromatic hydrocarbons (PAHs), and phenol were detected in the wastewater, classifying it into the fifth toxicity class, indicating very high acute toxicity. The values for the Shannon (H), Ace and Chao1 indices in W2 were the lowest compared to their values in W1 and W3. The dominate phyla were Proteobacteria, contributing 84.64% and 77.92% in W1 and W3, respectively, while Firmicutes dominated in W2 with a contribution of 66.85%. At the class level, Gammaproteobacteria and Alphaproteobacteria were predominant in W1 and W3, while Bacilli and Actinobacteria were predominant in W2. Among Bacilli, the Paenibacillus and Bacillus genera were the most numerous. Our results suggest that the main differentiating factor of the bacterial structure and diversity in the wastewater could be the gasification agent. These findings provide new insights into the shifting patterns of dominant bacteria in post-processing wastewater and illustrate the spread of bacteria in industrial contaminated wastewater.
Go to article

Bibliography

  1. Bassin, J.; Rachid, C.; Vilela, C. Cao, S.; Peixoto, R. & Dezotti, M. (2017). Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater, International Biodeterioration & Biodegradation, 120, pp. 152–160. DOI:10.1016/j.ibiod.2017.01.036
  2. Bedogni, G.L.; Massello, F. L.; Giaveno, A.; Donati, E.R. & Urbieta, M.S. (2020). A deeper look into the biodiversity of the extremely acidic copahue volcano - Río Agrio system in Neuquén, Argentina, Microorganisms, 8, 58. DOI:10.3390/microorganisms8010058
  3. Chen, T.; Wu, Y.; Wang, J. & Philippe, C. F. X. (2022). Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis, International Journal of Environmental Research and Public Health, 19, 8800. DOI:10.3390/ijerph19148800
  4. Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes, Current Opinion in Microbiology, 24, pp. 88-95. DOI:10.1016%2Fj.mib.2015.01.006
  5. Gawroński, S., Łutczyk, G.; Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils, Archives of Environmental Protection, 48, 2, pp. 24-33. DOI:10.24425/aep.2022.140763
  6. Grabowski, J., Korczak, K. & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process, Process Safety and Environmental Protection, 148, pp. 548-558. DOI:10.1016/j.psep.2020.10.003
  7. Grady, E.N., MacDonald, J., Richman, A. & Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. DOI:10.1186/s12934-016-0603-7
  8. Guisado, I.M., Purswani, J., Gonzales-Lopez, J. & Pozo, C. (2015). Physiological and genetic screening methods for isolation of methyl-tert-butyl-ether-degrading bacteria for bioremediation purposes, International Biodeterioration and Biodegradation, 97, pp. 67-74. DOI:10.1016/j.ibiod.2014.11.008
  9. Jałowiecki, Ł., Borgulat, J.; Strugała-Wilczek, A., Glaser, M. & Płaza, G. (2024). Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach, Journal of Ecological Engineering, 25, pp. 62–71. DOI:10.12911/22998993/176143
  10. Jayapal, A., Chaterjee, T. & Sahariah, B.P. (2023). Bioremediation techniques for the treatment of mine tailings: A review, Soil Ecology Letters, 5, 220149. DOI:10.1007/s42832-022-0149-z
  11. Kamika, I., Azizi, S. & Tekere, M. (2016). Microbial profiling of South African acid mine water samples using next generation sequencing platform, Applied. Microbiology and Biotechnology, 100, pp.6069–6079. DOI:10.1007/s00253-016-7428-5
  12. Kapusta, K. & Stańczyk, K. (2015). Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect, Ecotoxicology and Environmental Safety, 112, pp. 105– 113. DOI:10.1016/j.ecoenv.2014.10.038
  13. Karn, S.K., Chakrabarti, S.K. & Reddy, M.S. (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill, Biodegradation, 22, pp. 63-69. DOI:10.1007/s10532-010-9376-6
  14. Kochhar, N., Kavya, I.K., Shrivvastava, S., Ghosh, A., Rawat, V.S., Sodhi, K.K. & Kumar, M. (2022) Perspectives on the microorganisms of extreme environments and their applications, Current Research Microbial Sciences. 3, 100134. DOI:10.1016/j.crmicr.2022.100134
  15. Liu, F., Hu, X., Zhao, X., Guo, H. & Zhao, Y. (2019). Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant, Environmental Engineering Science, 36, pp. 172-178. DOI:10.1089/ees.2018.0280
  16. Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q. & Yang, Y. (2020). Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China, Microorganisms, 8, 477. DOI:10.3390/microorganisms8040477
  17. Mauricio-Gutiérrez, A., Machorro-Velázquez R., Jiménez-Salgado, T.;Vázquez-Crúz C., Sánchez-Alonso, M.P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 46, 4, pp. 59–69. DOI:0.24425/aep.2020.135765
  18. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps, Microorganisms, 11, 710. DOI:10.3390/microorganisms11030710
  19. Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C.O., Muhammad, W.I., Odoh, C.K., Sam, K. & Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. DOI:10.1016/j.jenvman.2021.114313
  20. Pankiewicz-Sperka, M., Kapusta, K., Basa, W. & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process - effect of coal properties and gasification pressure, Energies, 14, 6533. DOI:10.3390/en14206533
  21. Pankiewicz-Sperka, M., Stańczyk, K., Płaza, G., Kwaśniewska, J. & Nałęcz-Jawecki, G. (2014). Assessment of the chemical, microbiological and toxicological aspects pf post-processing water from underground coal gasification, Ecotoxicology and Environmental Safety, 108, pp. 294-301. DOI:10.1016/j.ecoenv.2014.06.036
  22. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395–402. DOI:10.1002/tox.10141.
  23. Rappaport, H.B. & Oliverio, A.M. (2023). Extreme environments offer an unprecedent opportunity to understand microbial eukaryotic ecology, evolution, and genome biology, Nature Communication, 14, 4959. DOI:10.1038/s41467-023-40657-4
  24. Sharma, S. & Bhattacharya, A. (2017) Drinking water contamination and treatment techniques. Appied Water Science 7, pp. 1043-1067. DOI:10.1007/s13201-016-0455-7
  25. Smoliński, A.. Stańczyk, K.. Kapusta, K. & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process, Water Science and Technology, 67, pp. 644-650. DOI:10.2166/wst.2012.558
  26. Thukral, A.K. (2017). A review on measurement of alpha diversity in biology, Agricultural Research Journal, 54, 1. DOI:10.5958/2395-146X.2017.00001.1
  27. Timkina, E., Drabova, L., Palyova, A,, Rezanka, T., Matatkova, O. & Kolouchova, I. (2020). Kocuria strains from unique radon spring water from Jachymov Spa, Fermentation, 8, 35. DOI:10.3390/fermentation8010035
  28. Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García F. & Paredes, J.I. (2023). Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products, Energies, 16, 4455. DOI:10.3390/en16114455
  29. Xu, B., Chen, L., Xing, B., Li, Z., Zhang, L., Yi, G., Huang, G. & Mohanty, M.K. (2017). Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol, Process Safety Environmental Protection, 107, pp. 147–152. DOI:10.1016/j.psep.2017.02.007
  30. Yang, Y., Wang, L., Xiang, F., Zhao, L. & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, International Journal of Environmental Research and Public Health, 17, 436. DOI:10.3390/ijerph17020436
  31. Zwain, H., Al-Marzook, F., Nile, B., Ali Jeddoa, Z., Atallah, A., Dahlan, I. & Hassan, W. (2021). Morphology analysis and microbial diversity in novel anaerobic baffled reactor treating recycled paper mill wastewater, Archives of Environmental Protection, 47, 4, pp. 9–17. DOI:10.24425/aep.2021.139498
  32. Bassin, J.; Rachid, C.; Vilela, C. Cao, S.; Peixoto, R. & Dezotti, M. (2017). Revealing the bacterial profile of an anoxic-aerobic moving-bed biofilm reactor system treating a chemical industry wastewater, International Biodeterioration & Biodegradation, 120, pp. 152–160. DOI:10.1016/j.ibiod.2017.01.036
  33. Bedogni, G.L.; Massello, F. L.; Giaveno, A.; Donati, E.R. & Urbieta, M.S. (2020). A deeper look into the biodiversity of the extremely acidic copahue volcano - Río Agrio system in Neuquén, Argentina, Microorganisms, 8, 58. DOI:10.3390/microorganisms8010058
  34. Chen, T.; Wu, Y.; Wang, J. & Philippe, C. F. X. (2022). Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis, International Journal of Environmental Research and Public Health, 19, 8800. DOI:10.3390/ijerph19148800
  35. Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes, Current Opinion in Microbiology, 24, pp. 88-95. DOI:10.1016%2Fj.mib.2015.01.006
  36. Gawroński, S., Łutczyk, G.; Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils, Archives of Environmental Protection, 48, 2, pp. 24-33. DOI:10.24425/aep.2022.140763
  37. Grabowski, J., Korczak, K. & Tokarz, A. (2021). Aquatic risk assessment based on the results of research on mine waters as a part of a pilot underground coal gasification process, Process Safety and Environmental Protection, 148, pp. 548-558. DOI:10.1016/j.psep.2020.10.003
  38. Grady, E.N., MacDonald, J., Richman, A. & Yuan, Z.C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. DOI:10.1186/s12934-016-0603-7
  39. Guisado, I.M., Purswani, J., Gonzales-Lopez, J. & Pozo, C. (2015). Physiological and genetic screening methods for isolation of methyl-tert-butyl-ether-degrading bacteria for bioremediation purposes, International Biodeterioration and Biodegradation, 97, pp. 67-74. DOI:10.1016/j.ibiod.2014.11.008
  40. Jałowiecki, Ł., Borgulat, J.; Strugała-Wilczek, A., Glaser, M. & Płaza, G. (2024). Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach, Journal of Ecological Engineering, 25, pp. 62–71. DOI:10.12911/22998993/176143
  41. Jayapal, A., Chaterjee, T. & Sahariah, B.P. (2023). Bioremediation techniques for the treatment of mine tailings: A review, Soil Ecology Letters, 5, 220149. DOI:10.1007/s42832-022-0149-z
  42. Kamika, I., Azizi, S. & Tekere, M. (2016). Microbial profiling of South African acid mine water samples using next generation sequencing platform, Applied. Microbiology and Biotechnology, 100, pp.6069–6079. DOI:10.1007/s00253-016-7428-5
  43. Kapusta, K. & Stańczyk, K. (2015). Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect, Ecotoxicology and Environmental Safety, 112, pp. 105– 113. DOI:10.1016/j.ecoenv.2014.10.038
  44. Karn, S.K., Chakrabarti, S.K. & Reddy, M.S. (2011). Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill, Biodegradation, 22, pp. 63-69. DOI:10.1007/s10532-010-9376-6
  45. Kochhar, N., Kavya, I.K., Shrivvastava, S., Ghosh, A., Rawat, V.S., Sodhi, K.K. & Kumar, M. (2022) Perspectives on the microorganisms of extreme environments and their applications, Current Research Microbial Sciences. 3, 100134. DOI:10.1016/j.crmicr.2022.100134
  46. Liu, F., Hu, X., Zhao, X., Guo, H. & Zhao, Y. (2019). Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant, Environmental Engineering Science, 36, pp. 172-178. DOI:10.1089/ees.2018.0280
  47. Luo, Z., Ma, J., Chen, F., Li, X., Zhang, Q. & Yang, Y. (2020). Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China, Microorganisms, 8, 477. DOI:10.3390/microorganisms8040477
  48. Mauricio-Gutiérrez, A., Machorro-Velázquez R., Jiménez-Salgado, T.;Vázquez-Crúz C., Sánchez-Alonso, M.P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 46, 4, pp. 59–69. DOI:0.24425/aep.2020.135765
  49. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps, Microorganisms, 11, 710. DOI:10.3390/microorganisms11030710
  50. Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C.O., Muhammad, W.I., Odoh, C.K., Sam, K. & Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. DOI:10.1016/j.jenvman.2021.114313
  51. Pankiewicz-Sperka, M., Kapusta, K., Basa, W. & Stolecka, K. (2021). Characteristics of water contaminants from underground coal gasification (UCG) process - effect of coal properties and gasification pressure, Energies, 14, 6533. DOI:10.3390/en14206533
  52. Pankiewicz-Sperka, M., Stańczyk, K., Płaza, G., Kwaśniewska, J. & Nałęcz-Jawecki, G. (2014). Assessment of the chemical, microbiological and toxicological aspects pf post-processing water from underground coal gasification, Ecotoxicology and Environmental Safety, 108, pp. 294-301. DOI:10.1016/j.ecoenv.2014.06.036
  53. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395–402. DOI:10.1002/tox.10141.
  54. Rappaport, H.B. & Oliverio, A.M. (2023). Extreme environments offer an unprecedent opportunity to understand microbial eukaryotic ecology, evolution, and genome biology, Nature Communication, 14, 4959. DOI:10.1038/s41467-023-40657-4
  55. Sharma, S. & Bhattacharya, A. (2017) Drinking water contamination and treatment techniques. Appied Water Science 7, pp. 1043-1067. DOI:10.1007/s13201-016-0455-7
  56. Smoliński, A.. Stańczyk, K.. Kapusta, K. & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process, Water Science and Technology, 67, pp. 644-650. DOI:10.2166/wst.2012.558
  57. Thukral, A.K. (2017). A review on measurement of alpha diversity in biology, Agricultural Research Journal, 54, 1. DOI:10.5958/2395-146X.2017.00001.1
  58. Timkina, E., Drabova, L., Palyova, A,, Rezanka, T., Matatkova, O. & Kolouchova, I. (2020). Kocuria strains from unique radon spring water from Jachymov Spa, Fermentation, 8, 35. DOI:10.3390/fermentation8010035
  59. Wiatowski, M., Kapusta, K., Strugała-Wilczek, A., Stańczyk, K., Castro-Muñiz, A., Suárez-García F. & Paredes, J.I. (2023). Large-scale experimental simulations of in situ coal gasification in terms of process efficiency and physicochemical properties of process by-products, Energies, 16, 4455. DOI:10.3390/en16114455
  60. Xu, B., Chen, L., Xing, B., Li, Z., Zhang, L., Yi, G., Huang, G. & Mohanty, M.K. (2017). Physicochemical properties of Hebi semi-coke from underground coal gasification and its adsorption for phenol, Process Safety Environmental Protection, 107, pp. 147–152. DOI:10.1016/j.psep.2017.02.007
  61. Yang, Y., Wang, L., Xiang, F., Zhao, L. & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, International Journal of Environmental Research and Public Health, 17, 436. DOI:10.3390/ijerph17020436
  62. Zwain, H., Al-Marzook, F., Nile, B., Ali Jeddoa, Z., Atallah, A., Dahlan, I. & Hassan, W. (2021). Morphology analysis and microbial diversity in novel anaerobic baffled reactor treating recycled paper mill wastewater, Archives of Environmental Protection, 47, 4, pp. 9–17. DOI:10.24425/aep.2021.139498
Go to article

Authors and Affiliations

Łukasz Jałowiecki
1
Jacek Borgulat
1
Aleksandra Strugała-Wilczek
2
Jan Jastrzębski
3
Marek Matejczyk
1
Grażyna Płaza
4

  1. Institute for Ecology of Industrial Areas,Katowice, Poland
  2. Department of Energy Saving and Air Protection, Central Mining Institute, Katowice, Poland
  3. Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
  4. Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The investigation of Nida Valley water aimed to assess fluctuations in physicochemical properties. In this study, environmental monitoring method was utilized to evaluate the changes in physicochemical properties of water. Over a 24-month period, from June 2021 to May 2023, a total of 228 water samples were collected from 10 sampling sites, with a monthly sampling frequency. Statistical analyses were utilized including the Shapiro–Wilk test (α = 0.05), Kruskal–Wallis test and Wilcoxon (Mann–Whitney) rank sum test (α = 0.05), Pearson correlation analysis (α = 0.001) and principal component analysis (PCA). Statistical analyses revealed significant differences between months in GW samples for for temperature, dissolved oxygen, pH, total nitrogen, total phosphorus, chloride, manganese, and zinc in GW samples and for T and DO in SW samples. Pearson correlation coefficient analysis (α = 0.001) identified strong positive correlations within the SW dataset. Similarly, significant positive correlations were observed among the GW dataset. Noteworthy positive correlations were also detected between the GW and SW datasets. Principal component analysis (PCA) revealed a substantial dissimilarity between GW2 samples compared to others, characterized by elevated manganese, iron, and Sulfate content. Two distinct groups emerged: Group 1 included samples at GW1, GW2, GW3, GW5, and SW2, while Group 2 comprised all other samples. This study demonstrated the stability in the physicochemical properties of SW and underscore a discernible correlation between the hydrochemical compositions of both SW and GW in the riparian area. Outstanding characteristics in hydrochemical component of sample waters have been indicated.
Go to article

Bibliography

  1. APHA (1998). Standard methods for the examination of water and wastewater. 20th ed. Washington, DC. American Public Health Association. ISBN 0875532357 pp. 1325
  2. Ayers, R.S. & Westcot D.W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper No. 29, Rome, Italy, pp: 8-96. ISBN 92-5-102263-1
  3. Bogdał, A., Kowalik, T., Ostrowski, K. & Skowron P. (2016). Seasonal variability of physicochemical parameters of water quality on length of Uszwica river, J. Ecol. Eng. 17(1), pp. 161–170. DOI:10.12911/22998993/61206
  4. Borden, R.C., Daniel, R.A., LeBrun, L.E. & Davis, C.W. (1997). Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer, Water Resour. Res. 33, 1105–1115. DOI:10.1029/97W,R00014
  5. Borek, Ł. & Drymajło K. (2019). The role and importance of irrigation system for increasing the water resources: the case of the Nida River valley, ASP.FC. 18, 19–30. DOI:10.15576/ASP.FC/2019.18.3.19
  6. Cel, W., Kujawska, J. & Wasąg H. (2017). Impact of hydraulic fracturing on the quality of natural waters, J. Ecol. Eng. 18, pp. 63–68. DOI:10.12911/22998993/67852
  7. Chapman, D.V. (1996). Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. 2nd Edn., Taylor and Francis, London, UK., pp: 626. ISBN-13: 9780419215905.
  8. Conant, B., Cherry, J.A. & Gillham, R.W. (2004). A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions, Journal of Contaminant Hydrology 73, pp. 249–279. DOI:10.1016/j.jconhyd.2004.04.001
  9. Costello, M.J., McCarthy, T.K. &, O’Farrell M.M. (1984). The stoneflies (Plecoptera) of the Corrib catchment area, Ireland, Annls Limnol. 20, 25–34. DOI:10.1051/limn/1984014
  10. Demaku, S. & Bajraktari, N. (2019). Physicochemical Analysis of the Water Wells in the Area of Kosovo Energetic Corporation (Obiliq, Kosovo), J. Ecol. Eng. 20, pp. 155–160. DOI:10.12911/22998993/109874
  11. EPA (1983). Methods for chemical analysis of water and wastes. Washington, DC. United States Environmental Protection Agency pp. 491
  12. Harmancioglu, N.B., Ozkul, S.D. & Alpaslan, M.N. (1998). Water Quality Monitoring and Network Design. [In:] Harmancioglu, N.B., Singh, V.P., Alpaslan, M.N. (eds) Environmental Data Management, Water Science and Technology Library, vol 27. Springer, Dordrecht. DOI:10.1007/978-94-015-9056-3_4
  13. Khalil, B., Ouarda, T.B.M.J. & St-Hilaire, A. (2011). Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis, J. Hydrol., 405, pp. 277-287. DOI:10.1016/j.jhydrol.2011.05.024
  14. Kowalik, T., Bogdał, A., Borek, Ł. & Kogut, A. (2015). The effect of treated sewage outflow from a modernized sewage treatment plant on water quality of the Breń River, J. Ecol. Eng. 16, pp. 96–102. DOI:10.12911/22998993/59355
  15. Łajczak, A. (2004). Negative consequences of regulation of a meandering sandy river and proposals tending to diminish flood hazard. Case study of the Nida river, southern Poland. Proceedings of the Ninth International Symposium on River Sedimentation. Yichang, China. Beijing. IAHR p. 1773–1783
  16. Mirabbasi, R., Mazloumzadeh, S.M. & Rahnama, M.B. (2008). Evaluation of irrigation water quality using fuzzy logic, Res. J. Environ. Sci., 2, pp. 340-352. DOI:10.3923/rjes.2008.340.352
  17. Nowobilska-Luberda, A. (2018). Physicochemical and Bacteriological Status of Surface Waters and Groundwater in the Selected Catchment Area of the Dunajec River Basin, J. Ecol. Eng. 19, pp. 162–169. DOI:10.12911/22998993/86329
  18. Phan, C.N., Strużyński, A. & Kowalik, T. (2023). Monthly changes in physicochemical parameters of the groundwater in Nida valley, Poland (case study). Journal of water and Land development, 56 (I–III), pp, 220–234. DOI:10.24425/jwld.2023.143763
  19. Pitkin, S.E., Cherry, J.A., Ingleton, R.A. & Broholm M. (1999). Field Demonstrations Using the Waterloo Ground Water Profiler, Ground Water Monit. Remediat 19, pp. 122–131. DOI:10.1111/j.1745-6592.1999.tb00213.x
  20. Schuh, W.M., Klinkebiel, D.L., Gardner, J.C. & Meyer, R.F. (1997). Tracer and nitrate movement to groundwater in the northern great plains, J. Environ. Qual., 26, pp. 1335-1347. DOI:10.2134/jeq1997.00472425002600050020x
  21. Strużyński, A., Książek, L., Bartnik, W., Radecki-Pawlik, A., Plesiński, K., Florek, J., Wyrębek, M. & Strutyński M. (2015). Wetlands in River Valleys as an Effect of Fluvial Processes and Anthropopression, [in:] Ignar, S., Grygoruk, M. (Eds.), Wetlands and Water Framework Directive, GeoPlanet: Earth and Planetary Sciences, Springer International Publishing, Cham, pp. 69–90. DOI:10.1007/978-3-319-13764-3_5
  22. Valett, H.M., Fisher, S.G. & Stanley, E.H. (1990). Physical and Chemical Characteristics of the Hyporheic Zone of a Sonoran Desert Stream, Journal of the North American Benthological Society 9, pp. 201–215. DOI:10.2307/1467584
  23. Vrana, B., Allan, I.J., Greenwood, R., Mills, G.A., Dominiak, E., Svensson, K., Knutsson, J. & Morrison G. (2005). Passive sampling techniques for monitoring pollutants in water, TrAC Trends in Analytical Chemistry 24, pp. 845–868. DOI:10.1016/j.trac.2005.06.006
  24. WHO (2017). Guidelines for drinking-water quality [online]. 4th ed. World Health Organization ISBN 9789241548151 pp. 541. [Access 10.06.2022]. Available at: https://apublica.org/wp-content/uploads/2014/03/Guidelines-OMS-2011.pdf
  25. Wojak, S., Strużyński, A. & Wyrębek M. (2023). Analysis of changes in hydraulic parameters in a lowland river using numerical modeling, ASP.FC 22, pp. 3–17. DOI:10.15576/ASP.FC/2023.22.1.3
  26. Żelazo, J. (1993). The recent views on the small lowland river training. [In:] Nature and environment conservation in the lowland river valleys in Poland. Ed. L. Tomiałojć. Kraków. IOP PAN p. 145–154 (in Polish)
Go to article

Authors and Affiliations

Cong Ngoc Phan
1 2
ORCID: ORCID
Andrzej Strużyński
1
ORCID: ORCID
Tomasz Kowalik
1
ORCID: ORCID

  1. Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Poland
  2. Institute of Chemistry, Biology and Environment, Vinh University, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Sapropel is a layer of sediment composed of organic and inorganic substances that accumulates at the bottom of lakes. The water of such lakes often have elevated levels of heavy metals such as Cd, Cr, Cu, and Zn, which can pose risks to human health. Sapropel may be used as a biosorbent in removing these heavy metals from aqueous solutions. Various doses of sapropel ranging from 1 to 50 g/L and different mixing times from15 to150 minutes have been tested. The maximum removal efficiencies for Cd (93%), Cr (31%), Cu (84%), and Zn (84%) from aqueous solutions were achieved using the minimum doses of sapropel (50 g/L). The study has shown that mixing sapropel for 15 minutes is sufficient for the removal of Cr, 30 minutes for Cd and Cu, and 60 minutes for Zn.
Go to article

Bibliography

  1. Al-Saydeh, S.A., El-Naas, M.H. & Zaidi, S.J. (2017). Copper removal from industrial wastewater: A comprehensive review, Journal of Industrial and Engineering Chemistry, 56, pp. 35–44. DOI:10.1016/j.jiec.2017.07.026
  2. Baksiene, E. & Ciunys, A. (2012). Dredging of lake and application sapropel from improvement of light soil properties, Journal of Environment Engineering and Landscape Management, 20, 2, pp. 97-103. DOI: org/10.3846/16486897.2011.645824
  3. Barany, S. & Strelko, V. (2013). Laws and mechanism of adsorption of cations by different ion-exchange forms of silica gel, Adsorption, 19, pp. 769–776. DOI:10.1007/s10450-013-9516-5 A
  4. Becic, A., Railic, B., Dublevis, R., Mitrovic, D. & Spalevis, V. (2014). Application of sapropel in agricultural production, Agriculture and Forestry, 60, 2, pp. 243-250.
  5. Birgelaite, R., Valskys, V. & Ignatavicius, G. (2016). Use of sapropel for removal of heavy metals from solution, Science – Future of Lithuania, 8, 4, pp. 388–396. DOI:10.3846/mla.2016.946
  6. Blitz, J.P., Blitz, I.P., Gunko, V. & Sheeran, D. (2006). Functionalized surfaces: silica structure and metal ion adsorption behavior. [In:] Blitz, J.P. and Gun’ko, V. (eds.) Surface chemistry in biomedical and environmental science, NATO science series, II., vol. 228, Springer, Dordrechet, pp. 337–348. DOI:10.1007/1-4020-4741-x_30
  7. Cornu, J.Y., Huguenot, D., Jézéquel, K., Lollier, M. & Lebeau, T. (2017). Bioremediation of copper-contaminated soils by bacteria, World Journal of Microbiology and Biotechnology, 33, 2, pp. 1–9. DOI:10.1007/s11274-016-2191-4
  8. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption, European Union: Brussel, Belgium, 1998.
  9. Daux, V., Foucault, A., Melieres, F. & Turpin, M. (2006). Sapropel - like pliocene sediments of Sicily deposited under oxygenated bottom water, Bulletin de la Societe geologique de France, 177, 2, pp. 79–88. DOI:10.2113/gssgfbull.177.2.79
  10. Falaciński, P. & Wojtkowska, M. (2021). The use of extraction methods to assess the immobilization of metals in hardening slurries, Archives of Environmental Protection, 47,3 pp.60-70. DOI:10.24425/aep.2021.138464
  11. Filippidi, A., Triantaphyllou, M.V. & Lange, G.J. (2016). Eastern–Mediterranean ventilation variability during sapropel S1 formation, evaluated at two sites influenced by deep–water formation from Adriatic and Aegean Seas, Quaternary Science Reviews, 144, pp. 95–106. DOI:10.1016/j.quascirev.2016.05.024
  12. Genchi, G., Sinicropi, M.S., Lauria, G. & Carocci A. (2020). The Effects of Cadmium Toxicity, International Journal of Environmental Research and Public Health, 17, 11, 3782. DOI:10.3390/ijerph17113782
  13. Gunko, V.M., Mironyuk, I.F., Zarko, V.I. & Matkovskij, O.K. (2004). Surface electric and titration behavior of fumed oxides, Colloids Surfaces, 240, pp. 9–25. DOI:10.1016/j.colsurfa.2004.03.014
  14. Gupta, A., Sharma, V., Sharma, K., Kumar, V., Choudhary, S., Mankotia, P., Kumar, B., Mishra, H., Moulick, A., Ekielski. A. & Mishra, P.K. (2021). A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment, Materials, 14, 16, 4702. DOI:10.3390/ma14164702
  15. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals, Interdisciplinary Toxicology, 7, 2, pp. 60-72. DOI:10.2478/intox-2014-0009
  16. Joseph, L., Jun, B.M., Flora, J.R.V., Park, C.M. & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review, Chemosphere, 229, pp. 142–159. DOI:10.1016/j.chemosphere.2019.04.198
  17. Lim, A.P. & Aris, A.Z. (2014). A review on economically adsorbents on heavy metals removal in water and wastewater, Reviews in Environmental Science and Biotechnology, 13, 2, pp. 163–181. DOI:10.1007/s11157-013-9330-2
  18. Liu, L., Xia, M., Hao, J., Xu, H. & Song, W. (2021). Biosorption of Pb (II) by the resistant Enterobacter sp.: Investigated by kinetics, equilibrium and thermodynamics, Archives of Environmental Protection, 47,3, pp. 28-36. DOI:10.24425/aep.2021.138461
  19. Manzoor, M.M. (2020). Environmental Biotechnology: For Sustainable Future, Bioremediation and Biotechnology, 2, pp. 241-258. DOI:10.1007/978-3-030-40333-1_14
  20. Noulas, C., Tziouvalekas, M. & Karyotis, T. (2018). Zinc in soils, water and food crops, Journal of Trace Elements in Medicine and Biology, 49, pp. 252–260. DOI:10.1016/j.jtemb.2018.02.009
  21. Obuka, V., Sinka, M., Klavins, M., Stankevica, K. & Korjakins, (2015). Sapropel as a Binder: Properties and Application Possibilities for Composite Materials. 2nd International Conference on Innovative Materials, Structures and Technologies, Materials Science and Engineering, 96, pp. 1-10. DOI:10.1088/1757-899x/96/1/012026
  22. Pavesi, T. & Moreira, J.C. (2020). Mechanisms and individuality in chromium toxicity in humans, Journal of Applied Toxicology, 40, 9, pp. 1183-1197. DOI:10.1002/jat.3965
  23. Rasool, A., Farooqi, A., Xiao, T., Masood, S., Kamran, M.A. & Bibi, S. (2016). Elevated levels of arsenic and trace metals in drinking water of Tehsil Mailsi, Punjab, Pakistan, Journal of Geochemical Exploration, 169, pp. 89–99. DOI:10.1016/j.gexplo.2016.07.013
  24. Sankhla, M.S., Kumar, R. & Prasad, L. (2019). Zinc Impurity in Drinking Water and Its Toxic Effect on Human Health, Indian Internet Journal of Forensic Medicine & Toxicology, 17, 4, 84. DOI:10.5958/0974-4487.2019.00015.4
  25. Singh, K., Renu, N.A. & Agarwal M. (2017). Methodologies for removal of heavy metal ions from wastewater: an overview, Interdisciplinary Environmental Review, 18, 2, 124. DOI:10.1504/ier.2017.087915
  26. Stankevica, K., Klavins, M., Rutina, L. & Cerina, A. (2013). Lake sapropel: a valuable resource and indicator of lake development. Advances in Environment, Computational Chemistry and Bioscience, pp. 247-252.
  27. Tahoon, M.A., Siddeeg, S.M., Alsaiari, N.S., Mnif, W. & Ben Rebah, F. (2020). Effective heavy metals removal from water using nanomaterials: A review, Processes, 8, 6, pp. 1–24. DOI:10.3390/pr8060645
  28. Tomno, R.M., Nzeve, J.K., Mailu, S.N., Shitanda, D. & Waswa F. (2020). Heavy metal contamination of water, soil and vegetables in urban streams in Machakos municipality, Kenya, Scientific African, 9, e00539. DOI:10.1016/j.sciaf.2020.e00539
  29. World Health Organization. Guidelines for Drinking-Water Quality (2011). 4th ed, World Health Organization: Geneva, Switzerland, pp. 398–403.
Go to article

Authors and Affiliations

Ramunė Albrektienė-Plačakė
1
Dainius Paliulis
2

  1. Department of Chemistry and Bioengineering, Vilnius TECH, Lithuania
  2. Department of Environmental Protection and Water Engineering, Vilnius TECH, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to explore the relationship between the Air Quality Index (AQI), COVID-19 incidence rates, and population density within Malaysia’s ten most populous cities from January 2018 to December 2021. Data were sourced from the Department of Statistics Malaysia, the World Air Quality Index Project, and Our World in Statistics. The methodology integrated population-based city classification and AQI assessment, cluster analysis through SPSS, and Generalized Additive Mixed Model (GAMM) analysis using R Studio despite encountering a data gap in AQI for five months in 2019. Cities were organized into three clusters based on their AQI: Cluster One included Ipoh, Penang, Kuala Lumpur, and Melaka, Cluster Two comprised Kuantan, Seremban, Johor Bahru, and Kota Bharu, Cluster Three featured Kota Kinabalu and Kuching. GAMM analysis revealed prediction accuracies for AQI variations of 58%, 60%, and 41% for the respective clusters, indicating a notable impact of population density on air quality. AQI variations remained unaffected by COVID-19, with a forecasted improvement in air quality across all clusters. The paper presents novel insights into the negligible impact of COVID-19 on AQI variations and underscores the predictive power of population dynamics on urban air quality, offering valuable perspectives for environmental and urban planning.
Go to article

Bibliography

  1. Augustin, N. H., Musio, M., von Wilpert, K., Kublin, E., Wood, S. N. & Schumacher, M. (2009). Modeling Spatiotemporal Forest Health Monitoring Data. Journal of the American Statistical Association, 104(487), pp. 899-911. DOI:10.1198/jasa.2009.ap07058
  2. Barouki, R., Kogevinas, M., Audouze, K., Belesova, K., Bergman, A., Birnbaum, L. & Vineis, P. (2021). The COVID-19 pandemic and global environmental change: Emerging research needs. Environment International, 146, 106272. DOI:10.1016/j.envint.2020.106272
  3. Chaudhuri, S. & Chowdhury, A. R. (2018). Air quality index assessment prelude to mitigate environmental hazards. Natural Hazards, 91(1), pp. 1-17.DOI:10.1007/s11069-017-3080-3
  4. Chen, C. (2000). Generalized additive mixed models. Communications in Statistics - Theory and Methods, 29(5-6), pp. 1257-1271.DOI:10.1080/03610920008832543
  5. Chenarides, L., Grebitus, C., Lusk, J. L. & Printezis, I. (2021). Food consumption behavior during the COVID-19 pandemic. Agribusiness, 37(1), pp. 44-81. DOI:,DOI:10.1002/agr.21679
  6. Constantinescu, C. (2019, April 25). Using generalised additive mixed models (gamms) to predict visitors to edinburgh and craigmillar castles. Technical blog from our data science team. https://thedatalab.com/tech-blog/using-generalised-additive-mixed-models-gamms-to-predict-visitors-to-edinburgh-and-craigmillar-castles/
  7. Department of Environment. (2013). General Information of Air Pollutant Index. Retrieved May 6 from http://www.doe.gov.my/webportal/en/info-umum/bahasa-inggeris-general-information-of-air-pollutant-index/
  8. Department of Statistics Malaysia Official Portal. (2020). Population by state, administrative district and sex, 2016-2018. Retrieved April 25 from https://www.dosm.gov.my/v1/index.php?r=column3/accordion&menu_id=aHhRYUpWS3B4VXlYaVBOeUF0WFpWUT09
  9. Environment and Climate Change Canada. (2021, April 28, 2021). About the Air Quality Health Index. Retrieved May 6 from https://www.canada.ca/en/environment-climate-change/services/air-quality-health-index/about.html
  10. Gkatzelis, G. I., Gilman, J. B., Brown, S. S., Eskes, H., Gomes, A. R., Lange, A. C. & Kiendler-Scharr, A. (2021). The global impacts of COVID-19 lockdowns on urban air pollution: A critical review and recommendations. Elementa: Science of the Anthropocene, 9(1). DOI:10.1525/elementa.2021.00176
  11. Hastie, T. J. & Tibshirani, R. J. (1990). Generalized Additive Models. Taylor & Francis. https://books.google.co.th/books?id=qa29r1Ze1coC
  12. Hormozi, A. M. & Giles, S. (2004). Data Mining: A Competitive Weapon for Banking and Retail Industries. Information Systems Management, 21(2), pp. 62-71. DOI:10.1201/1078/44118.21.2.20040301/80423.9
  13. Jenkins, N. (2015, October 4, 2015). The current haze over Southeast Asia could be among the worst ever. Time. https://time.com/4060786/haze-singapore-indonesia-malaysia-pollution/
  14. Kaewrat, J. & Janta, R. (2021). Effect of COVID-19 Prevention Measures on Air Quality in Thailand. Aerosol and Air Quality Research, 21(3), 200344. DOI:10.4209/aaqr.2020.06.0344
  15. Kotsiou, O. S., Kotsios, V. S., Lampropoulos, I., Zidros, T., Zarogiannis, S. G. & Gourgoulianis, K. I. (2021). PM2.5 Pollution Strongly Predicted COVID-19 Incidence in Four High-Polluted Urbanized Italian Cities during the Pre-Lockdown and Lockdown Periods. International Journal of Environmental Research and Public Health, 18(10), 5088. DOI:10.3390/ijerph18105088
  16. Lee, M. & Finerman, R. (2021). COVID-19, commuting flows, and air quality. Journal of Asian Economics, 77, 101374. DOI:10.1016/j.asieco.2021.101374
  17. Li, J., Hallsworth, A. G. & Coca‐Stefaniak, J. A. (2020). Changing Grocery Shopping Behaviours Among Chinese Consumers At The Outset Of The COVID‐19 Outbreak. Journal of Economic and Human Geography, 111(3), pp. 574-583. DOI:10.1111/tesg.12420
  18. Li, L., Lin, G.-Z., Liu, H.-Z., Guo, Y., Ou, C.-Q. & Chen, P.-Y. (2015). Can the Air Pollution Index be used to communicate the health risks of air pollution? Environmental Pollution, 205, pp. 153-160. DOI:,DOI:10.1016/j.envpol.2015.05.038
  19. Liao, Q., Yuan, J., Dong,M., Yang,L., Fielding,R. & Lam, W.W.T. (2020). Public Engagement and Government Responsiveness in the Communications About COVID-19 During the Early Epidemic Stage in China: Infodemiology Study on Social Media Data. J Med Internet Res, 22(5), e18796. DOI:10.2196/18796
  20. Lim, Y. K., Kweon, O. J., Kim, H. R., Kim, T.-H. & Lee, M.-K. (2021). The impact of environmental variables on the spread of COVID-19 in the Republic of Korea. Scientific Reports, 11(1), 5977. DOI:10.1038/s41598-021-85493-y
  21. Liu, Q., Xu, S. & Lu, X. (2021). Association between air pollution and COVID-19 infection: evidence from data at national and municipal levels. Environ Sci Pollut Res Int, 28(28), pp. 37231-37243. DOI:10.1007/s11356-021-13319-5
  22. Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Hasell, J., Appel, C. & Rodés-Guirao, L. (2021). A global database of COVID-19 vaccinations. Nature Human Behaviour, 5(7), pp. 947-953. DOI:10.1038/s41562-021-01122-8
  23. Meo, S. A., Abukhalaf, A. A., Alessa, O. M., Alarifi, A. S., Sami, W. & Klonoff, D. C. (2021). Effect of Environmental Pollutants PM2.5, CO, NO2, and O3 on the Incidence and Mortality of SARS-CoV-2 Infection in Five Regions of the USA. International Journal of Environmental Research and Public Health, 18(15), 7810. DOI:10.3390/ijerph18157810
  24. Pinheiro, J. C. & Bates, D. (2009). Mixed-Effects Models in S and S-PLUS. Springer. https://books.google.co.th/books?id=y54QDUTmvDcC
  25. Plaia, A. & Ruggieri, M. (2011). Air quality indices: a review. Reviews in Environmental Science and Bio/Technology, 10(2), pp. 165-179. DOI:10.1007/s11157-010-9227-2
  26. Tang, W., Hu, T., Yang, L. & Xu, J. (2020). The role of alexithymia in the mental health problems of home-quarantined university students during the COVID-19 pandemic in China. Pers Individ Dif, 165, 110131. DOI:10.1016/j.paid.2020.110131
  27. The World Air Quality Index Project. (2022). Air Quality Historical Data Platform. https://aqicn.org/data-platform/register
  28. Valdés Salgado, M., Smith, P., Opazo, M. A. & Huneeus, N. (2021). Long-Term Exposure to Fine and Coarse Particulate Matter and COVID-19 Incidence and Mortality Rate in Chile during 2020. International Journal of Environmental Research and Public Health, 18(14), 7409. DOI:10.3390/ijerph18147409
  29. Wang, J., Wang, J. X. & Yang, G. S. (2020). The Psychological Impact of COVID-19 on Chinese Individuals. Yonsei Med J, 61(5), pp. 438-440. DOI:10.3349/ymj.2020.61.5.438
  30. Wetchayont, P. (2021). Investigation on the Impacts of COVID-19 Lockdown and Influencing Factors on Air Quality in Greater Bangkok, Thailand. Advances in Meteorology, 6697707. DOI:10.1155/2021/6697707
  31. Wong, W. M., Wang, X. & Wang, Y. (2023). The intersection of COVID-19 and air pollution: A systematic literature network analysis and roadmap for future research. Environ Res, 237(Pt 2), 116839. DOI:10.1016/j.envres.2023.116839
  32. Wood, S. N. (2006). Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics, 62(4), pp. 1025-1036. DOI:10.1111/j.1541-0420.2006.00574.x
  33. Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(1), pp. 3-36. DOI:,DOI:10.1111/j.1467-9868.2010.00749.x
  34. Wood, S. N. (2017). Generalized Additive Models: An Introduction with R (2nd ed.). CRC Press. https://books.google.co.th/books?id=HL-PDwAAQBAJ
  35. Yang, A., Qiu, Q., Kong, X., Sun, Y., Chen, T., Zuo, Y. & Peng, A. (2020). Clinical and Epidemiological Characteristics of COVID-19 Patients in Chongqing China. Front Public Health, 8, 244. DOI:10.3389/fpubh.2020.00244
  36. Zhang, Y. & Ma, Z. F. (2020). Impact of the COVID-19 Pandemic on Mental Health and Quality of Life among Local Residents in Liaoning Province, China: A Cross-Sectional Study. Int J Environ Res Public Health, 17(7). DOI:10.3390/ijerph17072381
  37. Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer. https://books.google.co.th/books?id=vQUNprFZKHsC
Go to article

Authors and Affiliations

Wong Ming Wong
1
ORCID: ORCID
Shian-Yang Tzeng
2
ORCID: ORCID
Hao-Fan Mo
3
ORCID: ORCID
Wunhong Su
4
ORCID: ORCID

  1. International College, Krirk University, Thailand
  2. School of Economics and Management, Quanzhou University of Information Engineering, China
  3. JinWen University of Science and Technology, Taiwan
  4. 4School of Accounting, Hangzhou Dianzi University, China
Download PDF Download RIS Download Bibtex

Abstract

This study used PM10 and PM2.5 measurements from the State Environmental Monitoring stations in Warsaw and its suburban areas. Analysis of variability characteristics at the traffic and urban background stations was carried out for 2016-2021. A six-year analysis (2016-2021) of air quality in Warsaw, Poland, focusing highlights the persistent impact of transportation on particulate matter concentrations. Comparing a city centre traffic station with urban background locations reveals consistently higher PM10 concentrations at the traffic station throughout the year, with an annual traffic-related increase of 12.6 μg/m³ (32%). PM2.5 concentrations at the traffic station are also consistently about 1.5 μg/m³ (7%) higher. For monthly averages, the highest PM10 concentrations at the traffic station were noted in March, which may be related to the resuspention of sand and salt left over from winter snow removalp rocesses. In the case of PM2.5, the typical annual cycle with maximum concentrations in winter and minimum concentrations in summer was not observed. Diurnal variability patterns show elevated PM10 concentrations at the traffic station from 8:00 a.m. to 10:00 p.m., attributed to the resuspension process. PM2.5 patterns exhibit a smaller amplitude at the traffic station, with nighttime accumulation due to inflow. This study emphasizes the lasting impact of transportation on air quality, providing insights into pollution control strategies in urban areas.
Go to article

Bibliography

  1. Cembrzyńska, J., Krakowiak, E. & Brewczyński, P. Z. (2012). Air pollution with suspended dust PM10 and PM2.5 in conditions of strong anthropopressure on the example of the city of Sosnowiec. Medycyna Środowiskowa. 15, 4, pp. 31-38.(in Polish)
  2. Domański, B. (2006). Polish industry compared to the industry of Central and Eastern Europe. Studies of the Industrial Geography Commission of the Polish Geographical Society, 8, pp. 27–36. DOI:10.24917/20801653.8.2. (in Polish)
  3. Godłowska, J. (2019). The impact of meteorological conditions on air quality in Krakow. Comparative research and an attempt at a modeling approach, Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy Warszawa 2019. (in Polish)
  4. Główny Inspektorat Ochrony Środowiska. (2022). Annual assessment of air quality in the Masovian Voivodeship. Provincial report for the year 2021. (in Polish)
  5. Gustafsson, M., Blomqvist, G., Gudmundsson, A., Dahl, A., Jonsson, P. & Swietlicki, E. (2009). Factors influencing PM10 emissions from road pavement wear, Atmospheric Environment, 43, 31, pp. 4699-4702. DOI:10.1016/j.atmosenv.2008.04.028.
  6. Harrison, R.M., Vu, T.V., Jafar, H. & Shi, Z. (2021). More mileage in reducing urban air pollution from road traffic. Environ Int. 149, 106329. DOI:10.1016/j.envint.2020.106329.
  7. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K. & Trapp, W. (2017). Air quality modeling for Warsaw agglomeration, Archives of Environmental Protection 43, 1 pp. 48–64. DOI:10.1515/aep-2017-0005.
  8. Jagiełło, P., Strużewska, J., Jeleniewicz, G. & Kamiński, J.W. (2023). Evaluation of the Effectiveness of the National Clean Air Programme in Terms of Health Impacts from Exposure to PM2.5 and NO2 Concentrations in Poland, International Journal of Environmental Research and Public Health, 20, 1, 530, pp. 1-16. DOI:10.3390/ijerph20010530
  9. Juda-Rezler, K., Zajusz-Zubek, E., Reizer, M., Maciejewska, K. & Klejnowski, K. (2020). Bioavailability of trace elements in atmospheric particulate matter PM2.5 during winter episodes observed in Warsaw, [In:] Current trends in air and climate protection - emission control, monitoring, forecasting and mitigation. Sówka Izabela, Gaj Kazimierz, Miller Urszula (eds.), Oficyna Wydawnicza Politechniki Wrocławskiej, p.83.
  10. Kaminski, J.W., Neary, L. Struzewska, J. & McConnell J.C. (2011). Multiscale, Atmospheric Chemistry Modelling with GEMAQ. [In:] Baklanov, A., Alexander, M. and Sokhi, R. (eds) Integrated Systems of MesoMeteorological and Chemical Transport Models. Springer, Berlin, Heidelberg. DOI:10.1007/978-3-642-13980-2_4.
  11. Kupiainen, K., Ritola, R., Stojiljkovic, A., Pirjola, L., Malinen, A. & Niemi, J. (2016). Contribution of mineral dust sources to street side ambient and suspension PM10 samples, Atmospheric Environment, 147, pp. 178-189. DOI:10.1016/j.atmosenv.2016.09.059.
  12. Majewski, G. (2005). Air pollution with particulate matter PM10 in Ursynów and its relation to meteoroloical conditions. Warsaw. Scientific Review. Inżynieria i Kształtowanie Środowiska. pp. 210-223.
  13. Majewski, G., Rogula-Kozłowska W., Rozbicka, K., Rogulska-Kopiec, P., Mathews, B. & Brandyk, A. (2018). Concentration, Chemical Composition and Origin of PM1: Re-sults from the First Long-term Measurement Campaign in Warsaw (Poland), Aerosol and Air Quality Research, 18, 3, pp. 636-654. DOI:10.4209/aaqr.2017.06.0221.
  14. Markowicz K.M., Zawadzka O., Posyniak M. & Uscka-Kowalkowska J. (2019). Long-term variability of aerosol optical depth in the Tatra Mountains region of the Central Europe, J. Geophys. Res., 124 (6), pp. 3464-3475. DOI:10.1029/2018JD028846.
  15. Osowski, J. (2023). Ponad 2,1 mln aut zarejestrowanych w Warszawie. Samochodoza większa niż w Berlinie czy Nowym Jorku, (https://warszawa.wyborcza.pl/warszawa/7,54420,29430864,ponad-2-1-mln-aut-zarejestrowanych-w-warszawie-i-jeszcze-jedno.html (25.11.2023)).
  16. Pirjola, L., Kupiainen, K.J., Perhoniemi, P., Tervahattu, H. & Vesala, H. (2009). Non-exhaust emission measurement system of the mobile laboratory SNIFFER, Atmospheric Environment, 43, 31, pp. 4703-4713. DOI:10.1016/j.atmosenv.2008.08.024.
  17. Polednik, B. (2021). Air quality changes in a Central European city during COVID-19 lockdown, Sustainable Cities and Society, 73, 103096. DOI:10.1016/j.scs.2021.103096.
  18. Smith, T.W., Axon, C.J & Darton, R.C. (2013). The impact on human health of car-related air pollution in the UK, 1995-2005, Atmospheric Environment, 77, pp. 260-266. DOI:10.1016/j.atmosenv.2013.05.016.
  19. Wojtal, R. (2018). Air pollution in cities in terms of car traffic, Urban and Regional Transport 01/2018, pp. 12-17.
  20. Zhang, K. & Batterman, S. (2013). Air pollution and health risks due to vehicle traffic, Science of The Total Environment, 450-451, pp. 307-316. DOI:10.1016/j.scitotenv.2013.01.074.
  21. Zicheng, W., Huayou, C., Jiaming, Z. & Zhenni, D. (2022). Daily PM2.5 and PM10 forecasting using linear and nonlinear modelling framework based on robust local mean decomposition and moving window ensemble strategy, Applied Soft Computing, 114, 108110. DOI:10.1016/j.asoc.2021.108110.
Go to article

Authors and Affiliations

Aleksandra Starzomska
1
ORCID: ORCID
Joanna Strużewska
1

  1. Institute of Environmental Protection—National Research Institute, Poland
Download PDF Download RIS Download Bibtex

Abstract

The cyanobacteria bloom is one of typical manifestations of eutrophication, yet the effects of heavy metals entering water on cyanobacteria bloom remain unclear. In the present study, the effects of copper and zinc ions on the growth of Microcystic aeruginosa (M. aeruginosa) and the production of microcystins (MCs) were investigated. The results showed that a Cu2+ concentration of 0.02 mg/L stimulated the growth of M. aeruginosa, while growth inhibition occurred at a Cu2+ concentration of 0.1 mg/L. The maximum value of MC-LR (167.74 μg/L) occurred at a Cu2+ concentration of 0.02 mg/L. In contrast, a Zn2+ concentration of 0.1 mg/L stimulated the growth of M. aeruginosa, whereas growth inhibition was observed at a Zn2+ concentration of 0.5 mg/L. The maximum MC-LR value of 130 μg/L appeared under control conditions. Moreover, the production of MC-LR increased as the growth of M. aeruginosa was inhibited with a Cu2+ concentration of 0.1 mg/L, whereas the production of MC-LR decreased as the growth of M. aeruginosa was stimulated with a Zn2+ concentration of 0.1 mg/L, compared to their respective controls.
Go to article

Bibliography

  1. Admiraal, W., Tubbing, G.M.J. & Breebaart, L. (1995). Effects of phytoplankton on metal partitioning in the Lower River Rhine, Water Research, 29, 3, pp. 941-946. DOI:10.1016/0043-1354(94)00204-K.
  2. Ao, D., Lei, Z., Dzakpasu, M. & Chen, R. (2019). Role of divalent metals Cu2+ and Zn2+ in microcystis aeruginosa proliferation and production of toxic microcystins, Toxicon, 170, pp. 51-59. DOI:10.1016/j.toxicon.2019.09.012.
  3. Bishop, W.M., Willis, B.E. & Horton, C.T. (2015). Affinity and efficacy of copper following an algicide exposure: application of the critical burden concept for Lyngbya Wollei Control in Lay Lake, AL, Environmental Management, 55, pp. 983-990. DOI:10.1007/s00267-014-0433-5.
  4. Brookes, J. D. & Carey, C.C. (2011). Resilience to blooms, Science, 334, 6052, pp. 46-47. DOI:10.1126/science.1207349.
  5. Bouron, A., Kiselyov, K. & Oberwinkler, J. (2015). Permeation, regulation and control of expression of TRP channels by trace metal ions, Pflügers Archiv- European Journal of Physiology, 467, pp. 1143-1164. DOI:10.1007/s00424-014-1590-3.
  6. Bucak, T., Trolle, D., Tavşanoğlu, Ü.N., Çakıroğlu, A. İ., Özen, A., Jeppesen, E. & Beklioğlu, M. (2018). Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest turkish freshwater lake: Lake Beyşehir, Science of the Total Environment, 621, pp. 802-816. DOI:10.1016/j.scitotenv.2017.11.258.
  7. Cavet, J.S., Borrelly, G.P.M. & Robinson, N.J. (2003). Zn, Cu and Co in Cyanobacteria: selective control of metal availability, FEMS Microbiology Reviews, 27, (2-3), pp. 165-181. DOI:10.1016/S0168-6445(03)00050-0.
  8. Chakraborty, P., Babu, P.V.R., Acharyya, T. & Bandyopadhyay, B. (2010). Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: an investigation with pigment analysis by HPLC, Chemosphere, 80, 5, pp. 548-553. DOI:10.1016/j.chemosphere.2010.04.039.
  9. Chen, Y., Yin, J., Wei, J. & Zhang, X. (2020) FurA-Dependent Microcystin Synthesis under Copper Stress in Microcystis aeruginosa, Microorganisms, 8, 832. DOI:10.3390/microorganisms806083.
  10. Dai, R., Wang, P., Jia, P., Zhang, Y., Chu, X. & Wang, Y. (2016). A review on factors affecting microcystins production by algae in aquatic environments, World Journal of Microbiology and Biotechnology, 32, 51. DOI:10.1007/s11274-015-2003-2.
  11. Drobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D. & Svirčev, Z. (2013). Human exposure to cyanotoxins and their effects on health, Archives of Industrial Hygiene and Toxicology, 64, 2, pp. 119-130, DOI:10.2478/10004-1254-64-2013-2320.
  12. Du, C., Li, G., Xia, R., Li, C., Zhu, Q., Li, X., Li, J., Zhao, C., Tian, Z. & Zhang, L. (2022). New insights into cyanobacterial blooms and the response of associated microbial communities in freshwater ecosystems, Environmental Pollution, 309, 119781, DOI:10.1016/j.envpol.2022.119781.
  13. Facey, J.A., Apte, S.C. & Mitrovic, S.M. (2019). A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production, Toxins, 11, 11, 643, DOI:10.3390/toxins11110643.
  14. Gangi, D., Plastani, M.S., Laprida, C. Lami, A., Dubois, N., Bordet, F., Gogorza, C., Frau, D. & Pinto, P.D.T. (2020). Recent cyanobacteria abundance in a large sub-tropical reservoir inferred from analysis of sediment cores. Journal of Paleolimnology, 63, pp. 195-209. DOI:10.1007/s10933-020-00110-8.
  15. Han, C., Machala, L., Medrik, I., Prucek, R., Kralchevska, R.P. & Dionysiou, D.D. (2017). Degradation of the cyanotoxin microcystin-lr using iron-based photocatalysts under visible light illumination, Environmental Science and Pollution Research, 24, pp. 19435-19443. DOI:10.1007/s11356-017-9566-4.
  16. Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H. & Visser, P. M. (2018). Cyanobacterial blooms, Nature Reviews Microbiology, 16, pp. 471-483. DOI:10.1038/s41579-018-0040-1
  17. Kormas, K.A.r., Gkelis, S., Vardaka, E. & Moustaka-Gouni, M. (2011). Morphological and molecular analysis of bloom-forming cyanobacteria in two eutrophic, shallow mediterranean lakes, Limnologica, 41, 3, pp. 167-173. DOI:10.1016/j.limno.2010.10.003.
  18. Krishnan, A., Koski, G. & Mou, X. (2020). Characterization of microcystin-induced apoptosis in HepG2 hepatoma cells, Toxicon, 173, pp. 20-26. DOI:10.1016/j.toxicon.2019.11.003.
  19. Martínez-Ruiz, E.B. & Martínez-Jerónimo, F. (2016). How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis Aeruginosa exposed to nickel stress, Ecotoxicology and Environmental Safety, 133, pp. 36-46. DOI:10.1016/j.ecoenv.2016.06.040.
  20. Newell, S. E., Davis, T. W., Johengen, T. H., Gossiaux, D., Burtner, A., Palladino D. & McCarthy M. J. (2019). Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie, Harmful Algae, 81, pp. 86-93. DOI:10.1016/j.hal.2018.11.003.
  21. Oberemm, A., Becker, J., Codd, G.A. & Steinberg, C. (1999). Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians, Environmental Toxicology, 14, 1, pp. 77-88. DOI:10.1002/(SICI)1522-7278(199902)14:1%3C77::AID-TOX11%3E3.0.CO;2-F
  22. Paerl, H.W. & Otten, T.G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls, Microbial Ecology, 65, pp. 995-1010. DOI:10.1007/s00248-012-0159-y.
  23. Paerl, H.W, Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y. & Gardner, W.S. (2011). Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy, Water Research, 45, 5, pp. 1973-1983. DOI:10.1016/j.watres.2010.09.018.
  24. Polyak, Y., Zaytseva, T. & Medvedeva, N. (2013). Response of toxic cyanobacterium microcystis aeruginosa to environmental pollution, Water, Air, & Soil Pollution, 224, 4, 1494. DOI:10.1007/s11270-013-1494-4.
  25. Sevilla, E., Martin-Luna, B., Vela, L., Bes, M.T., Fillat, M.F. & Peleato, M.L. (2008). Iron availability affects McyD expression and microcystin-LR synthesis in Microcystis Aeruginosa PCC7806: iron starvation triggers microcystin synthesis, Environmental Microbiology, 10,10, pp. 2476-2483. DOI: 10.1111/j.1462-2920.2008.01663.x.
  26. Shen, F., Wang, L., Zhou, Q. & Huang. X., (2018). Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins, Aquatic Toxicology 196, pp. 9-16. DOI:10.1016/j.aquatox.2018.01.007.
  27. Svircev, Z., Drobac, D., Tokodi, N., Mijovic, B., Codd, G.A. & Meriluoto, J. (2017). Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Archives of Toxicology, 91 (2), pp. 621-650. DOI:10.1007/s00204-016-1921-6.
  28. Tsai, K. P. (2015). Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystin release. Ecotoxicology and Environmental Safety, 120, pp. 428-435. DOI:10.1016/j.ecoenv.2015.06.024.
  29. Xu, H., McCarthy, M.J., Paerl, H.W., Brookes, J.D., Zhu, G., Hall, N.S., Qin, B., Zhang, Y., Zhu, M., Hampel, J. J., Newell, S.E. & Gardner, W.S. (2021). Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: implications for nutrient management, Limnology and Oceanography, 66, 4, pp. 1492-1509. DOI:10.1002/lno.11700.
  30. Zhou, H., Chen, X., Liu, X., Xuan, Y. & Hu, T. (2019). Effects and control of metal nutrients and species on Microcystis aeruginosa growth and bloom, Water Environment Research, 91, pp. 21-31. DOI:10.2175/106143017X15131012188303.
  31. Zhou, S., Shao, Y., Gao, N., Deng, Y., Qiao, J., Ou, H. & Deng, J. (2013). Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis Aeruginosa, Science of the Total Environment, 463-464, pp. 111-119. DOI:10.1016/j.scitotenv.2013.05.064.
  32. Zhou, T., Wang, J., Zheng, H., Wu, X., Wang, Y., Liu, M., Xiang, S., Cao, L., Ruan, R. & Liu, Y. (2018). characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina Platensis, Bioresource Technology, 269, pp. 285-291. DOI:10.1016/j.biortech.2018.08.131.
Go to article

Authors and Affiliations

Benjun Zhou
1
Weihao Xing
1

  1. School of Resources and Environmental Engineering, Hefei University of Technology, China
Download PDF Download RIS Download Bibtex

Abstract

This article describes the population of Xizang, the composition of municipal solid waste, and the distribution of municipal solid waste treatment facilities. With the development of Xizang's economy and tourism, the amount of municipal solid waste cleared and transported in Xizang has increased from 380,000 tons in 2003 to 692,200 tons in 2021, with an average annual growth rate of 4.56%. The proportions of kitchen waste, paper waste, and ash waste in the municipal solid waste components in Xizang have significantly decreased over the past 10 years. For example, the proportion of ash decreased from 22.83% in 2012 to 13.04% in 2021. Overall, recyclables such as paper, plastic rubber, textiles, glass, metal and wood and bamboo accounted for between 55.69% and 58.22% of the total municipal solid waste in Lhasa City. The disposal of municipal solid waste in Xizang was mainly through landfill. There are more than 130 landfill sites, 1 incineration plant, 5 pyrolysis pilot sites, 2 kitchen waste treatment plants, and more than 160 waste transfer stations for municipal solid waste disposal in Xizang. The designed daily disposal capacity of municipal solid waste is 3,768.4 tons per day.
Go to article

Bibliography

  1. Chen Haibin , Yang Yan , Jiang Wei , Song Mengjie, Wang Ying & Xiang Tiantian (2016). Source separation of municipal solid waste The effects of different separation mothods and citizens inclination case study of Changsha. Journal of the Air & Waste Management Association, 67(2), pp. 182-195. DOI:10.1080/10962247.2016.1222317
  2. Dan, Z., Zhou, W., Zhou, P., Che, Y., Han, Z., Qiong, A., Bu, D., Lv, X., Qiongda, Z., Wang, J., Yang, W. & Chen, G. (2022). Characterization of municipal solid waste incineration and flue gas emission under anoxic environment in Tibet Plateau. Environmental Science and Pollution Research ,29, 6656–6669. DOI:10.1007/s11356-021-15977-x
  3. Dolezalová, M, Benešová, L. & Závodská, A. (2013). The changing character of household waste in the Czech Republic between 1999 and 2009 as a function of home heating methods. Waste Manag 33(9):1950–1957. DOI:10.1016/j.wasman.2013.04.017
  4. Duan, N., Li, D., Wang, P., Ma, W., Terrence. W., Zhong, L. &Chen, G. (2020). Comparative study of municipal solid waste disposal in three Chinese representative cities. Journal of Cleaner Production, 254,1 20134. DOI:10.1016/j.jclepro.2020.120134
  5. Fabrizio, P., Ivano, V., Francesco, M., Luciano, M. & Barbara, V., (2011). Indicators of waste management efficiency related to different territorial conditions. Waste Management, 31(4): 785–792. DOI:10.1016/j.wasman.2010.11.021
  6. Han, Z., Dan, Z., Shi, G., Shen, L., Xu, W. & Xie, Y. (2015). Characteristics and management of domestic waste in a rural area of the Tibetan Plateau. Journal of the Air and Waste management asociation,65(11), 1365-1375. DOI:10.1080/10962247.2015.1078859
  7. Han, Z., Ye, C., Zhang, Y., Dan, Z., Zou, Z., Liu, D. & Shi, G. (2019). Characteristics and management modes of domestic waste in rural areas of developing countries : a case study of China. Environmental Science and Pollution Research ,26, 8485-8501. DOI:10.1007/s11356-019-04289-w
  8. Hiramatsu, A, Hara, Y., Sekiyama, M., Honda, R. & Chiemchaisri, C., (2009). Municipal solid waste flow and waste generation characteristics in an urban–rural fringe area in Thailand. Waste Management and Research, 27(10), pp.951–960. DOI:10.1177/0734242X09103819
  9. Ko,P.S. & Poon, C.S. (2009). Domestic waste management and recovery in HongKong. Journal of Mater Cycles Waste Management, 11, pp. 104-109. DOI:10.1007/s10163-008-0232-2
  10. Liu, Z.Q., Liu,Z.H. & Li, X.L. (2006). Status and prospect of the application of municipal solid waste incineration in China. Applied Thermal Engineering, 26, pp. 1193-1197. DOI:10.1016/j.applthermaleng.2005.07.036
  11. Paúl ,T.G., Carolina, A.V., Quetzalli, A.V. & Sara, O.B. (2010). Household solid waste characteristics and management in rural communities. Open Waste Management Journal, 3(7) pp.167–173. DOI:10.2174/1875934301003010167
  12. Wang, H. & Wang, C. (2012). Municipal Solid Waste management in Beijing: Characteristics and challenges. Waste Management and Research, 31(1), pp. 67-72. DOI:10.1177/0734242X12468199
  13. Xiao, L., Lin, T., Chen, S., Zhang, G., Ye, Z. & Yu, Z. (2015). Characterizing urban household waste generation and metabolism considering community strtification in a rapid urbanizing area of China. Plos One, 10(12), e0145405. DOI:10.1371/journal.pone.0145405
  14. Zhang, D., Soon, K.T. & Gersberg, R.M. (2010). Municipal solid waste management in China:Status,problems and challenges. Journal of Environmental Management, 91(8), pp. 1623-1633. DOI:10.1016/j.jenvman.2010.03.012
  15. Zhao, W.,Voet, E., Zhang,Y. & Huppes,G. (2009). Life cycle assessment of municipal solid waste management with regard to green house gas emissions: case study of Tianjin, China. Science of the Total Environment,407(5), pp. 1517-1526.DOI:10.1016/j.scitotenv.2008.11.007
  16. Zhou, W., Dan, Z., Meng, D., Zhou, P., Chang, K., Qiongda, Z., Wang, J., Xu, F..&Chen, G. (2022a). Distribution characteristics and potential ecological risk assessment of heavy metals in soils around Shannan landfill site, Tibet. Environmental Geochemistry and Health, 45(2), pp. 393-407. DOI:10.1007/s10653-022-01349-y
  17. Zhou, W., Dan, Z., Zhou, P., Guanyi, C. & Meng, D. (2022b). Study on health risk assessment of potentially toxic elements in the soil around landfill site in Shannan City, Tibet. Environmental Pollutants and Bioavailability, 34(1), pp. 365-373. DOI:10.1080/26395940.2022.2118832
  18. Zhou, W. & Dan, Z. (2023ª). Comparison and Selection of Municipal Solid Waste Treatment Technologies in Tibet Plateau Area. SN Applied Sciences, 5(2), 50. DOI:10.1007/s42452-022-05255-x
  19. Zhou, W., Zeng, D., Dean, M., Jiachen, G., Peng, Z & Guanyi, C. (2023b). Analysis and Assessment of the Soil Environment Around a Plateau Municipal Solid Waste Incineration Plant. Soil and Sediment Contamination: An International Journal,33, pp. 1-18. DOI:10.1080/15320383.2023.2276178
  20. Zhuang, Y., Wu, S., Wang, Y., Wu, W. & Chen, Y. (2008). Source separation of household waste: A case study in China. Waste Management,28(10),2022-2030. https://doi.org/10.1016/j.wasman.2007.08.012
Go to article

Authors and Affiliations

Wenwu Zhou
1
ORCID: ORCID
Zeng Dan
1

  1. School of Ecology and Environment ,Tibet University, Lhasa, China

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Reviewers

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more