Nauki Techniczne

Archives of Foundry Engineering

Zawartość

Archives of Foundry Engineering | 2024 | Accepted articles

Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Parameters of the moulding process in foundry are usually determined by trial-and-error method, and this way contributes to time taken and adds further cost for production sand. The present work represents an attempt to optimize sand moulding parameters in terms of compactability, compaction time, and air pressure, and to study effect of these factors on the green sand flowability using L4 design of experiments. Regression model, Taguchi method, and experimental verification were used to investigate flow property of sodium bentonite- bonded BP-quartz sand for sand moulding.
Analysis of variance (ANOVA) was employed to measure significance and contributions of different moulding variables on flowability of green sand. The values obtained showed that the compaction time factor significantly affected flowability of green sand while compactability and air pressure have slight effects. The comparison results of Taguchi method, regression predictions and experiments exhibited good agreement.
Przejdź do artykułu

Bibliografia


[1] Rao, T.V. (2003). Metal casting: principles and practice. New Delhi: New Age International.

[2] Bownes, F.F. (1971). Sand Casting. In Beadle, J.D. (Eds.) Castings: Production Engineering Series (pp. 63-74). Palgrave, London: Red Globe Press London. https://doi.org/10.1007/978-1-349-01179-7_7.

[3] Saikaew, C. & Wiengwiset, S. (2012). Optimization of moulding sand composition for quality improvement of iron castings. Applied Clay Science. 67-68, 26-31. https://doi.org/10.1016/j.clay.2012.07.005.

[4] Karunakar D.B. & Datta, G.L, (2007). Controlling green sand mold properties using artificial neural networks and genetic algorithms- A comparison. Applied Clay Science. 37(1-2), 58-66. https://doi.org/10.1016/j.clay.2006.11.005.

[5] Abdulamer, D. & Kadauw, A. (2019). Development of mathematical relationships for calculating material-dependent flowability of green molding sand. Journal of Materials Engineering and Performance, 28, 3994-4001. https://doi.org/10.1007/s11665-019-04089-w.

[6] Abdulamer, D. (2023). Study on the impact of moulding parameters on the flow property of green sand mould, Canadian Metallurgical Quarterly. 1-7. DOI: 10.1080/00084433.2023.2287797.

[7] Baitiang, C., Weiß, K., Krüger, M. et al, (2023). Data-driven process analysis for iron foundries with automatic sand molding process. International Journal of Metalcasting.18, 1135-1150. https://doi.org/10.1007/s40962-023-01080-z.18

[8] Abdulamer, D. (2023). Utilizing of the statistical analysis for evaluation of the properties of green sand mould. Archives of Foundry Engineering. 23(3), 67-73. DOI: 10.24425/afe.2023.146664.

[9] Mahesh B. Parappagoudar, Dilip Kumar Pratihar, and Gouranga Lal Datta, (2011). Modeling and analysis of sodium silicate-bonded moulding sand system using design of experiments and response surface methodology. Journal for Manufacturing Science & Production. 11(1-3), 1-14, https://doi.org/10.1515/jmsp.2011.011.

[10] Sultana, M.N., Rafiquzzaman M. & Al Amin, M. (2017). Experimental and analytical investigation of the effect of additives on green sand mold properties using taguchi method. International Journal of Mechanical Engineering and Automation. 4(4), 109-119.

[11] Gunasegaram, D.R., Farnsworth D.J. & Nguyen, T.T. (2009). Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments. Journal of materials processing technology. 209(3), 1209-1219. https://doi.org/10.1016/j.jmatprotec.2008.03.044.

[12] Patel, M.G.C., Parappagoudar, M.B., Chate, G.R. & Deshpande, A.S. (2017). Modeling and optimization of phenol formaldehyde resin sand mould system. Archives of Foundry Engineering. 17(2), 162-170. DOI: 10.1515/afe-2017-0069.

[13] Ishfaq, K., Ali, M. A., Ahmad, N., Zahoor, S., Al-Ahmari, A. M. & Hafeez, F. (2020). Modelling the mechanical attributes (roughness, strength, and hardness) of al-alloy A356 during sand casting. Materials. 13(3), 598, 1-24. DOI: 10.3390/ma13030598.

[14] Guharaja, G., Noorul Haq A. & Karuppannan, K.M. (2006). Optimization of green sand casting process parameters by using Taguchi’s method. International Journal of Advance Manufacturing Technology. 30, 1040-1048. https://doi.org/10.1007/s00170-005-0146-2.

[15] Khare, M., Kumar, D. (2012). Optimization of sand casting parameters using factorial design. International Journal of Scientific Research. 3(1), 151-153.

[16] Reddy, K.S., Reddy, V.V., Mandava, R.K. (2017). Effect of binder and mold parameters on collapsibility and surface finish of gray cast iron no-bake sand molds. IOP Conference Series: Material Science and Engineering. 225 012246. DOI 10.1088/1757-899X/225/1/012246.

[17] Abdulamer, D. (2023). Impact of the different moulding parameters on properties of the green sand mould. Archives of Foundry Engineering. 23(2), 5-9. DOI: 10.24425/afe.2023.144288.

[18] Dabade, U.A. & Bhedasgaonkar, R.C. (2013). Casting defect analysis using design of experiments (DoE) and computer aided casting simulation technique. Procedia CIRP. 7, 616-621. https://doi.org/10.1016/j.procir.2013.06.042.

[19] Lakshamanan Singaram, (2010). Improving quality of sand casting using taguchi and ANN analysis. International journal on design and manufacturing technologies. 4, 1-5.

[20] Kumari, A., Ohdar, R., Banka, H. (2016). Multiobjective parametric optimization of green sand moulding properties using genetic algorithm. In 3rd International Conference on Recent Advances in Information Technology RAIT, 03-05. March 2016 (pp. 279-283). Dhanbad, India: IEEE. DOI: 10.1109/RAIT.2016.7507916.

[21] Charnnarong Saikaew, & Sermsak Wiengwiset, (2012). Optimization of molding sand composition for quality improvement of iron castings. Applied Clay Science. 67-68, 26-31. DOI: 10.1016/j.clay.2012.07.005.

Przejdź do artykułu

Autorzy i Afiliacje

Dheya Abdulamer
1
ORCID: ORCID
Ali A. Muhsan
1
ORCID: ORCID
Sinan S. Hamdi
1
ORCID: ORCID

  1. University of Technology- Iraq
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper focuses on the investigation of the influence of Ti on selected properties of the hypoeutectic aluminium alloy AlSi5Cu2Mg. AlSi5Cu2Mg alloy finds application in the field of production of high-strength cylinder head castings intended for the automotive industry due to the optimal combination of mechanical, physical and foundry properties. In commercial production, the maximum Ti content is limited by the manufacturer (Ti max. = 0.03 wt.%), which significantly limits the possibilities of refinement the alloy with Ti-based grain refiners. Therefore, the possibility of increasing the Ti content beyond the manufacturer's recommendation is considered in this work. The main aim of the work is to evaluate the influence of graded Ti addition (0.1; 0.2; 0.3 wt.% Ti) on the resulting mechanical and physical properties of the AlSi5Cu2Mg alloy. Simultaneously, the influence of increased Ti content on the microstructure of AlSi5Cu2Mg alloy is evaluated. The alloying element was introduced into the melt in the form of AlTi5B1 master alloy. The effect of T6 heat treatment on the resulting mechanical and physical properties and microstructure of the hypoeutectic AlSi5Cu2Mg alloy with graded Ti addition was also investigated in the experimental work.
Przejdź do artykułu

Bibliografia

[1] Bolibruchová, D., Sýkorová, M., Brůna, M., Matejka, M. & Širanec, L. (2023). Effect of Zr addition on selected properties and microstructure of aluminum alloy AlSi5Cu2Mg. International Journal of Metalcasting. 17(4), 2596-2611. DOI: 10.1007/s40962-023-01048-z.

[2] Javidani, M., Larouche, D. (2014). Application of cast Al-Si alloys in internal combustion engine components. International Materials Reviews. 59(3), 132-158. DOI: 10.1179/1743280413Y.0000000027.

[3] Sigworth, G.K. & Kuhn, T.A. (2015). Grain refinement of aluminum casting alloys. International Journal of Metalcasting.1, 31-40. DOI:10.1007/BF03355416.

[4] Choi, S., Kim, Y., Kim, Y., Kang, Ch. (2019). Effects of alloying elements on mechanical and thermal characteristics of Al-6wt-%Si-0.4wt-%Mg-(Cu) foundry alloy. Materials Science and Technology. 35(11), 1365-1371. DOI: 10.1080/02670836.2019.1625170.

[5] Czerwinski, F. (2020). Thermal stability of aluminum alloys. Materials. 13(15), 1-49. DOI: 10.3390/ma13153441.

[6] Pourkia, N., Emamy, M., Farhangi, H., Ebrahimi, S. H. (2010). The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy. Materials Science and Engineering: A. 527(20), 5318-5325. DOI: 10.1016/j.msea.2010.05.009.

[7] Kashyap, K.T., Chandrashekar, T. (2001). Effects and mechanism of grain refinement in aluminium alloys. Bulletin of Materials Science. 24(4), 345-353. DOI: 10.1007/BF02708630.

[8] Brůna, M., Remišová, A., Sládek, A. (2019). Effect of filter thickness on reoxidation and mechanical properties of aluminum alloy AlSi7Mg0.3. Archives of Metallurgy and Materials. 64(3), 1100-1106. DOI: 10.24425/amm. 2019.129500.

[9] Beroual, S., Boumerzoug, Z., Paillard, P. & Borjon-Piron, Y. (2019). Effects of heat treatment and addition of small amounts of Cu and Mg on the microstructure and mechanical properties of Al-Si-Cu and Al-Si-Mg cast alloys. Journal of Alloys and Compounds. 784, 1026-1035. DOI: 10.1016/j.jallcom.2018.12.365.

[10] Li, K., Zhang, J., Chen, X., Yin, Y., He, Y., Zhou, Z. & Guan, R. (2020). Microstructure evolution of eutectic Si in Al-7Si binary alloy by heat treatment and its effect on enhancing thermal conductivity. Journal of Materials Research and Technology. 9(4), 8780-8786. DOI: 10.1016/j.jmrt.2020.06.021.

Przejdź do artykułu

Autorzy i Afiliacje

M. Sýkorová
1
ORCID: ORCID
D. Bolibruchová
1
ORCID: ORCID
M. Brůna
1
ORCID: ORCID
M. Chalupová
1
ORCID: ORCID

  1. University of Zilina, Slovak Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper focuses on the research of hybrid aluminium castings produced by overcasting technology. This is an advanced technology for ensuring the lightness of castings by using the principle of overcasting a core with a porous cellular structure produced by foaming. Process parameters in the foaming phase of the material have a great influence on the resulting porous structure. The article focuses on controlling the influence of pressure during the foaming process on the resulting porosity and evaluating by X-ray tomograph and measuring the relative density. Variants using an initial pressure of 0.3 MPa appear to be the most satisfactory. The challenge of this technology is to ensure adequate bonding of the metals at the interface between the porous core and the solidified metal without penetrating the coating layer. For this reason, the surface treatment of foamed cores with various etchants has been proposed to disrupt the oxide layer on their surface. Macrographs of the uncoated sample and samples etched with 0.5% HF and 10% H3PO4 demonstrated the need for core surface treatment to prevent liquid metal penetration. EDX analysis confirmed the presence of AlPO4 at the core/casting interface in the treated sample.
Przejdź do artykułu

Bibliografia

[1] Liu, W., Peng, T., Kishita, Y., Umeda, Y., Tang, R., Tang, W., & Hu, L. (2021). Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology. Applied Energy. 304, 117814. DOI: 10.1016/j.apenergy.2021.117814.

[2] Wang, B., Zhang, Z., Xu, G., Zeng, X., Hu, W., & Matsubae, K. (2023). Wrought and cast aluminum flows in China in the context of electric vehicle diffusion and automotive lightweighting. Resources, Conservation and Recycling. 191, 1-10, 106877. DOI: 10.1016/j.resconrec.2023.106877.

[3] Matejka, M., Bolibruchová, D., & Podprocká, R. (2021). The influence of returnable material on internal homogeneity of the high-pressure die-cast AlSi9Cu3(Fe) alloy. Metals. 11(7), 1-14, 1084. DOI: 10.3390/met11071084.

[4] Huang, Y., Tian, X., Li, W., He, S., Zhao, P., Hu, H., Jia, Q., & Luo, M. (2024). 3D printing of topologically optimized wing spar with continuous carbon fiber reinforced composites. Composites Part B: Engineering. 272, 1-9, 111166. DOI: 10.1016/j.compositesb.2023.111166

[5] Jasoliya, D., Shah, D. B., & Lakdawala, A. M. (2022). Topological optimization of wheel assembly components for all terrain vehicles. Materials Today: Proceedings. 59(1), 878-883. DOI: 10.1016/j.matpr.2022.01.221.

[6] Ali, M. A., Jahanzaib, M., Wasim, A., Hussain, S., & Anjum, N. A. (2018). Evaluating the effects of as-casted and aged overcasting of Al-Al joints. The International Journal of Advanced Manufacturing Technology. 96(1-4), 1377-1392. DOI: 10.1007/s00170-018-1682-x.

[7] Papis, K., Hallstedt, B., Löffler, J., & Uggowitzer, P. (2008). Interface formation in aluminium–aluminium compound casting. Acta Materialia. 56(13), 3036-3043. DOI: 10.1016/j.actamat.2008.02.042.

[8] Lefebvre, L.-P., Banhart, J., & Dunand, D. C. (2008). Porous metals and metallic foams: Current status and recent developments. Advanced Engineering Materials. 10(9), 775-787. https://doi.org/10.1002/adem.200800241.

[9] Nosko, M. (2009). Reproducibility of Aluminium Foam Properties. Doctoral dissertation, Slovak Academy of Sciences, Bratislava, Slovak Republic.

[10] Zhang, H., Chen, Y., & Luo, A. A. (2014). A novel aluminum surface treatment for improved bonding in magnesium/aluminum bimetallic castings. Scripta Materialia, 86, 52-55. DOI: 10.1016/j.scriptamat.2014.05.007

[11] Rajak, D. K., & Gupta, M. (2020). An Insight Into Metal Based Foams. Singapore: Springer Nature. DOI: 10.1007/978-981-15-9069-6.

Przejdź do artykułu

Autorzy i Afiliacje

M. Brůna
1
ORCID: ORCID
M. Medňanský
1
ORCID: ORCID
P. Oslanec
2
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Department of Technological Engineering, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  2. Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Inoval - Innovation center, Priemyselná 525 Ladomerská Vieska, 965 01 Žiar nad Hronom, Slovak Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The article presents the test results on the technology of surface hardening of castings from unalloyed and low-alloy nodular cast iron using the method of surface heat treatment, i.e., induction surface hardening and methods of thermochemical treatment, i.e. gas nitriding, nitrocarburizing, and nitrocarburizing with oxidation. The scope of research included macro- and microhardness measurements using Rockwell and Vickers methods, respectively, as well as metallographic microscopic examinations using a light microscope. Furthermore, abrasive wear resistance tests were performed using the pin-on-disk method in the friction pair of nodular cast iron – SiC abrasive paper and the reciprocating method in the friction pair of nodular cast iron – unalloyed steel. Analysis of the test results shows that the size and depth of surface layer hardening strongly depend on the chemical composition of the nodular cast iron, determining its hardenability and its ability to create diffusion layers. Medium induction surface hardening made it possible to strengthen the surface layer of the tested nodular cast irons to the level of 700 HV0.5 with a hardening depth of up to approximately 4000μm, while various variants of thermochemical treatment provided surface hardness of up to 750 HV0.5 with a hardening depth of up to approximately 200μm. Furthermore, induction surface hardening increased the resistance to abrasive wear of nodular cast iron castings, depending on the test method, by an average of 70 and 45%, while thermochemical treatment on average by 15 and 60%.
Przejdź do artykułu

Bibliografia

[1] Pan, C., Gu, Y., Chang, J. & Wang, C. (2023). Recent patents on friction and wear tester. Recent Patents on Engineering. 17(4), 86-102. DOI:10.2174/1872212117666220621103655.

[2] Yang, Z., Ye, S., Wang, Z., Li, Z. & Li. W. (2023). Experimental and simulation study on braking noise characteristics and noise reduction strategies of the friction pair between the SiCp/A356 brake disc and the synthetic pad. Engineering Failure Analysis. 145, 1-20, 107017. https://doi.org/10.1016/j.engfailanal.2022.107017.

[3] Wang, K., Zhang, Z., Dandu, R.S.B. & Cai. W. (2023). Understanding tribocorrosion of aluminum at the crystal level. Acta Materialia. 245, 1-13, 118639. DOI:10.1016/j.actamat.2022.118639.

[4] Jakobsen, P.D., Langmaack, L., Dahl, F. & Breivik. T. (2013). Development of the soft ground abrasion tester (SGAT) to predict TBM tool wear, torque and thrust. Tunneling and Underground Space Technology. 38, 398-408. DOI:10.1016/j.tust.2013.07.021.

[5] Tiruvenkadam, N., Thyla, P.R. Senthil Kumar, M., Kader, N.A., Pradeep, V.K., Vishnu Kumar, R., Sasikumar, N. (2013). Development of multipurpose reciprocating wear tester under various environmental parameters. In International Conference on Energy Efficient Technologies for Sustainability, 10 – 12 April 2013 (pp. 213 – 216). Nagercoil, India. DOI:10.1109/ICEETS.2013.6533384.

[6] Guanzhang, H., Xiaojing, Y., Yilin, C. & Jie, D. (2011). Development of a system for measuring the variation of friction force on reciprocating wear tester. In Third International Conference on Measuring Technology and Mechatronics Automation, 6-7 January 2011 (Vol. 1, pp. 1045-1049). DOI:10.1109/ICMTMA.2011.262.

[7] Vasquez, H., Lozano, K., Soto, V. & Rocha, A. (2008). Design of a wear tester for nano-reinforced polymer composites. Measurement. 41(8), 870-877. DOI:10.1016/j.measurement.2007.12.003.

[8] Wei, R., Wilbur, P.J., Sampath, W.S., Williamson, D.L., Qu, Y. & Wang, L. (1990). Tribological studies of ion-implanted steel constituents using an oscillating pin-on-disk wear tester. Journal of Tribology. 112(1), 27-36. DOI:10.1115/1.2920227.

[9] Desale, G.R., Gandhi, B.K. & Jain, S.C. (2005). Improvement in the design of a pot tester to simulate erosion wear due to solid-liquid mixture. Wear. 259(1-6), 196-202. DOI:10.1016/j.wear.2005.02.068.

[10] Wang, X., Song, Y., Li, C., Zhang, Y. Ali, H.M., Sharma, S., Li, R. et al. (2023). Nanofluids application in machining: a comprehensive review. International Journal of Advanced Manufacturing Technology. 131(5-6), 3113-3164. DOI:10.1007/s00170-022-10767-2.

[11] De Stefano, M., Aliberti, S.M. & Ruggiero. A. (2022). (Bio) Tribocorrosion in dental implants: principles and techniques of investigation. Applied Sciences. 12(15), 1-16. DOI:10.3390/app12157421.

[12] Vilhena, L., Ferreira, F., Oliveira, J.C. & Ramalho. A. (2022). Rapid and easy assessment of friction and load-bearing capacity in thin coatings. Electronics. 11(3), 1-19, 296. DOI:10.3390/electronics11030296.

[13] Valigi, M.C., Logozzo, S. & Affatato, S. (2017). New challenges in tribology: wear assessment using 3d optical scanners. Materials. 10(5), 1-13, 548. DOI:10.3390/ma10050548.

[14] Dwulat, R., Janerka, K. & Grzesiak, K. (2021). The influence of final inoculation on the metallurgical quality of nodular cast iron. Archives of Foundry Engineering. 21(4), 5-14. DOI:10.24425/afe.2021.138673.

[15] Janerka, K., Kostrzewski, Ł., Stawarz, M. & Jezierski. J. (2020). The importance of sic in the process of melting ductile iron with a variable content of charge materials. Materials. 13(5), 1-10, 1231. DOI:10.3390/ma13051231.

[16] Gumienny, G., Kurowska, B. & Fabian. P. (2020). Compacted graphite iron with the addition of Tin. Archives of Foundry Engineering. 20(3), 15-20. DOI:10.24425/afe.2020.133323.

[17] Gunalan, M. & Anandeswaran, V.A. (2021). A holistic approach of developing new high strength cast iron for weight optimization. SAE Techical Paper. DOI:10.4271/2021-26-0244.

[18] Bendikiene, R., Bahdanovich, A., Cesnavicius, R., Ciuplys, A., Grigas, V., Jutas, A., Marmysh, D., Nasan, A., Shemet, L., Sherbakov, S. & Sosnovskiy, L. (2020). Tribo-fatigue behavior of austempered ductile iron monica as new structural material for rail-wheel system. Medziagotyra. 26(4), 432-437. DOI:10.5755/j01.ms.26.4.25384.

[19] [20] Zhu, Y., Keoleian, G.A. & Cooper. D.R. (2023). A parametric life cycle assessment model for ductile cast iron components. Resources, Conservation and Recycling. 189, 1-9, 106729. DOI:10.1016/j.resconrec.2022.106729.

[20] Molian, P.A. & Baldwin, M. (1987). Effects of single-pass laser heat treatment on erosion behavior of cast irons. Wear. 118(3), 319-327. DOI:10.1016/0043-1648(87)90075-5.

[21] Molian, P.A. & Baldwin. M. (1988). Wear behavior of laser surface-hardened gray and ductile cast irons. Part 2 erosive wear. Journal of Tribology. 110(3), 462-466. DOI:10.1115/1.3261651.

[22] Wróbel, T., Studnicki, A., Stawarz, M., Baron, Cz., Jezierski, J., Bartocha, D., Dojka, R., Opiela, J. & Lisiecki, A. (2024). Improving the abrasion resistance of nodular cast iron castings by remelting their surfaces by laser beam. Materials. 17(9), 1-17, 2095. https://doi.org/10.3390/ma17092095.

Przejdź do artykułu

Autorzy i Afiliacje

C. Baron
1
ORCID: ORCID
M. Stawarz
1
ORCID: ORCID
A. Studnicki
1
J. Jezierski
1
ORCID: ORCID
T. Wróbel
1
ORCID: ORCID
R. Dojka
2
M. Lenert
1 2
K. Piasecki
1 2
ORCID: ORCID

  1. Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland
  2. Odlewnia RAFAMET Sp. z o.o., ul. Staszica 1, 47-420 Kuźnia Raciborska, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The study presents a comparison of the results of structural tests, impact strength and strength properties of cast iron EN-GJS-400-15, which is produced in industrial conditions and the ductile cast iron, with addition of nickel, in austenitic matrix. Due to the ongoing energy transformation and attempts to inject hydrogen into existing gas grids, gas fittings manufacturers are looking for materials that will be more resistant to the destructive effects of hydrogen than the currently used ductile cast iron. The aim of the work was to obtain cast iron with the addition of nickel (about 20%) with similar strength parameters, better impact strength, both at room temperature and at lower temperatures, as well as a stable austenitic matrix in ductile cast iron. All assumptions were achieved. In the future, research should be undertaken to develop an economically optimal chemical composition, without a significant loss of strength properties, and the resistance of gate valves made of austenitic cast iron to the destructive effects of hydrogen should be examined. The work is preliminary research.
Przejdź do artykułu

Bibliografia

[1] Kanellopoulos, K., Busch, S., De Felice, M., Giaccaria, S. and Costescu, A. (2022). Blending hydrogen from electrolysis into the European gas grid. EUR 30951 EN, Publications Office of the European Union, Luxembourg, 2022, ISBN 978-92-76-46346-7, DOI:10.2760/908387, JRC 126763.

[2] ToGetAir. (2024). Hydrogen Needs Strong Support. Retrieved December, 18, 2023 from https://raport.togetair.eu/ogien/energia-przyszlosci/wodor-potrzebuje-mocnego-wsparcia. (in Polish).

[3] Jaworski, J., Kukulska-Zając, E. & Kułaga, P. (2019). Selected issue regarding the impact of addition of hydrogen to natural gas on the elements of the gas system. Nafta-Gaz. 10, 625-632. DOI: 10.18668/NG.2019.10.04. (in Polish).

[4] Bąkowski, K, (2007). Gas grids and installations – guide. Warszawa: WNT. (in Polish).

[5] EN 13774:2013 Valves for gas distribution system with maximum operating pressure less than or equal to 16 bar – Performance requirements.

[6] Regulation of the Minister of Economy of April 26, 2013 on the technical conditions to be met by gas grids and their location. (Dz.U z 2013 r., Nr 0, poz. 640). (in Polish).

[7] Information Publication 11/I, Safe use of hydrogen as fuel in commercial industrial applications, Polish Ship Register, Gdańsk 2021, p 36 (in Polish)

[8] Sahiluoma, P., Yagodzinskyy, Y., Forsström, A., Hänninen, H. & Bossuyt, S. (2021). Hydrogen embrittlement of nodular cast iron. Materials and Corrosion. 72(1-2), 245-254. DOI: 10.1002/maco.202011682.

[9] Yoshimoto, T., Matsuo, T. & Ikeda, T. (2019). The effect of graphite size on hydrogen absorption and tensile properties of ferritic ductile cast iron. Procedia Structural Integrity. 14, 18-25. https://doi.org/10.1016/j.prostr.2019.05.004.

[10] Elboujdaini E. (2011). Hydrogen-Induced Cracking and Sulfide Stress Cracking. Uhlig’s Corrosion Handbook. R. Winston Revie (red.). Wiley, 183-194.

[11] Gangloff, R.P. (2012). Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing.

[12] Jiaxing Liu, Mingjiu Zhao, Lijian Rong (2023). Overview of hydrogen-resistant alloys for high-pressure hydrogen environment: on the hydrogen energy structural materials. Clean Energy. 7(1), 99-115. https://doi.org/10.1093/ce/zkad009.

[13] Dwivedi, S.K. & Vishwakarma. M. (2018). Hydrogen embrittlement in different materials: A review. International Journal of Hydrogen Energy. 43(46), 21603-21616. https://doi.org/10.1016/j.ijhydene.2018.09.201.

[14] Dziadur, W., Lisak, J., & Tabor A. (2004). Corrosion testing of high-nickel ductile cast iron. Journal of Applied Materials Engineering. 6, 28-32. (in Polish).

[15] Guzik, E., Kopyciński, D. (2004). Structure and impact strength of austenitic ductile iron. Archives of Foundry. 4(12), 115-120. ISSN 1642-5308. (in Polish).

[16] Tabor, A., Putyra, P., Zarębski, P. & Maguda, T. (2009). Austenitic ductile iron for low temperature applications. Archives of Foundry Engineering. 9(1), 163-168. ISSN (1897-3310).

Przejdź do artykułu

Autorzy i Afiliacje

A. Rączka
1
A. Szczęsny
2
ORCID: ORCID
D. Kopyciński
2
ORCID: ORCID

  1. Fabryka Armatur JAFAR S.A. Kadyiego 12 Street 38-200 Jasło, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-065 Kraków, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Accurate kinetic parameters are vital for quantifying the effect of binder decomposition on the complex phenomena occurring during the casting process. Commercial casting simulation tools often use simplified kinetic parameters that do not comprise the complex multiple reactions and their effect on gas generation in the sand core. The present work uses experimental thermal analysis techniques such as Thermogravimetry (TG) and Differential thermal analysis (DTA) to determine the kinetic parameters via approximating the entire reaction during the decomposition by multiple first-order apparent reactions. The TG and DTA results reveal a multi-stage and exothermic decomposition process in the binder degradation. The pressure build-up in cores/molds when using the obtained multi-reaction kinetic model is compared with the earlier approach of using an average model. The results indicate that pressure in the mold/core with the multi-reaction approach is estimated to be significantly higher. These results underscore the importance of precise kinetic parameters for simulating binder decomposition in casting processes.
Przejdź do artykułu

Bibliografia

[1] Campbell, J. (2011). Molds and cores. Complete Casting Handbook. 1, 155-186. https://doi.org/10.1016/b978-1-85617-809-9.10004-0.

[2] Campbell, J., Svidro, J.T. & Svidro, J. (2017). Molding and casting processes. Cast Iron Science and Technology. 1, 189-206. DOI: 10.31399/asm.hb.v01a.a0006297.

[3] Diószegi, A., Elmquist, L., Orlenius, J. & Dugic, I. (2009). Defect formation of gray iron casting. Intional Journal of Metalcasting. 3(4), 49-58, DOI: 10.1007/BF03355458.

[4] Bobrowski, A., Holtzer, M., Zymankowska-Kumon, S. & Dańko, R. (2015). Harmfulness assessment of moulding sands with a geopolymer binder and a new hardener, in an aspect of the emission of substances from the BTEX group. Archives of Metallurgy and Materials. 60(1), 341-344. DOI: 10.1515/amm-2015-0056.

[5] Grabowska, B., Żymankowska-Kumon, S., Cukrowicz, S., Kaczmarska, K., Bobrowski, A. & Tyliszczak, B. (2019). Thermoanalytical tests (TG–DTG–DSC, Py-GC/MS) of foundry binders on the example of polymer composition of poly(acrylic acid)–sodium carboxymethylcellulose. Joyrnal of Thermal Analysis and Calorimetry. 138(6), 4427-4436. DOI: 10.1007/s10973-019-08883-5.

[6] Kmita, A., Benko, A., Roczniak, A. & Holtzer, M. (2020). Evaluation of pyrolysis and combustion products from foundry binders: potential hazards in metal casting. Jornal of Thermal Analysis & Calorimetgry. 140(5), 2347-2356. DOI: 10.1007/s10973-019-09031-9.

[7] Holtzer, M., Kmita, A., Roczniak, A., Benko, A. (2018). Thermal stability of a resin binder used in moulding sand technology. 73rd World Foundry Congr. "Creative Foundry", WFC 2018 - Proc. (pp. 131-132).

[8] Wan, P., Zhou, J., Li, Y., Yin, Y., Peng, X., Ji, X., & Shen, X. (2021). Kinetic analysis of resin binder for casting in combustion decomposition process. Journal of Thermal Analysis and Calorimetry. 147, 6323-6336. DOI: 10.1007/s10973-021-10902-3.

[9] Wewerka, E.M., Walters, K.L. & Moore, R.H. (1969). Differential thermal analysis of furfuryl alcohol resin binders. Carbon. 7(1), 129-141. DOI: 10.1016/0008-6223(69)90012-8.

[10] Nastac, L., Jia, S., Nastac, M.N. & Wood, R. (2016). Numerical modeling of the gas evolution in furan binder-silica sand mold castings. International Journal of Cast Metals Research. 29(4), 194-201. DOI: 10.1080/13640461.2015.1125983.

[11] Zych, J., Mocek, J., Snopkiewicz, T. & Jamrozowicz, Ł. (2015). Thermal conductivity of moulding sand with chemical binders, attempts of its increasing. Archives of Metallurgy and Materials. 60(1), 351-357. DOI: 10.1515/amm-2015-0058.

[12] Zych, J., Mocek, J. & Kaźnica, N. (2018). Kinetics of gases emission from surface layers of sand moulds. Archives of Foundry Engineering. 18(1), 222-226. DOI: 10.24425/118841.

[13] Perondi, D., Broetto, C.C., Dettmer, A., Wenzel, B.M. & Godinho, M. (2012). Thermal decomposition of polymeric resin [(C29H 24N206)n]: Kinetic parameters and mechanisms. Polymer Degradation and Stability. 97(11), 2110-2117. DOI: 10.1016/j.polymdegradstab.2012.08.022.

[14] Jomaa, G., Goblet, P., Coquelet, C. & Morlot, V. (2015). Kinetic modeling of polyurethane pyrolysis using non-isothermal thermogravimetric analysis. Thermochimica Acta. 612, 10-18. DOI: 10.1016/j.tca.2015.05.009.

[15] Kmita A. Knauer, W., Holtzer, M., Hodor, K., Piwowarski, G., Roczniak, A., & Górecki, K. (2019). The decomposition process and kinetic analysis of commercial binder based on phenol-formaldehyde resin, using in metal casting. Applied Thermal Engineering. 156, 263-275. DOI: 10.1016/j.applthermaleng.2019.03.093.

[16] Ozawa, T. (1976). A modified method for kinetic analysis of thermoanalytical data. Journal of Thermal Analysis. 9(3), 369-373. DOI: 10.1007/BF01909401.

[17] Coats, A.W. & Redfern, J.P. (1964). Kinetic parameters from thermogravimetric data. Nature. 201, 68-69. https://doi.org/10.1038/201068a0.

[18] Gröbler, A., & Kada, T. (1973). Kinetic studies of multi-step thermal degradations of copolymers or polymer mixtures. Journal of thermal analysis. 5, 407-414. DOI: 10.1007/BF01950231.

[19] Takamura, M. (2006). Application of Highly Wear-Resistant Carbon as a Material for Printing Types on Impact Printers. Waseda University.

[20] Fitzer, E., Schaefer, W. & Yamada, S. (1969). The formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin. Carbon. 7(6), 643-648. DOI: 10.1016/0008-6223(69)90518-1.

[21] Fitzer E. & Schäfer, W. (1970). The effect of crosslinking on the formation of glasslike carbons from thermosetting resins. Carbon. 8(3), 353-364. DOI: 10.1016/0008-6223(70)90075-8.

[22] Shinada, Y., Ota, H. & Ueda, Y. (1985). Gaz thermiquement décomposés à partir de liants organiques. Imono. 57(1), 17-22.

[23] Freeman E.S. & Carroll, B. (1958). The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. The Journal of Physical Chemistry. 62(4), 394-397. DOI:10.1021/j150562a003.

Przejdź do artykułu

Autorzy i Afiliacje

Taishi Matsushita
1
ORCID: ORCID
Dinesh Sundaram
1
ORCID: ORCID
Ilja Belov
1
ORCID: ORCID
Attila Dioszegi
1
ORCID: ORCID

  1. Jönköping University, Sweden
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The composition and pouring temperature are important parameters in metal casting. Many cast product failures are caused by ignorance of the influence of both. This research aims to determine the effect of adding tin composition and pouring temperature on fluidity, microstructure and mechanical properties including tensile strength and hardness of tin bronze (Cu-Sn). The Cu-Sn is widely used as employed in the research is Cu (20, 22 and 24) wt.%Sn alloy using the investment casting method. Variations in pouring temperature treatment TS1 = 1000°C and TS2 = 1100°C. The mold for the fluidity test is made with a wax pattern then coated in clay. The mold dimensions are 400 mm long with mold cavity variations of 1.5, 2, 3, 4, 5 mm. Several parameters: increasing the pouring temperature, adding tin composition, decreasing the temperature gradient between the molten metal and the mold walls result in a decrease in the solidification rate which can increase fluidity. The α + δ phase transition to β and γ intermetallic phases decreases fluidity at >22wt.%Sn. The columnar dendrite microstructure increases with the addition of tin composition and pouring temperature. The mechanical properties of tensile strength decrease, hardness increases and the alloy becomes more brittle with increasing tin composition.
Przejdź do artykułu

Bibliografia


[1] Hou, J., Sun, J., Zhan, C., Tian, X., & Chen, X. (2007). The structural change of Cu-Sn melt. Science in China Series G: Physics, Mechanics and Astronomy. 50(4), 414-420. https://doi.org/10.1007/s11433-007-0038-6.

[2] Park, J. S., Park, C. W., & Lee, K. J. (2009). Implication of peritectic composition in historical high-tin bronze metallurgy. Materials Characterization, 60(11), 1268-1275. https://doi.org/10.1016/j.matchar.2009.05.009.

[3] Debut, V., Carvalho, M., Figueiredo, E., Antunes, J. & Silva, R. (2016). The sound of bronze: Virtual resurrection of a broken medieval bell. Journal of Cultural Heritage. 19, 544-554. https://doi.org/10.1016/j.culher.2015.09.007.

[4] Audy J. & Audy, K. (2008). Analysis of bell materials: Tin bronzes. China Foundry. 5(3), 199-204.

[5] Won, C. S., Jung, J. P., Won, K. S., & Sharma, A. (2022). Technological insights into the evolution of bronze bell metal casting on the Korean Peninsula. Metals. 12(11), 1776, 1-28. https://doi.org/10.3390/met12111776.

[6] Fletcher, N. (2012). Materials and musical instruments. Acousitics Aust. 40(2), 130-134.

[7] Sumarsam, (2002). Introduction to javanese gamelan notes for music 451 (Javanese Gamelan-Beginners). Syllabus. 451(1), 1-28.

[8] Goodway, M. (1992). Metals of music. Materials Characterization. 29(2), 177-184. https://doi.org/10.1016/1044-5803(92)90113-V.

[9] Li, D., Franke, P., Fürtauer, S., Cupid, D. & dan Flandorfer, H. (2013). The Cu-Sn phase diagram part II: New thermodynamic assessment. Intermetallics. 34, 148-158. https://doi.org/10.1016/j.intermet.2012.10.010.

[10] Kohler, F., Germond, L., Wagnière, J.D. & dan Rappaz, M. (2009). Peritectic solidification of Cu-Sn alloys: Microstructural competition at low speed. Acta Materialia. 57(1), 56-68. https://doi.org/10.1016/ j.actamat.2008.08.058.

[11] Pattnaik, S., Karunakar, D.B. & Jha, P.K. (2012). Developments in investment casting process - A review. Journal of Materials Processing Technology. 212(11), 2332-2348. https://doi.org/10.1016/j.jmatprotec.2012.06.003.

[12] Singh, J., Singh, R. & Singh, H. (2017). Dimensional accuracy and surface finish of biomedical implant fabricated as rapid investment casting for small to medium quantity production. Journal of Manufacturing Processes. 25, 201-211. https://doi.org/10.1016/j.jmapro.2016.11.012.

[13] Cheah, C. M., Chua, C. K., Lee, C. W., Feng, C., & Totong, K. (2005). Rapid prototyping and tooling techniques : a review of applications for rapid. The International Journal of Advanced Manufacturing Technology. 25, 308-320. https://doi.org/10.1007/s00170-003-1840-6.

[14] Lee, K., Blackburn, S. & Welch, S.T. (2017). A more representative mechanical testing of green state investment casting shell. Ceramics International. 43(1), 268-274. https://doi.org/10.1016/j.ceramint.2016.09.149.

[15] Campbell J. & Harding, R.A. (1994). The fluidity of molten metals 3205 the fluidity of molten metals. TALAT Lect. 3205. 1-19.

[16] Siavashi, K. (2012). The effect of casting parameters on the fluidity and porosity of aluminium alloys in the lost foam casting process. Thesis, University of Birmingham, United Kingdom.

[17] Caliari, D., Timelli, G., Bonollo, F., Amalberto, P. & Giordano, P. (2015). Fluidity of aluminium foundry alloys: Development of a testing procedure. La Metallurgia Italiana. 107(6), 11-18.

[18] Tan, M., Xiufang, B., Xianying, X., Yanning, Z., Jing, G. & Baoan, S. (2007). Correlation between viscosity of molten Cu – Sn alloys and phase diagram. Physica B: Condensed Matter, 387(1-2), 1-5. https://doi.org/10.1016/j.physb.2005.10.140.

[19] Hou, J., Guo, H., Zhan, C., Tian, X. & Chen, X. (2006). Viscous and magnetic properties of liquid Cu – 25 wt .% Sn alloy. Materials Letters. 60(16), 2038-2041. https://doi.org/10.1016/j.matlet.2005.12.108.

[20] Mudry, S., Korolyshyn, A., Vus, V. & Yakymovych, A. (2013). Viscosity and structure of liquid Cu – In alloys. Journal of Molecular Liquids. 179, 94-97. https://doi.org/10.1016/j.molliq.2012.12.019.

[21] Rzychoń, T., Kiełbus, A. & Serba, M. (2010). The influence of pouring temperature on the microstructure and fluidity of elektron 21 and WE54 magnesium alloys. Archives of Metallurgy and Materials. 55(1), 7-13.

[22] Sulaiman S. & Hamouda, A.M.S. (2001). Modeling of the thermal history of the sand casting process. Journal of Materials Processing Technology. 113(1-3), 245-250. https://doi.org/10.1016/S0924-0136(01)00592-1.

[23] Slamet, S., Suyitno, & Kusumaningtyas, I. (2021). Effect of post cast heat treatment on Cu20wt.%Sn on Microstructure and mechanical properties. Archive of Foundry Engineering. 21(4) 87-92. DOI: 10.24425/afe.2021.138684.

[24] Nadolski, M. (2017). The evaluation of mechanical properties of high-tin bronzes. Archive of Foundry Engineering. 17(1), 127-130. DOI: 10.1515/afe-2017-0023.

[25] Bartocha D. & Baron, C. (2016). Influence of Tin Bronze Melting and Pouring Parameters on Its Properties and Bells ’ Tone. Archives of Foundry Engineering. 16(4), 17-22. ISSN (1897-3310).

[26] Shmakova, K., Chikova, O. & Tsepelev, V. (2016). Viscosity of liquid Cu – Sn alloys viscosity of liquid Cu – Sn alloys. Physics and Chemistry of Liquids. 56(1), 1-8. https://doi.org/10.1080/00319104.2016.1233184.

[27] Zeynep Taslicukur, E.T., Gözde S. Altug, Şeyda Polat, Hakan Atapek, Ş. (2012). A microstructural study on CuSn10 bronze produced by sand and investment casting techniques. In 21st International Conference on Metallurgy and Materials METAL, 23 -25 May 2012 (pp. 23-25). Brno, Czech Republic.

Przejdź do artykułu

Autorzy i Afiliacje

Sugeng Slamet
1
Slamet Khoeron
1
Ratri Rahmawati
1
Suyitno
2
Indraswari Kusumaningtyas
3

  1. Mechanical Engineering, Universitas Muria Kudus, Jl. Gondang manis, Po. Box 53, Bae, Kudus, Indonesia
  2. Mechanical Engineering, Universitas Tidar, Jl. Kapten Suparman 39, Magelang, Indonesia
  3. Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Jl. Grafika No.2 Yogyakarta, Indonesia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This article presents changes of the total casting production volumes and of the production of castings made from basic casting alloys in Poland, in Europe and worldwide in years 2001–2021. Analogous casting production parameters were compared for Poland, Europe and countries being the leading European and global manufacturers in years 2001, 2011 and 2021. The leading casting manufacturers in Europe (with the manufacturing volume exceeding 1 million tons in the mentioned years) include Germany, Italy, the Ukraine, France and Spain. For years, the largest casting manufacturer worldwide has been China. In 2001–2021, global casting production increased from ca. 68 million tons to ca. 97 million tons (i.e. by ca. 42%), whereas the European one decreased from ca. 17 million tons to ca. 12 million tons (i.e. by close to 30%). In the analyzed period, the Polish production volume grew from ca. 0.75 million tons to ca. 0.88 million tons (i.e. by ca. 17%). The presented data reveal the decreasing importance of gray cast iron and cast steel and the increasing one of ductile cast iron and aluminum alloys. However, the Polish average annual growth rate for aluminum alloy casting production was 10.3%, whereas the global one was 3% and the European one 0.7%.
Przejdź do artykułu

Bibliografia


[1] Patalas-Maliszewska, J. Topczak, M. & Kłos, S. (2020). The level of the additive manufacturing technology use in polish metal and automotive manufacturing enterprises. Applied Sciences. 10(3), 735, 1-20. DOI:10.3390/app10030735.

[2] Kampa, A. & Gołda, G. (2018). Modelling and simulation method for production process automation in steel casting foundry. Archives of Foundry Engineering. 18(1), 47-52. DOI: 10.24425/118810.

[3] Gruzman, V.M. (2020). Foundry production digitalization. Materials Science and Engineering. 966(1), 012127, 1-6. DOI:10.1088/1757-899X/966/1/012127.

[4] Scharfa, S., Sander, B., Kujath, M., Richter, H., Eric Riedelb, E., Stein, H., & Felde, J. (2021). FOUNDRY 4.0: An innovative technology for sustainable and flexible process design in foundries. Procedia CIRP. 98 73-78. https://doi.org/10.1016/j.procir.2021.01.008.

[5] Odlewnie Polskie S.A. (2024). Prace badawczo-rozwojowe. Retrieved April 15, 2024, from https://odlewniepolskie.pl/innowacje-i-nauka/prace-badawczo-rozwojowe/.

[6] Odlewnie Polskie S.A. (2024). Report on the operations of Spółka Akcyjna Odlewnie Polskie with its registered office in Starachowice in 2021. Retrieved April 20, 2022, from: https://odlewniepolskie.pl/.

[7] Czerepak, M. & Piątkowski, J. (2023). Casting of combustion engine pistons before and now on the example of FM Gorzyce. Archives of Foundry Engineering. 23(2), 58-65. DOI: 10.24425/afe.2023.144296.

[8] Soiński, M.S., Skurka, K., Jakubus, A. & Kordas, P. (2015). Structure of foundry production in the world and in Poland over the 1974-2013 period. Archives of Foundry Engineering. 15(spec.2), 69-76.

[9] Sobczak, J. & Dudek, P. (2021). The current state of foundry in the context of the world economy. Przegląd Odlewnictwa. 11-12, 594-607. from https://kimim.pan.pl/files/Sobczak_Dudek.pdf. (in Polish).

[10] Soiński, M.S., Skurka, K., Jakubus, A. (2015). Changes in the production of castings in Poland in the past half century in comparison with world trends. In: Selected problems of process technologies in the industry. Częstochowa. Eds. Faculty of Production Engineering and Materials Technology of the Częstochowa University of Technology, 2015. Monograph. ISBN: 978-83-63989-30-9, pp.71-79. (in Polish).

[11] Industry Outlook: Sales Expected to Keep Growing. Modern Casting, (January 2023), 33–35.

[12] 36th Census of World Casting Production —2001. Modern Casting, (December 2002), 22-24.

[13] Know Your Competition 37th Census of World Casting Production —2002. Modern Casting, (December 2003), 23-25.

[14] 38th Census of World Casting Production —2003. Modern Casting, (December 2004), 25-27.

[15] 39th Census of World Casting Production —2004. Modern Casting, (December 2005), 27-29.

[16] 40th Census of World Casting Production —2005. Modern Casting, (December 2006), 28-31.

[17] 41st Census of World Casting Production —2006. Modern Casting, (December 2007), 22-25.

[18] 42nd Census of World Casting Production —2007. Modern Casting, (December 2008), 24-27.

[19] 43rd Census of World Casting Production —2008. Modern Casting, (December 2009), 17-21.

[20] 44th Census of World Casting Production. Modern Casting, (December 2010), 23-27.

[21] 45th Census of World Casting Production. Modern Casting, (December 2011), 16-19.

[22] 46th Census of World Casting Production. Modern Casting, (December 2012), 25-29.

[23] 47th Census of World Casting Production. Dividing up the Global Market. Modern Casting, (December 2013), 18-23.

[24] 48th Census of World Casting Production. Steady Growth in Global Output. Modern Casting, (December 2014), 17-21.

[25] 49th Census of World Casting Production. Modest Growth in Worldwide Casting Market. Modern Casting, (December 2015), 26-31.

[26] 50th Census of World Casting Production. Global Casting Production Stagnant. Modern Casting, (December 2016), 25-29.

[27] Census of World Casting Production. Global Casting Production Growth Stalls. Modern Casting, (December 2017), 24-28.

[28] Census of World Casting Production. Global Casting Production Expands. Modern Casting, (December 2018), 23-26.

[29] Census of World Casting Production. Total Casting Tons. Hits 112 Million. Modern Casting, (December 2019), 22-25.

[30] Census of World Casting Production Total Casting Tons Dip in 2019. Modern Casting, (January 2021), 28-30.

[31] Census of World Casting Production Fewer Castings Made in 2020. Modern Casting, (December 2021), 26-28.

[32] Report CAEF — The European Foundry Association 2021. Retrieved April 20, 2022, from https://www.caef.eu/downloads-links/.

[33] Soiński, M.S. & Jakubus, A. (2021). The leading role of aluminium in the growing production of castings made of the non-ferrous alloys. Archives of Foundry Engineering. 21(3), 33-42. DOI: 10.24425/afe.2021.136110.

[34] Gajdzik, B. & Wolniak, R. (2021). Influence of the COVID-19 crisis on steel production in Poland compared to the financial crisis of 2009 and to boom periods in the market. Resources. 10(1), 4, 1-17. DOI: 10.3390/resources10010004.

[35] Rokicki, T., Bórawski, P. & Szeberenyi, A. (2023). The impact of the 2020–2022 crises on EU countries’ independence from energy imports, particularly from Russia. Energies. 16(18), 6629, 1-26. DOI: 10.3390/en16186629

Przejdź do artykułu

Autorzy i Afiliacje

M.S. Soiński
1
ORCID: ORCID
A. Jakubus
1
ORCID: ORCID

  1. Jakub from Paradyz Academy in Gorzow Wielkopolski, 25 Teatralna St., 66-400 Gorzow Wielkopolski, Poland

Instrukcja dla autorów

Submission


To submit the article, please use the Editorial System provided here:

https://www.editorialsystem.com/afe


Papers submitted in any other way will not be accepted.



The Journal does not have submission charges.


The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.


Bank account details:


Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748


Instructions for the preparation of an Archives of Foundry Engineering Paper

Zasady etyki publikacyjnej


Publication Ethics Policy

The standards of expected ethical behavior for all parties involved in publishing in the Archives of Foundry Engineering journal: the author, the journal editor and editorial board, the peer reviewers and the publisher are listed below.

All the articles submitted for publication in Archives of Foundry Engineering are peer reviewed for authenticity, ethical issues and usefulness as per Review Procedure document.

Duties of Editors
1. Monitoring the ethical standards: Editorial Board monitors the ethical standards of the submitted manuscripts and takes all possible measures against any publication malpractices.
2. Fair play: Submitted manuscripts are evaluated for their scientific content without regard to race, gender, sexual orientation, religious beliefs, citizenship, political ideology or any other issues that is a personal or human right.
3. Publication decisions: The Editor in Chief is responsible for deciding which of the submitted articles should or should not be published. The decision to accept or reject the article is based on its importance, originality, clarity, and its relevance to the scope of the journal and is made after the review process.
4. Confidentiality: The Editor in Chief and the members of the Editorial Board t ensure that all materials submitted to the journal remain confidential during the review process. They must not disclose any information about a submitted manuscript to anyone other than the parties involved in the publishing process i.e., authors, reviewers, potential reviewers, other editorial advisers, and the publisher.
5. Disclosure and conflict of interest: Unpublished materials disclosed in the submitted manuscript must not be used by the Editor and the Editorial Board in their own research without written consent of authors. Editors always precludes business needs from compromising intellectual and ethical standards.
6. Maintain the integrity of the academic record: The editors will guard the integrity of the published academic record by issuing corrections and retractions when needed and pursuing suspected or alleged research and publication misconduct. Plagiarism and fraudulent data is not acceptable. Editorial Board always be willing to publish corrections, clarifications, retractions and apologies when needed.

Retractions of the articles: the Editor in Chief will consider retracting a publication if:
- there are clear evidences that the findings are unreliable, either as a result of misconduct (e.g. data fabrication) or honest error (e.g. miscalculation or experimental error)
- the findings have previously been published elsewhere without proper cross-referencing, permission or justification (cases of redundant publication)
- it constitutes plagiarism or reports unethical research.
Notice of the retraction will be linked to the retracted article (by including the title and authors in the retraction heading), clearly identifies the retracted article and state who is retracting the article. Retraction notices should always mention the reason(s) for retraction to distinguish honest error from misconduct.
Retracted articles will not be removed from printed copies of the journal nor from electronic archives but their retracted status will be indicated as clearly as possible.

Duties of Authors
1. Reporting standards: Authors of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. The paper should contain sufficient details and references to permit others to replicate the work. The fabrication of results and making of fraudulent or inaccurate statements constitute unethical behavior and will cause rejection or retraction of a manuscript or a published article.
2. Originality and plagiarism: Authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others they need to be cited or quoted. Plagiarism and fraudulent data is not acceptable.
3. Data access retention: Authors may be asked to provide the raw data for editorial review, should be prepared to provide public access to such data, and should be prepared to retain such data for a reasonable time after publication of their paper.
4. Multiple or concurrent publication: Authors should not in general publish a manuscript describing essentially the same research in more than one journal. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable.
5. Authorship of the manuscript: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the report study. All those who have made contributions should be listed as co-authors. The corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included in the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.
6. Acknowledgement of sources: The proper acknowledgment of the work of others must always be given. The authors should cite publications that have been influential in determining the scope of the reported work.
7. Fundamental errors in published works: When the author discovers a significant error or inaccuracy in his/her own published work, it is the author’s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Duties of Reviewers
1. Contribution to editorial decisions: Peer reviews assist the editor in making editorial decisions and may also help authors to improve their manuscript.
2. Promptness: Any selected reviewer who feels unqualified to review the research reported in a manuscript or knows that its timely review will be impossible should notify the editor and excuse himself/herself from the review process.
3. Confidentiality: All manuscript received for review must be treated as confidential documents. They must not be shown to or discussed with others except those authorized by the editor.
4. Standards of objectivity: Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Reviewers should express their views clearly with appropriate supporting arguments.
5. Acknowledgement of sources: Reviewers should identify the relevant published work that has not been cited by authors. Any substantial similarity or overlap between the manuscript under consideration and any other published paper should be reported to the editor.
6. Disclosure and conflict of Interest: Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider evaluating manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relations with any of the authors, companies, or institutions involved in writing a paper.

Procedura recenzowania


Review Procedure


The Review Procedure for articles submitted to the Archives of Foundry Engineering agrees with the recommendations of the Ministry of Science and Higher Education published in a booklet: ‘Dobre praktyki w procedurach recenzyjnych w nauce’ (MNiSW, Dobre praktyki w procedurach recenzyjnych w nauce, Warszawa 2011).

Papers submitted to the Editorial System are primarily screened by editors with respect to scope, formal issues and used template. Texts with obvious errors (formatting other than requested, missing references, evidently low scientific quality) will be rejected at this stage or will be sent for the adjustments.

Once verified each article is checked by the anti-plagiarism system Cross Check powered by iThenticate®. After the positive response, the article is moved into: Initially verified manuscripts. When the similarity level is too high, the article will be rejected. There is no strict rule (i.e., percentage of the similarity), and it is always subject to the Editor’s decision.
Initially verified manuscripts are then sent to at least four independent referees outside the author’s institution and at least two of them outside of Poland, who:

have no conflict of interests with the author,
are not in professional relationships with the author,
are competent in a given discipline and have at least a doctorate degree and respective
scientific achievements,
have a good reputation as reviewers.


The review form is available online at the Journal’s Editorial System and contains the following sections:

1. Article number and title in the Editorial System

2. The statement of the Reviewer (to choose the right options):

I declare that I have not guessed the identity of the Author. I declare that I have guessed the identity of the Author, but there is no conflict of interest

3. Detailed evaluation of the manuscript against other researches published to this point:

Do you think that the paper title corresponds with its contents?
Yes No
Do you think that the abstract expresses the paper contents well?
Yes No
Are the results or methods presented in the paper novel?
Yes No
Do the author(s) state clearly what they have achieved?
Yes No
Do you find the terminology employed proper?
Yes No
Do you find the bibliography representative and up-to-date?
Yes No
Do you find all necessary illustrations and tables?
Yes No
Do you think that the paper will be of interest to the journal readers?
Yes No

4. Reviewer conclusion

Accept without changes
Accept after changes suggested by reviewer.
Rate manuscript once again after major changes and another review
Reject


5. Information for Editors (not visible for authors).

6. Information for Authors


Reviewing is carried out in the double blind process (authors and reviewers do not know each other’s names).

The appointed reviewers obtain summary of the text and it is his/her decision upon accepting/rejecting the paper for review within a given time period 21 days.

The reviewers are obliged to keep opinions about the paper confidential and to not use knowledge about it before publication.

The reviewers send their review to the Archives of Foundry Engineering by Editorial System. The review is archived in the system.

Editors do not accept reviews, which do not conform to merit and formal rules of scientific reviewing like short positive or negative remarks not supported by a close scrutiny or definitely critical reviews with positive final conclusion. The reviewer’s remarks are sent to the author. He/she has to consider all remarks and revise the text accordingly.

The author of the text has the right to comment on the conclusions in case he/she does not agree with them. He/she can request the article withdrawal at any step of the article processing.

The Editor-in-Chief (supported by members of the Editorial Board) decides on publication based on remarks and conclusions presented by the reviewers, author’s comments and the final version of the manuscript.

The final Editor’s decision can be as follows:
Accept without changes
Reject


The rules for acceptance or rejection of the paper and the review form are available on the Web page of the AFE publisher.

Once a year Editorial Office publishes present list of cooperating reviewers.
Reviewing is free of charge.
All articles, including those rejected and withdrawn, are archived in the Editorial System.

Recenzenci

List of Reviewers 2022

Shailee Acharya - S. V. I. T Vasad, India
Vivek Ayar - Birla Vishvakarma Mahavidyalaya Vallabh Vidyanagar, India
Mohammad Azadi - Semnan University, Iran
Azwinur Azwinur - Politeknik Negeri Lhokseumawe, Indonesia
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Iwona Bednarczyk - Silesian University of Technology, Gliwice, Poland
Artur Bobrowski - AGH University of Science and Technology, Kraków
Poland Łukasz Bohdal - Koszalin University of Technology, Koszalin Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Joanna Borowiecka-Jamrozek- The Kielce University of Technology, Poland
Debashish Bose - Metso Outotec India Private Limited, Vadodara, India
Andriy Burbelko - AGH University of Science and Technology, Kraków
Poland Ganesh Chate - KLS Gogte Institute of Technology, India
Murat Çolak - Bayburt University, Turkey
Adam Cwudziński - Politechnika Częstochowska, Częstochowa, Poland
Derya Dispinar- Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Gdynia, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Flora Faleschini - University of Padova, Italy
Imre Felde - Obuda University, Hungary
Róbert Findorák - Technical University of Košice, Slovak Republic
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Marek Góral - Rzeszow University of Technology, Poland
Barbara Grzegorczyk - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Ozen Gursoy - University of Padova, Italy
Gábor Gyarmati - University of Miskolc, Hungary
Jakub Hajkowski - Poznan University of Technology, Poland
Marek Hawryluk - Wroclaw University of Science and Technology, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Poland
Dario Iljkić - University of Rijeka, Croatia
Magdalena Jabłońska - Silesian University of Technology, Gliwice, Poland
Nalepa Jakub - Silesian University of Technology, Gliwice, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Aneta Jakubus - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Łukasz Jamrozowicz - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - AGH University of Science and Technology, Kraków, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Marcin Kondracki - Silesian University of Technology, Gliwice Poland
Vitaliy Korendiy - Lviv Polytechnic National University, Lviv, Ukraine
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Malgorzata Lagiewka - Politechnika Czestochowska, Częstochowa, Poland
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Jingkun Li - University of Science and Technology Beijing, China
Petr Lichy - Technical University Ostrava, Czech Republic
Y.C. Lin - Central South University, China
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Ewa Majchrzak - Silesian University of Technology, Gliwice, Poland
Barnali Maji - NIT-Durgapur: National Institute of Technology, Durgapur, India
Pawel Malinowski - AGH University of Science and Technology, Kraków, Poland
Marek Matejka - University of Zilina, Slovak Republic
Bohdan Mochnacki - Technical University of Occupational Safety Management, Katowice, Poland
Grzegorz Moskal - Silesian University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Silesian University of Technology, Gliwice, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Krzysztof Naplocha - Wrocław University of Science and Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Tomáš Obzina - VSB - Technical University of Ostrava, Czech Republic
Peiman Omranian Mohammadi - Shahid Bahonar University of Kerman, Iran
Zenon Opiekun - Politechnika Rzeszowska, Rzeszów, Poland
Onur Özbek - Duzce University, Turkey
Richard Pastirčák - University of Žilina, Slovak Republic
Miroslawa Pawlyta - Silesian University of Technology, Gliwice, Poland
Jacek Pezda - ATH Bielsko-Biała, Poland
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Jacek Pieprzyca - Silesian University of Technology, Gliwice, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Marcela Pokusová - Slovak Technical University in Bratislava, Slovak Republic
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich, West Midlands, United Kingdom
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University Thailand Amit Sata - MEFGI, Faculty of Engineering, India
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Vasudev Shinde - DKTE' s Textile and Engineering India Robert Sika - Politechnika Poznańska, Poznań, Poland
Bozo Smoljan - University North Croatia, Croatia
Leszek Sowa - Politechnika Częstochowska, Częstochowa, Poland
Sławomir Spadło - Kielce University of Technology, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Grzegorz Stradomski - Czestochowa University of Technology, Poland
Roland Suba - Schaeffler Skalica, spol. s r.o., Slovak Republic
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Jan Szajnar - Silesian University of Technology, Gliwice, Poland
Michal Szucki - TU Bergakademie Freiberg, Germany
Tomasz Szymczak - Lodz University of Technology, Poland
Damian Słota - Silesian University of Technology, Gliwice, Poland
Grzegorz Tęcza - AGH University of Science and Technology, Kraków, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Mirosław Tupaj - Rzeszow University of Technology, Poland
Robert B Tuttle - Western Michigan University United States Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Iveta Vaskova - Technical University of Kosice, Slovak Republic
Dorota Wilk-Kołodziejczyk - AGH University of Science and Technology, Kraków, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Çağlar Yüksel - Atatürk University, Turkey
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Jerzy Zych - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2021

Czesław Baron - Silesian University of Technology, Gliwice, Poland
Imam Basori - State University of Jakarta, Indonesia
Leszek Blacha - Silesian University of Technology, Gliwice
Poland Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Zilina, Slovak Republic
Marcin Brzeziński - AGH University of Science and Technology, Kraków, Poland
Andriy Burbelko - AGH University of Science and Technology, Kraków, Poland
Alexandros Charitos - TU Bergakademie Freiberg, Germany
Ganesh Chate - KLS Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Zhipei Chen - University of Technology, Netherlands
Józef Dańko - AGH University of Science and Technology, Kraków, Poland
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Maciej Dyzia - Silesian University of Technology, Poland
Eray Erzi - Istanbul University, Turkey
Przemysław Fima - Institute of Metallurgy and Materials Science PAN, Kraków, Poland
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Dipak Ghosh - Forace Polymers P Ltd., India
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Gábor Gyarmati - Foundry Institute, University of Miskolc, Hungary
Krzysztof Herbuś - Silesian University of Technology, Gliwice, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Kraków, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Agata Jażdżewska - Gdansk University of Technology, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Centre of Casting Technology, Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Adrian Kampa - Silesian University of Technology, Gliwice, Poland
Wojciech Kapturkiewicz- AGH University of Science and Technology, Kraków, Poland
Tatiana Karkoszka - Silesian University of Technology, Gliwice, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Himanshu Khandelwal - National Institute of Foundry & Forging Technology, Hatia, Ranchi, India
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Grzegorz Kokot - Silesian University of Technology, Gliwice, Poland
Ladislav Kolařík - CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Dariusz Kopyciński - AGH University of Science and Technology, Kraków, Poland
Janusz Kozana - AGH University of Science and Technology, Kraków, Poland
Tomasz Kozieł - AGH University of Science and Technology, Kraków, Poland
Aleksandra Kozłowska - Silesian University of Technology, Gliwice Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Wacław Kuś - Silesian University of Technology, Gliwice, Poland
Jacques Lacaze - University of Toulouse, France
Avinash Lakshmikanthan - Nitte Meenakshi Institute of Technology, India
Jaime Lazaro-Nebreda - Brunel Centre for Advanced Solidification Technology, Brunel University London, United Kingdom
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Maria Maj - AGH University of Science and Technology, Kraków, Poland
Jerzy Mendakiewicz - Silesian University of Technology, Gliwice, Poland
Hanna Myalska-Głowacka - Silesian University of Technology, Gliwice, Poland
Kostiantyn Mykhalenkov - Physics-Technological Institute of Metals and Alloys, National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Mitsuhiro Okayasu - Okayama University, Japan
Agung Pambudi - Sebelas Maret University in Indonesia, Indonesia
Richard Pastirčák - University of Žilina, Slovak Republic
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Seyda Polat - Kocaeli University, Turkey
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Alena Pribulova - Technical University of Košice, Slovak Republic
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich West Midlands, United Kingdom
Iulian Riposan - Politehnica University of Bucharest, Romania
Ferdynand Romankiewicz - Uniwersytet Zielonogórski, Zielona Góra, Poland
Mario Rosso - Politecnico di Torino, Italy
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University, Thailand
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Karthik Shankar - Amrita Vishwa Vidyapeetham , Amritapuri, India
Vasudev Shinde - Shivaji University, Kolhapur, Rajwada, Ichalkaranji, India
Robert Sika - Politechnika Poznańska, Poznań, Poland
Jerzy Sobczak - AGH University of Science and Technology, Kraków, Poland
Sebastian Sobula - AGH University of Science and Technology, Kraków, Poland
Marek Soiński - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Andrzej Studnicki - Silesian University of Technology, Gliwice, Poland
Mayur Sutaria - Charotar University of Science and Technology, CHARUSAT, Gujarat, India
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Sutiyoko Sutiyoko - Manufacturing Polytechnic of Ceper, Klaten, Indonesia
Tomasz Szymczak - Lodz University of Technology, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Jacek Trzaska - Silesian University of Technology, Gliwice, Poland
Robert B Tuttle - Western Michigan University, United States
Muhammet Uludag - Selcuk University, Turkey
Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Tomasz Wrobel - Silesian University of Technology, Gliwice, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Antonin Zadera - Brno University of Technology, Czech Republic
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Bo Zhang - Hunan University of Technology, China
Xiang Zhang - Wuhan University of Science and Technology, China
Eugeniusz Ziółkowski - AGH University of Science and Technology, Kraków, Poland
Sylwia Żymankowska-Kumon - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2020

Shailee Acharya - S. V. I. T Vasad, India
Mohammad Azadi - Semnan University, Iran
Rafał Babilas - Silesian University of Technology, Gliwice, Poland
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Emin Bayraktar - Supmeca/LISMMA-Paris, France
Jaroslav Beňo - VSB-Technical University of Ostrava, Czech Republic
Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Grzegorz Boczkal - AGH University of Science and Technology, Kraków, Poland
Wojciech Borek - Silesian University of Technology, Gliwice, Poland
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Žilina, Slovak Republic
John Campbell - University of Birmingham, United Kingdom
Ganesh Chate - Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Mirosław Cholewa - Silesian University of Technology, Gliwice, Poland
Khanh Dang - Hanoi University of Science and Technology, Viet Nam
Vladislav Deev - Wuhan Textile University, China
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Malwina Dojka - Silesian University of Technology, Gliwice, Poland
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Sergii Gerasin - Pryazovskyi State Technical University, Ukraine
Dipak Ghosh - Forace Polymers Ltd, India
Marcin Górny - AGH University of Science and Technology, Kraków, Poland
Marcin Gołąbczak - Lodz University of Technology, Poland
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Libor Hlavac - VSB Ostrava, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Philippe Jacquet - ECAM, Lyon, France
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Damian Janicki - Silesian University of Technology, Gliwice, Poland
Witold Janik - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - Akademia Górniczo-Hutnicza, Kraków, Poland
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Ladislav Kolařík -Institute of Engineering Technology CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Sergey Konovalov - Samara National Research University, Russia
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Janusz Krawczyk - AGH University of Science and Technology, Kraków, Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Agnieszka Kupiec-Sobczak - Cracow University of Technology, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Aleksander Lisiecki - Silesian University of Technology, Gliwice, Poland
Krzysztof Lukaszkowicz - Silesian University of Technology, Gliwice, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Katarzyna Major-Gabryś - AGH University of Science and Technology, Kraków, Poland
Pavlo Maruschak - Ternopil Ivan Pului National Technical University, Ukraine
Sanjay Mohan - Shri Mata Vaishno Devi University, India
Marek Mróz - Politechnika Rzeszowska, Rzeszów, Poland
Sebastian Mróz - Czestochowa University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Częstochowa, Poland
Konstantin Nikitin - Samara State Technical University, Russia
Daniel Pakuła - Silesian University of Technology, Gliwice, Poland


Ta strona wykorzystuje pliki 'cookies'. Więcej informacji