Applied sciences

Bulletin of the Polish Academy of Sciences Technical Sciences

Content

Bulletin of the Polish Academy of Sciences Technical Sciences | 2021 | 69 | 5

Download PDF Download RIS Download Bibtex

Bibliography

  1.  S. Luhar, T.W. Cheng, D. Nicolaides, I. Luhar, D. Panias, and K. Sakkas, “Valorisation of glass wastes for the development of geopolymer composites—Durability, thermal and microstructural properties: A review,” Constr. Build. Mater., vol. 222, pp. 673–687, 2019.
  2.  K. Zulkifly et al., “Elevated-Temperature Performance, Combustibility and Fire Propagation Index of Fly Ash-Metakaolin Blend Ge- opolymers with Addition of Monoaluminium Phosphate (MAP) and Aluminum Dihydrogen Triphosphate (ATP),” Materials, vol.  14, p. 1973, 2020.
  3.  S. Hasani, P. Rezaei-Shahreza, A. Seifoddini, and M. Hakimi, “Enhanced glass forming ability, mechanical, and magnetic properties of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass with minor addition of Cu,” J. Non-Cryst. Solids, vol. 497, pp. 40–47, 2018.
  4.  J. Zhou, W. Yang, C. Yuan, B. Sun, and B. Shen, “Ductile FeNi-based bulk metallic glasses with high strength and excellent soft magnetic properties,” J. Alloys Compd., vol. 742, pp. 318‒324, 2018.
  5.  M. Nabiałek et al., “Relationship between the shape of X-ray diffraction patterns and magnetic properties of bulk amorphous alloys Fe65Nb5Y5+xHf5–xB20 (where: 0, 1, 2, 3, 4, 5),” J. Alloys Compd., vol. 820, p. 153420, 2020.
  6.  S. Chen et al., “Elevated-temperature tensile deformation and fracture behavior of particle-reinforced PM 8009Al matrix composite,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138846, 2021, doi: 10.24425/bpasts.2021.138846.
  7.  S. Berdowska, J. Berdowski, and F. Aubry, “The relationship between the structural anisotropy of the PFA polymer/compressed expanded graphite-matrix composites and acoustic emission characteristics,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138235, 2021, doi: 10.24425/bpasts.2021.138235.
  8.  M. Mikuśkiewicz, “Silicon nitride/carbon nanotube composites: preparation and characterization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138234, 2021, doi: 10.24425/bpasts.2021.138234.
  9.  L. Sozańska-Jędrasik, W. Borek, and J. Mazurkiewicz, “Mechanisms of plastic deformation in light high-manganese steel of TRIPLEX type,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137412, 2021, doi: 10.24425/bpasts.2021.137412.
  10.  A. Zieliński, R. Wersta, and M. Sroka, “Analysis of the precipitation process of secondary phases after long-term ageing of S304H steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137520, 2021, doi: 10.24425/bpasts.2021.137520.
  11.  K. Pawlik, “Structure and properties of suction-cast Pr-(Fe, Co)-(Zr, Nb)-B rod magnets,” Bull. Pol. Acad. Sci. Tech. Sci., vol.  69, no. 5, p. e138971, 2021, doi: 10.24425/bpasts.2021.138971.
  12.  S. Lesz, B. Hrapkowicz, K. Gołombek, M. Karolus, and P. Janiak, “Synthesis of Mg-based alloys with rare-earth element addition by means of mechanical alloying,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137586, 2021, doi: 10.24425/bpasts.2021.137586.
  13.  B. Hrapkowicz, S. Lesz, M. Kremzer, M. Karolus, and W. Pakieła, “Mechanical alloying of Mg-Zn-Ca-Er alloy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137587, 2021, doi: 10.24425/bpasts.2021.137587.
  14.  A.M. Țițu, A.B. Pop, M. Nabiałek, C.C. Dragomir, and A.V. Sandu, “Experimental modeling of the milling process of aluminum alloys used in the aerospace industry,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e138565, 2021, doi: 10.24425/bpasts.2021.138565.
  15.  M. Staszuk et al., “Investigations of TiO2, Ti/TiO2, and Ti/TiO2/Ti/TiO2 coatings produced by ALD and PVD methods on Mg-(Li)-Al- RE alloy substrates,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137549, 2021, doi: 10.24425/bpasts.2021.137549.
  16.  R. Szklarek et al., “High temperature resistance of silicide-coated niobium,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137416, 2021, doi: 10.24425/bpasts.2021.137416.
  17.  T. Tański, W. Smok, and W. Matysiak, “Characterization of morphology and optical properties of SnO2 nanowires prepared by electrospinning,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e 137507, 2021, doi: 10.24425/bpasts.2021.137507.
Go to article

Authors and Affiliations

Bogusław Major
1
ORCID: ORCID
Andrei Victor Sandu
2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3
Marcin Nabiałek
4
ORCID: ORCID
Tomasz Tański
5
ORCID: ORCID
Adam Zieliński
6
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science Polish Academy of Science, ul. Reymonta 25, 30-059 Kraków, Poland
  2. Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, 71 D. Mangeron Blvd., 700050 Iasi, Romania
  3. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 01000 Perlis, Malaysia
  4. Institute of Physics, Czestochowa University of Technology, ul. Dabrowskiego 69, 42-201 Czestochowa, Poland
  5. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100, Gliwice, Poland
  6. Sieć Badawcza Łukasiewicz – Instytut Metalurgii Żelaza im. Stanisława Staszica, (Łukasiewicz Research Network – Institute for Ferrous Metallurgy), ul. K. Miarki 12-14, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Tensile tests of 8009Al alloy reinforced with SiC and Al₂O₃ particles fabricated by powder metallurgy (PM) were conducted at temperatures of 250–350°C and strain rates of 0.001–0.1 s⁻¹. The ultimate tensile strength and yield strength of the samples decreased while the temperature and strain rate increased. The elongation slightly decreased at first and then increased with growing temperature because of the medium-temperature brittleness of the alloy matrix. When the strain rate was 0.1 s⁻¹, the elongation of the 8009Al/Al₂O₃ composites always decreased with an increase in temperature because of the poorly coordinated deformation and weak bonding between the matrix and Al₂O₃ particles at such a high strain rate. The work-hardening rates of the composites sharply increased to maxima and then decreased rapidly as the strain increased. Meanwhile, the 8009Al/SiCₚ composites displayed superior UTS, YS, elongation, and work-hardening rates than those of the 8009Al/Al₂O₃ composites under the same conditions. Compared to 8009Al alloys reinforced with spherical Al₂O₃ particle, 8009Al alloys reinforced with irregular SiC particles exhibited a better strengthening effect. The fracture mechanism of the 8009Al/SiCₚ composites was mainly ductile, while that of the 8009Al/Al₂O₃ composites was primarily debonding at the matrix–particle interfaces in a brittle mode.
Go to article

Bibliography

  1.  P.-h. Lü, X.F. Wang, C.G. Dong, C.Q. Peng, and R.C. Wang, “Preparation and characterization of different surface modified SiCp reinforced Al-matrix composites,” J. Cent. South Univ., vol. 27, no. 9, pp. 2567–2577, 2020, doi: 10.1007/s11771-020-4482-z.
  2.  C. Emmy Prema, S. Suresh, G. Ramanan, and M. Sivaraj, “Characterization, corrosion and failure strength analysis of Al7075 influenced with B4C and Nano-Al2O3 composite using online acoustic emission,” Mater. Res. Express, vol. 7, no. 1, pp. 016524, 2020, doi: 10.1088/2053- 1591/ab6257.
  3.  S.V. Nair, J.K. Tien, and R.C. Bates, “SiC-reinforced aluminium metal matrix composites International Metals Reviews,” Int. Met. Rev., vol. 30, no. 1, pp. 275–290, 1985, doi: 10.1179/imtr.1985.30.1.275.
  4.  Q. Yan, D. Fu, X. Deng, H. Zhang, and Z. Chen, “Tensile deformation behavior of spray-deposited FVS0812 heat-resistant aluminum alloy sheet at elevated temperatures,” Mater. Charact., vol.  58, no. 6, pp. 575–579, 2007, doi: 10.1016/j.matchar.2006.06.024.
  5.  Z.H. Chen, Y.Q. He, H.G. Yan, Z.G. Chen, X.J. Yin, and G. Chen, “Ambient temperature mechanical properties of Al-8.5Fe-1.3V-1.7Si/ SiC_P composite,” Mater. Sci. Eng. A, vol. A460‒61, no.  Jul, pp. p.180–185, 2007, doi: 10.1016/j.msea.2007.02.105.
  6.  D. Shimansky and H.J. McQueen, “Hot Working Of Heat Resistant Rapidly Solidified AI-Fe-V-Si Alloy,” High Temp. Mat., vol. 18, no. 4, pp. 241–252, 1999, doi: 10.1515/HTMP.1999.18.4.241.
  7.  S. Hariprasad, S. Sastry, and K.L. Jerina, “Deformation behavior of a rapidly solidified fine grained Al-8.5%Fe-1.2%V-1.7%Si alloy,” Acta. Mater., vol. 44, no. 1, pp. 383–389, 1995, doi: 10.1016/1359-6454(95)00160-1.
  8.  Y.D. Xiao, W. Wang, and L.I. Wen-Xian, “High temperature deformation behavior and mechanism of spray deposited Al-Fe-V-Si alloy,” Trans. Nonferrous Met. Soc. China, vol. 17, no. 006, pp. 1175–1180, 2007, doi: 10.1016/S1003-6326(07)60245-3.
  9.  S. Sun, L. Zheng, P. Hui, and Z. Hu, “Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting,” Mater. Sci. Eng. A, vol. 659, no. 6, pp.  207–214, 2016, doi: 10.1016/j.msea.2016.02.053.
  10.  Y. He, H. Tu, B. Qiao, L. Feng, J. Yang, and Y. Sun, “Tensile fracture behavior of spray-deposited SiCP/Al–Fe–V–Si composite sheet,” Adv. Compos. Mater., vol. 22, no. 4, pp. 227–237, 2011, doi: 10.1080/09243046.2013.796626.
  11.  L. Hao, Y.Q. He, N. Wang, Z.H. Chen, Z.G. Chen, H.G. Yan, and Z.K. Xu, “The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited SiCP/Al–11.7Fe–1.3V–1.7Si Composite,” Adv. Compos. Mater., vol. 18, no. 4, pp.  351–364, 2009, doi: 10.1163/156855109X434766.
  12.  S. Chen, D. Fu, H. Luo, Y. Wang, J. Teng, and H. Zhang, “Hot workability of PM 8009Al/Al2O3 particle-reinforced composite characterized using processing maps,” Vacuum, vol. 149, pp. 297–305, 2018, doi: 10.1016/j.vacuum.2018.01.001.
  13.  C. Shuang, T. Jie, H. Luo, W. Yu, and Z. Hui, “Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites,” Mater. Sci. Eng. A, vol. 697, pp. 194–202, 2017, doi: 10.1016/j.msea.2017.05.016.
  14.  M.H. Guo, J. Y. Liu, C.C. Jia, Q.J. Jia, and S.J. Guo, “Microstructure and properties of electronic packaging shell with high silicon carbide aluminum-base composites by semi-solid thixoforming,” J. Cent. South Univ., vol. 21, no. 11, pp. 4053–4058, 2014, doi: 10.1007/s11771- 014-2396-3.
  15.  H.S. Chen, W.X. Wang, H.H. Nie, J. Zhou, Y.L. Li, R.F. Liu, Y.Y. Zhang, and P. Zhang, “Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy,” J Alloys Compd., vol.  730, pp. 342–351, 2018, doi: 10.1016/j.jallcom.2017.09.312.
  16.  H.S. Chen, W.X. Wang, Y.L. Li, P. Zhang, H.H. Nie, and Q.C. Wu, “The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites,” J. Alloy. Compd., vol. 632, pp. 23–29, 2015, doi: 10.1016/j.jallcom.2015.01.048.
  17.  H. Sun, X. Li, P. Zhang, and W. Fang, “The microstructure and tensile properties of the Ti2AlC reinforced TiAl composites fabricated by powder metallurgy,” Mater. Sci. Eng. A, vol. 611, pp. 257–262, 2014, doi: 10.1016/j.msea.2014.06.009.
  18.  W. Zhang, D. Chai, G. Ran, and J.E. Zhou, “Study on microstructure and tensile properties of in situ fiber reinforced aluminum matrix composites,” Mater. Sci. Eng. A, vol. 476, no. 1/2, pp.  157–161, 2008, doi: 10.1016/j.msea.2007.05.018.
  19.  S. Ghanaraja, K.L.V. Kumar, K.S. Ravikumar, and B.M. Madhusudan, “Mechanical Properties of Al2O3 Reinforced Cast and Hot Extruded Al based Metal Matrix Composites,” Mater. Today: Proc., vol. 4, no. 2, Part A, pp. 2771–2776, 2017, doi: 10.1016/j.matpr.2017.02.155.
  20.  M. Sharififar and S. Mousavi, “Tensile deformation and fracture behavior of CuZn5 brass alloy at high temperature,” Mater. Sci. Eng. A, vol. 594, no. 1, pp. 118–124, 2014, doi: 10.1016/j.msea.2013.11.051.
  21.  D. Hull and D. J. Bacon, Introduction to Dislocations,4th Ed., 2001, Oxford.
  22.  H. Luo, J. Teng, S. Chen, Y. Wang, and H. Zhang, “Flow stress and processing map of a PM 8009Al/SiC particle reinforced composite during hot compression,” J. Mater. Eng. Perform., vol. 26, no.  10, pp. 4789–4796, 2017, doi: 10.1007/s11665-017-2963-5.
  23.  E. Bouchaud, L. Kubin, and H. Octor, “Ductility and dynamic strain ageing in rapidly solidified aluminium alloys. Metall Trans 22A:1021‒1028,” Metall. Trans. A, vol. 22, no. 5, pp. 1021–1028, 1991, doi: 10.1007/BF02661095.
  24.  D.M. Li and A. Bakker, “Temperature and strain rate dependence of the portevin-le chatelier effect in a rapidly solidified Al alloy,” Metall. Mater. Trans., vol. 26, no. 11, pp. 2873–2879, 1995, doi: 10.1007/BF02669645.
  25.  L. Yuan, W. Shi, Z. Zheng, and D. Shan, “Effect of the aspect ratio of whisker on work-hardening rate of as forged 2024Al/Al18B4O33w composite,” Mater. Charact., vol. 104, pp. 73–80, 2015, doi: 10.1016/j.matchar.2015.04.006.
  26.  W.J. Li, K.K. Deng, X. Zhang, C.J. Wang, J.W. Kang, K.B. Nie, and W. Liang, “Microstructures, tensile properties and work-hardening behavior of SiCp/Mg-Zn-Ca composites,” J. Alloy. Compd., vol. 695, pp. 2215–2223, 2016, doi: 10.1016/j.jallcom.2016.11.070.
  27.  T.S. Srivatsan, M. Al-Hajri, C. Smith, and M. Petraroli, “The tensile response and fracture behavior of 2009 aluminum alloy metal matrix composite,” Mater. Sci. Eng. A, vol. 346, no. 1–2, pp.  91–100, 2003, doi: 10.1016/S0921-5093(02)00481-1.
  28.  M. Vedani, F. D’Errico, and E. Gariboldi, “Mechanical and fracture behaviour of aluminium-based discontinuously reinforced composites at hot working temperatures,” Compos. Sci. Technol, vol.  66, no. 2, pp. 343–349, 2006, doi: 10.1016/j.compscitech.2005.04.045.
  29.  J.Y. Bai, C.L. Fan, S.B. Lin, C.L. Yang, and B.L. Dong, “Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment,” J. Mater. Eng. Perform., vol. 26, no. 4, pp. 1808–1816, 2017, doi: 10.1007/s11665-017-2627- 5.
  30.  B.Q. Han, K.C. Chan, T.M. Yue, and W.S. Lau, “High temperature deformation behavior of Al 2124-SiCp composite,” J. Mater. Process. Tech., vol. 63, no. 1–3, pp. 395–398, 1997, doi: 10.1016/S0924-0136(96)02653-2.
  31.  P. Yu et al., “Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs,” Mater. Sci. Eng. A, vol. 444, no. 1–2, pp. 206–213, 2007, doi: 10.1016/j.msea.2006.08.077.
  32.  Y.K. Xu, M. Han, X. Jian, and E. Ma, “Mg-based bulk metallic glass composites with plasticity and gigapascal strength,” Acta Mater., vol. 53, no. 6, pp. 1857–1866, 2005, doi: 10.1016/j.actamat.2004.12.036.
  33.  J. Fan, K. Zhnag, and L. Shi, “Interface Characterization of the SiCp/Al Composites Made by Powder Metallurgy,” J. Mater. Sci. Technol., vol. 15, no. 2, pp. 147–150, 1999, https://www.jmst.org/EN/abstract/abstract5749.shtml.
  34.  J.-Ch., Lee, and, J.-Y. Byun, S.-B. Park, and H.-I. Lee, “Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite,” Acta Mater., vol. 46, pp.  1771–1780, 1998, doi: 10.1016/S1359-6454(97)00265-6.
  35.  J.K. Park and J.P. Lucas, “Moisture effect on SiCp/6061 Al MMC: Dissolution of interfacial Al4C3,” Scripta Mater., vol. 37, no. 4, pp. 511–516, 1997, doi: 10.1016/S1359-6462(97)00133-4.
  36.  J. Long-tao et al., “Microstructure and tensile properties of TiB2p/6061Al composites,” Trans. Nonferrous Met. Soc. China, vol. 19, no. 8, pp. 542–546, 2009, doi: 10.1016/S1003-6326(10)60105-7.
  37.  B. Ogel and R. Gurbuz, “Microstructural characterization and tensile properties of hot pressed Al–SiC composites prepared from pure Al and Cu powders,” Mater. Sci. Eng. A, vol. 301, no. 2, pp.  213–220, 2001, doi: 10.1016/S0921-5093(00)01656-7.
  38.  Y. Qiao et al., “Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy,” J. Mater. Sci. Technol., vol. 60, pp. 168–176, 2021, doi: 10.1016/j.jmst.2020.06.010.
  39.  Y.X. Qiao et al., “Corrosion Behavior of a Nickel-Free High-Nitrogen Stainless Steel With Hydrogen Charging,” JOM, vol. 73, no. 4, pp. 1165–1172, 2021, doi: 10.1007/s11837-021-04569-2.
  40.  J. Wu, Y. Qiao, Y. Chen, L. Yang, X. Cao, and S. Jin, “Correlation between Corrosion Films and Corrosion-Related Defects Formed on 316 Stainless Steel at High Temperatures in Pressurized Water,” J. Mater. Eng. Perform., vol. 30, pp. 3577–3585, 2021, doi: 10.1007/ s11665-021-05688-2.
  41.  S. Lesz, B. Hrapkowicz, K. Gołombek, M. Karolus, and P. Janiak, “Synthesis of Mg-based alloys with a rare-earth element addition by mechanical alloying,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e137586, 2021, doi: 10.24425/bpasts.2021.137586.
Go to article

Authors and Affiliations

Shuang Chen
1
Guoqiang Chen
1
Pingping Gao
1 2
Chunxuan Liu
2
Anru Wu
1
Lijun Dong
1
Zhonghua Huang
1
Chun Ouyang
1 3 4
Hui Zhang
5

  1. Hunan Provincial Key Laboratory of Vehicle Power and Transmission System, Hunan Institute of Engineering, Xiangtan 411104, China
  2. Hunan Gold Sky Aluminum Industry High-tech Co., Ltd., Changsha 410205, China
  3. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 21200, China
  4. CETC Maritime Electronics Research Institute Co., Ltd., Ningbo Zhejiang 315000, China
  5. College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Download PDF Download RIS Download Bibtex

Abstract

The main aim of the study was to search for the relationship between the anisotropy of the structure of polyfurfuryl alcohol (PFA) – polymer/compressed expanded graphite (CEG)-matrix composites at subsequent stages of the technological process and characteristics of the acoustic emission (AE) descriptors. These composites, obtained after successive technological procedures of impregnation, polymerization, and carbonization, possess different structure, densities, porosity, and other physicochemical properties. In the structures of composites prepared on the basis of CEG, two basic directions can be distinguished: parallel to the bedding plane of graphite sheets and perpendicular to it. The measurements were carried out for the stress acting in these two main directions. The investigation has shown that the AE method enables the detection of anisotropy in the structure of materials. The results of the research show that all four of the acoustic emission descriptors studied in this work are sensitive to the technological stages of these materials on the one hand and their structure anisotropy on the other. Fourier analysis of the recorded spectra provides interesting conclusions about the structural properties of composites as well as a lot of information about the bonding forces between the carbon atoms of which the CEG matrix is composed and the PFA polymer or turbostratic carbon.
Go to article

Bibliography

  1.  A. Celzard, M. Krzesinska, D. Begin, J. Mareche, S. Puricelli, and G. Furdin, “Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites”, Carbon, vol. 40, pp. 557‒566, 2002, doi: 10.1016/S0008-6223(01)00140-3.
  2.  L. Shi, Z. Li, W. Yang, M. Yang, Q. Zhou, and R. Huang, “Properties and microstructure of expandable graphite particles pulverized with an ultra-high-speed mixer”, Powder Technol., vol. 170, no. 3, pp. 178‒184, 2006.
  3.  W. Zheng, and S. Wong, “Electrical conductivity and dielectric properties of PMMA/expanded graphite composites”, Compos. Sci. Technol., vol. 63, pp. 225–235, 2003.
  4.  J. Fu, H. Xu, Y. Wu, Y. Shen, and Ch. Du, “Electrical properties and microstructure of vinyl ester resin/compressed expanded graphite- based composites”, J. Reinf. Plast. Compos., vol. 31, pp. 3‒11, 2012, doi: 10.1177/0731684411431355.
  5.  E. Solfitia and F. Bertoa, “A review on thermophysical properties of flexible graphite”. Procedia Struct. Integrity, vol. 26, pp. 187‒198, 2020. doi: 10.1016/j.prostr.2020.06.022.
  6.  F. Uhl, Q. Yao, H. Nakajima, E. Manias, and Ch. Wilkie, “Expandable graphite/polyamide-6 nanocomposites”, Polym. Degrad. Stabil., vol. 89, pp. 70–84, 2005.
  7.  P. Xiao, M. Xiao, and K. Gong, “Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique”, Polymer, vol. 42, pp. 4813–4816, 2001.
  8.  G. Nanni et al., “Poly(furfuryl alcohol)-Polycaprolactone blends”, Polymers, vol. 11, pp. 1069‒1982, 2019, doi: 10.3390/polym11061069.
  9.  H. Wang and J. Yao, “Use of Poly(furfuryl alcohol) in the fabrication of nanostructured carbons and nanocomposites”, Ind. Eng. Chem. Res., vol. 45, pp. 6393–6404, 2006.
  10.  C. Burket, R. Rajagopalan, A. Marencic, K. Dronvajjala, and H. Foley, “Genesis of porosity in polyfurfuryl alcohol derived nanoporous carbon”, Carbon, vol. 44, pp. 2957–2963, 2006.
  11.  L. Pranger, G. Nunnery, and R. Tannenbaum, “Mechanism of the nanoparticle-catalyzed polymerization of furfuryl alcohol and the thermal and mechanical properties of the resulting nanocomposites”, Compos. Part B Eng., vol. 43, pp. 1139–1146, 2012. doi: 10.1016/j. compositesb.2011.08.010.
  12.  C. Guo, L. Zhou, and J. Lv, “Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites”, Polym. Compos., vol. 21, pp. 449–456, 2013.
  13.  L. Jin, W. Huanting, C. Shaoan, and C. Kwong-Yu, “Nafion-polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells”, J. Memb. Sci., vol. 246, pp. 95–101, 2005.
  14.  W. Li, Ch. Han, W. Liu, M. Zhang, and K. Tao, “Expanded graphite applied in the catalytic process as a catalyst support”, Catal. Today, vol. 125, no. 3‒4, pp. 278‒281, 2007, doi: 10.1016/j.cattod.2007.01.035.
  15.  A. Celzard, J. Mareche, and G. Furdin, “Modeling of exfoliated graphite”, Prog. Mater. Sci., vol. 50, pp. 93‒179, 2005.
  16.  M.B. Shiflett and H.C. Foley, “Ultrasonic deposition of high-selectivity nanoporous carbon membranes”, Science, vol. 285, pp. 1902‒1905, 1999, doi: 10.1126/science.285.5435.1902.
  17.  M.B. Shiflett and H.C. Foley, “On the preparation of supported nanoporous carbon membranes”, J. Membr. Sci., vol. 179, pp. 275‒282, 2000, doi: 10.1016/S0376-7388(00)00513-5.
  18.  C. Song, T. Wang, X. Wang, J. Qiu, and Y. Cao, “Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes”, Sep. Purif. Technol., vol. 58, pp. 412‒418, 2008, doi: 10.1016/j.seppur.2007.05.019.
  19.  X. Yan, M. Hou, H. Zhang, F. Jing, P. Ming, and B. Yi, “Performance of PEMFC stack using expanded graphite bipolar plate”, J. Power Sourc., vol. 160, pp. 252‒257, 2006.
  20.  C. Du, P. Ming, M. Hou, J. Fud, Y. Fuc, X. Luo, Q. Shen, Z. Shao, and B. Yi, “The preparation technique optimization of epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells”, J. Power Sourc., vol. 195, pp. 5312‒5319, 2010, doi: 10.1016/j.jpowsour.2010.03.005.
  21.  C. Du, et al., “Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells”, J. Power Sourc., vol. 195, pp. 794‒800, 2010.
  22.  R. Wlodarczyk, Porous carbon materials for elements in low-temperature fuel cells”, Arch. Metal. and Mater., vol. 60, no. 1, pp. 117‒120, 2015, doi: 10.1515/amm-2015-0019.
  23.  J. Berdowski, S. Berdowska, and F. Aubry, “Study of properties of expanded graphite-polymer porous composites by acoustic emission method”, Arch. Metall. Mater., vol. 58, no. 4, pp. 1331‒1336, 2013, doi: 10.2478/amm-2013-0169.
  24.  A. Berdowska, J. Berdowski, and F. Aubry, “Study of graphite – polymer – turbostratic carbon composites by acoustic emission method at perpendicular geometry”, Arch. Metall. Mater., vol. 63, no. 3, pp. 1287‒1293, 2018, doi: 10.24425/123803.
  25.  Z. Ranachowski, Measurements and analysis of the acoustic emission signal, Warsaw, IPPT PAN, 1996, [in Polish].
  26.  A. Zakupin, et al., Acoustic emission, ed., W. Sikorski, Rijeka, Shanghai, In Tech, 2012, pp. 173‒198.
  27.  M. Šofer, J. Cienciala, M. Fusek, P. Pavlíček, and R. Moravec, “Damage analysis of composite CFRP tubes using acoustic emission monitoring and pattern recognition approach”, Materials, vol. 14, no. 4, pp. 786, 2021, doi: 10.3390/ma14040786
  28.  J. Zapała-Sławeta, and G. Świt, “Monitoring of the impact of lithium nitrate on the alkali-aggregate reaction using acoustic emission methods”, Materials, vol. 12, no. 1, pp. 20‒28, 2019.
  29.  J. Li, F. Beall, and T. Breiner, “Analysis of racking of structural assemblies using acoustic emission”, in Advances in acoustic emission, ed., K. Ono, Nevada, USA, Acoustic Emission Working Group, 2007, pp. 202‒207.
  30.  G. Świt and J. Zapała-Sławeta, “Application of acoustic emission to monitoring the course of the alkali-silica reaction”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, pp. 169‒178, 2020, doi: 10.24425/bpasts.2020.131832.
  31.  I. Malecki, and J. Ranachowski, Acoustic emission, Warsaw, PASCAL, 1994, [in Polish].
  32.  A. Jaroszewska, J. Ranachowski, and F. Rejmund, “Destruction processes and material strength”, ed. J. Ranachowski, Warsaw, IPPT PAN, 1996, pp. 183, [in Polish].
  33.  A. Dode and M. Rao, “Pattern recognition of acoustic emission signals from PZT ceramics”, NDT.net, vol. 7, no. 9, 2002.
  34.  M. Raminnea, “Frequency analysis in sandwich higher order plates imposing various boundary conditions”, Int. J. Hydromechatronics, vol. 2, no. 1, pp. 63–76, 2019.
  35.  K. Ito and M. Enoki, “Real-time denoising of AE signals by short time Fourier transform and wavelet transform”, in Advances in acoustic emission, ed. K. Ono, Nevada, USA, Acoustic Emission Working Group, 2007, pp. 94‒99.
Go to article

Authors and Affiliations

Sylwia Berdowska
1
Janusz Berdowski
1 2
Aubry Frederic
3

  1. Faculty of Electrical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Częstochowa, Poland
  2. Faculty of Science and Technology, J. Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
  3. Maitrise de Chimie-Physique, Université Henri Poincaré, Nancy, France
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the preparation of silicon nitride composites with multi-walled carbon nanotubes (MWCNTs). Samples containing 1–10 wt% MWCNTs were ultrasonically processed in non-aqueous suspensions, dried, pressed, and then subjected to non-pressure sintering at 1600 °C for 2 h. The preliminary results showed that the mixture of activated silicon nitride and covered MWCNTs could be sintered. The porosity of the obtained samples ranged from 0.27 to 36.94 vol.%. The microstructure was observed by scanning electron microscopy (SEM), and the mechanical properties (hardness and fracture toughness) were also determined. Good hardness values were obtained for samples prepared by sintering the mechanically activated precursor under a flowing nitrogen atmosphere using the lowest fraction of CNTs. Residual activator reduced the densification of the composites.
Go to article

Bibliography

  1.  M.S. Dresselhaus, G. Dresselhaus, and A. Jorio, “Unusual properties and structure of carbon nanotubes,” Ann. Rev. Mater. Res., vol. 34, pp. 247‒278, 2004, doi: 10.1146/annurev.matsci.34.040203.114607.
  2.  S.V. Egorov et al., “Rapid microwave sintering of alumina ceramics with an addition of carbon nanotubes,” Ceram. Int., vol. 47, no. 4, pp. 4604‒4610, Feb. 2021, doi: 10.1016/j.ceramint.2020.10.027.
  3.  I. Momohjimoh, M.A. Hussein, and N. Al-Aqeeli, “Recent Advances in the Processing and Properties of Alumina–CNT/SiC Nanocomposites,” Nanomaterials, vol. 9, no.1, pp. 86, 2019, doi: 10.3390/nano9010086.
  4.  E.T. Thostenson, Z. Ren, and T.W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol., vol. 61, pp. 1899‒1912, 2001, doi: 10.1016/S0266-3538(01)00094-X.
  5.  A. Qadir, P. Pinke, and J. Dusza, “Silicon Nitride-Based Composites with the Addition of CNTs—A Review of Recent Progress, Challenges, and Future Prospects,” Materials, vol. 13, pp. 2799, 2020, doi: 10.3390/ma13122799.
  6.  J. Wang, X. Deng, and S. Du, “Carbon Nanotube Reinforced Ceramic Composites: A Review”, Int. Ceram. Rev., vol. 63, pp.  286–289, 2014, doi: 10.1007/BF03401072.
  7.  P. Manikandan, A. Elayaperumal, and R.F. Issac, “Influence of mechanical alloying process on structural, mechanical and tribological behaviours of CNT reinforced aluminium composites – a statistical analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136745, 2021, doi: 10.24425/bpasts.2021.136745.
  8.  K.J.D. MacKenzie and D.V. Barneveld, “Carbothermal synthesis of b-sialon from mechanochemically activated precursors,” J. Eur. Ceram. Soc., vol. 26, pp. 209‒215, 2006, doi: 10.1016/j.jeurceramsoc.2004.10.004.
  9.  M. Sopicka-Lizer et al., “The effect of mechanical activation on the properties of -sialon precursors,” J. Eur. Ceram. Soc., vol.28, pp. 279‒288, 2008, doi: 10.1016/j.jeurceramsoc.2007.05.003.
  10.  S. Walczak and M. Sibiński, “Flexible, textronic temperature sensors, based on carbon nanostructures”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 62 no. 4, pp. 759‒763, 2014, doi: 10.2478/bpasts-2014-0082.
  11.  X. Xu et al., “Fabrication of b-sialon nanoceramics by high-energy mechanical milling and spark plasma sintering,” Nanotechnology, vol. 16, no. 9, pp. 1569‒1573, 2005, doi: 10.1088/0957-4484/16/9/027.
  12.  M. Sopicka-Lizer, M. Mikuśkiewicz (Tańcula), T. Pawlik, V. Kochnev, and E. Fokina, “The New Top-to-Bottom Method of SiAlON Precursor Preparation by Activation in a Planetary Mill With a High Acceleration,” Mater. Sci. Forum., vol. 554, pp. 59‒64, 2007, doi: 10.4028/www.scientific.net/MSF.554.59.
  13.  M. Sopicka-Lizer, T. Pawlik, T. Włodek, M. Mikuśkiewicz (Tańcula), and G. Chernik, “The Effect of Sialon Precursor Nanostructurization in a Planetary Mill on the Properties of Sintered Ceramics,” Key Eng. Mater., vol. 352, pp. 179‒184, 2007, doi: 10.4028/www.scientific. net/KEM.352.179.
  14.  M. Sopicka-Lizer, T. Pawlik, T. Włodek, and M. Mikuśkiewicz (Tańcula), “The phase evolution in the Si3N4-AlN system after high-energy mechanical treatment of the precursor powder,” Key Eng. Mater., vol. 403, pp. 7‒10, 2009, doi: 10.4028/www.scientific.net/KEM.403.7.
  15.  Q. Liu, Q. Lu, G. Liu, and Q. Wei, “Preparation and property of β-SiAlON:Eu2+ luminescent fibers by an electrospinning method combined with carbothermal reduction nitridation,” J. Lumines., vol. 169, pp. 749‒754, 2016, doi: 10.1016/j.jlumin.2015.05.001.
  16.  M. Biswas, S. Sarkar, and S. Bandyopadhyay, “Improvements in mechanical properties of SPS processed 15R-SiAlON polytype through structurally survived MWCNT reinforcement,” Mater. Chem. Phys. Mater. Chem. Phys., vol. 222, pp. 75‒80, 2019, doi: 10.1016/j. matchemphys.2018.09.084.
  17.  V. Trovato, E. Teblum, Y. Kostikov, A. Pedrana, V. Re, G.D. Nessim, G. Rosace, “Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution,” J. Colloid Interface Sci., vol. 586, pp. 120‒134, 2021, doi: 10.1016/j.jcis.2020.10.076.
Go to article

Authors and Affiliations

Marta Mikuśkiewicz
1
ORCID: ORCID

  1. Faculty of Materials Engineering, Department of Advanced Materials and Technologies, Silesian University of Technology, ul. Krasinskiego 8, 40-019 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this scientific publication, research results of two newly developed hot-rolled Fe-Mn-Al-C (X105) and Fe-Mn-Al-Nb-Ti-C (X98) types of steel were compared. These types of steel are characterized by an average density of 6.68 g/cm³, a value 15% lower compared to conventional structural steel. Hot rolling was carried out on a semi-industrial line to evaluate the effect of hot plastic deformation conditions with different cooling variants on the structure. The detailed analysis of phase composition as well as microstructure allows us to state that the investigated steel is characterized by an austenitic-ferritic structure with carbides precipitates. The results of the transmission electron microscopy (TEM) tests of both types of steel after hot rolling showed the occurrence of various deformation effects such as shear bands, micro bands, and lens twins in the microstructure. Based on the research undertaken with the use of transmission electron microscopy, it was found that the hardening mechanism of the X98 and X105 steel is deformation-induced plasticity by the formation of shear bands (SIP) and micro shear bands (MBIP).
Go to article

Bibliography

  1.  M. Bausch, G. Frommeyer, H. Hofmann, E. Balichev, M. Soler, M. Didier, and L. Samek, Ultra high-strength and ductile FeMnAlC light- weight steels, European Commission Research Fund for Coal and Steel; Final Report Grant Agreement RFSR-CT-2006-00027, 2013.
  2.  Y. Kimura, K. Hayashi, K. Handa, and Y. Mishima, “Microstructural control for strengthening the γ-Fe/E21–(Fe, Mn)3AlCx alloys,” Mater. Sci. Eng. A, vol. 329, no. 331, pp. 680‒685, 2002.
  3.  K. Eipper, G. Frommeyer, W. Fussnegger, and A.K.W. Gerick, High-strength DUPLEX/TRIPLEX steel for lightweight construction and use thereof, U.S. Patent 20070125454A1, 2002.
  4.  L. Sozańska-Jędrasik, Structure and properties of newly developed TRIPLEX high-manganese steels (title in Polish: Struktura i własności nowoopracowanych stali wysokomanganowych typu TRIPLEX), PhD. Thesis, Silesian University of Technology, Gliwice, Poland 2020, [in Polish].
  5.  L. Sozańska-Jędrasik, J. Mazurkiewicz, W. Borek, and K. Matus, ”Carbides analysis of the high strength and low density Fe-Mn-Al-Si steels,” Arch. Metall. Mater., vol. 63, no. 1, pp.  265‒276, 2018.
  6.  L. Sozańska-Jędrasik, J. Mazurkiewicz, K. Matus, and W. Borek, “Structure of Fe-Mn-Al-C Steels after Gleeble Simulations and Hot- Rolling,” Materials, vol. 13, no. 3, p. 739, 2020.
  7.  G. Frommeyer and U. Brüx, “Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels,” Steel Res. Int., vol. 77, no. 9‒10, pp. 627‒633, 2006.
  8.  M. Jabłońska, “Struktura i Właściwości Austenitycznej Stali Wysokomanganowej Umacnianej Wskutek Mechanicznego Bliźniakowania w Procesach Dynamicznej Deformacji,” Publishing house of the Silesian University of Technology (Wydawnictwo Politechniki Śląskiej), Gliwice, Poland, 2016, [in Polish].
  9.  S. Chen, R. Rana, A. Haldar and R.K. Ray, “Current state of Fe-Mn-Al-C low density steels,” Prog. Mater. Sci., vol.  89, pp. 345‒391, 2017.
  10.  A. Grajcar, “Nowoczesne stale wysokowytrzymałe dla motoryzacji II generacji,” STAL Metale & Nowe Technologie, vol.  7‒8, no. 10‒13, pp. 10‒13, 2013, [in Polish].
  11.  S.S. Sohn et al., “Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization,” Acta Mater., vol. 96, pp. 301‒310, 2015.
  12.  M.C. Ha, J.M. Koo, J.K. Lee, S.W. Hwang and K.T. Park, “Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature,” Mater. Sci. Eng. A, vol. 586, pp. 276‒283, 2013.
  13.  U. Brüx, G. Frommeyer, and J. Jimenez, “Light-weight steels based on iron-aluminium – Influence of micro alloying elements (B, Ti, Nb) on microstructures, textures and mechanical properties,” Steel Res., vol. 73, no. 12, pp. 543‒548, 2002.
  14.  J.D. Yoo and K.T. Park, “Microband-induced plasticity in a high Mn–Al–C light steel,” Mater. Sci. Eng. A, vol. 496, no. 1‒2, pp. 417‒424, 2008.
  15.  J.D. Yoo, S.W. Hwang, and K.T. Park, “Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel,” Metall. Mater. Trans. A, vol. 40, no. 7, pp. 1520‒1523, 2009.
  16.  E. Welsch et al., “Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel,” Acta Mater., vol. 116, pp. 188‒199, 2016.
  17.  L.A. Dobrzański, W. Borek, and J. Mazurkiewicz, “Influence of high strain rates on the structure and mechanical properties of high- manganes austenitic TWIP-type steel,” Materialwiss. Werkstofftech., vol. 47, no. 5‒6, pp. 428‒435, 2016.
  18.  L.A. Dobrzański, W. Borek, and J. Mazurkiewicz, „Mechanical properties of high-Mn austenitic steel tested under static and dynamic conditions,” Arch. Metall. Mater., vol. 61, no. 2, pp.  725‒730, 2016.
  19.  L. Sozańska-Jędrasik, J. Mazurkiewicz, W. Borek, and L.A. Dobrzański, “Structure and phase composition of newly developed high manganese X98MnAlSiNbTi24‒11 steel of TRIPLEX type,” Inżynieria Materiałowa, vol. 2, no. 216, pp. 69‒76, 2017.
  20.  R. Ebner, P. Gruber, W. Ecker, O. Kolednik, M. Krobath, and G. Jesner, “Fatigue damage mechanisms and damage evolution near cyclically loaded edges,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 2, pp. 267‒279, 2010.
  21.  W. Borek, T. Tanski, Z. Jonsta, P. Jonsta, and L. Cizek, “Structure and mechanical properties of high-Mn TWIP steel after their thermo- mechanical and heat treatments” in Proc. METAL 2015: 24th International Conference on Metallurgy and Materials, Brno, Czech Republic, 2015, pp. 307‒313.
  22.  M. Sroka, A. Zieliński, and J. Mikuła, “The service life of the repair welded joint of Cr Mo/Cr-Mo-V,” Arch. Metall. Mater., vol. 61, no. 3, pp. 969‒974, 2016.
  23.  M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The influence of the temperature and ageing time on the NiCr23Co12Mo alloy microstructure,” Rev. Chim., vol. 4, pp. 737‒741, 2017.
  24.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 913‒921, 2020.
  25.  A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, p. 2130, 2018.
  26.  L.A. Dobrzański and W. Borek, “Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels,” Mater. Sci. Forum, vol. 654‒656, no. 1‒3, pp. 266‒269, 2010.
  27.  M. Opiela, G. Fojt-Dymara, A. Grajcar, and W. Borek, “Effect of Grain Size on the Microstructure and Strain Hardening Behavior of Solution Heat-Treated Low-C High-Mn Steel,” Materials, vol. 13, no. 7, p. 1489, 2020.
  28.  L. Sozańska-Jędrasik, J. Mazurkiewicz, and W. Borek, “The influence of the applied type of cooling after eight-stage hot compression test on the structure and mechanical properties of TRIPLEX type steels,” MATEC Web Conf., vol. 252, p. 08005. 2019.
  29.  L. Sozanska-Jedrasik, J. Mazurkiewicz, W. Borek, K. Matus, B. Chmiela, and M. Zubko, “Effect of Nb and Ti micro-additives and thermo- mechanical treatment of high-manganese steel with aluminium and silicon on their microstructure and mechanical properties,” Arch. Metall. Mater., vol. 64, no. 1, pp. 133‒142, 2019.
Go to article

Authors and Affiliations

Liwia Sozańska-Jędrasik
1
Wojciech Borek
2
ORCID: ORCID
Janusz Mazurkiewicz
2

  1. Łukasiewicz Research Network–Institute for Ferrous Metallurgy, Department of Investigations of Properties and Structure of Materials, ul. K. Miarki 12-14, Gliwice 44-100, Poland
  2. Silesian University of Technology, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18a, Gliwice 44-100, Poland
Download PDF Download RIS Download Bibtex

Abstract

S304H steel is used in the construction of pressure components of boilers with supercritical operating parameters. The paper presents the results of research on the microstructure following ageing for 30,000 hours at 650 and 700°C. Microstructure examination was performed using scanning and transmission electron microscopy. The precipitates were identified using transmission electron microscopy. The paper analyses the precipitation process and its dynamics depending on the temperature and ageing time in detail. MX carbonitrides and the ε_Cu phase were proved to be the most stable phase, regardless of the test temperature. It was also showed that the M₂₃C₆ carbide precipitates in the tested steel and the intermetallic sigma phase (σ) may play a significant role in the loss of durability of the tested steel. This is related to their significant increase due to the influence of elevated temperature, and their coagulation and coalescence dynamics strongly depend on the ageing/operating temperature level. The qualitative and quantitative identification of the secondary phase precipitation processes described in the study is important in the analysis of the loss of durability of the tested steel under creep conditions.
Go to article

Bibliography

  1.  “Poland’s Energy Policy PEP2040”, [Online]. Available: https://www.gov.pl/web/klimat/polityka-energetyczna-polski, [Accessed: 1. Mar. 2021].
  2.  M. Bartecka, P. Terlikowski, M. Kłos, and Ł. Michalski, “Sizing of prosumer hybrid renewable energy systems in Poland,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 721‒731, 2020, doi: 10.24425/bpasts.2020.133125.
  3.  G. Golański, A. Zieliński, and A. Zielińska-Lipiec, “Degradation of microstructure and mechanical properties in martensitic cast steel after ageing,” Materialwiss. Werkst., vol. 46, no. 3, pp. 248–255, 2015, doi: 10.1002/mawe.201400325.
  4.  J. Horváth, J. Janovec, and M. Junek, “The Changes in Mechanical Properties of Austenitic Creep Resistant Steels SUPER 304H and HR3C Caused by Medium-Term Isothermal Ageing,” Sol. St. Phen., vol. 258, pp. 639‒642, 2017, doi: 10.4028/www.scientific.net/ssp.258.639.
  5.  A. Zieliński, G. Golański, and M. Sroka, “Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650–750°C,” Mat. Sci. Eng. A-Struct., vol. 796, p. 139944, 2020, doi: 10.1016/j.msea.2020.139944.
  6.  G. Golański, A. Zieliński, M. Sroka, and J. Słania, “The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat- Resistant Austenitic Stainless Steel,” Materials, vol.  13, no. 6, p. 1297, 2020, doi: 10.3390%2Fma13061297.
  7.  A.F. Padilha and P.R. Rios, “Decomposition of Austenite in Austenitic Stainless Steels,” ISIJ Intern., vol. 42, no. 4, pp.  325–327, 2002, doi: 10.2355/isijinternational.42.325.
  8.  R.L. Plaut, C. Herrera, D.M. Escriba, P.R. Rios, and A.F. Padilha, “A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance,” Mater. Res., vol. 10, no. 4, pp. 453–460, 2007, doi: 10.1590/ s1516-14392007000400021.
  9.  X. Xie, Y. Wu, C. Chi, and M. Zhang, “Superalloys for Advanced Ultra-Super-Critical Fossil Power Plant Application,” Superalloys, 2015, doi: 10.5772/61139.
  10.  A. Zieliński, G. Golański, M. Kierat, M. Sroka, A. Merda, and K. Sówka, “Microstructure of HR6W Alloy at Elevated Temperature after Prolonged Ageing in Air Atmosphere,” Acta Phys. Pol. A, vol. 138, no. 2, pp. 253–256, 2020, doi: 10.12693/aphyspola.138.253.
  11.  M. Sroka, A. Zieliński, A. Śliwa, M. Nabiałek, Z. Kania-Pifczyk, and I. Vasková, “The Effect of Long-Term Ageing on the Degradation of the Microstructure the Inconel 740h Alloy,” Acta Phys. Pol. A, vol. 137, no. 3, pp. 355–360, 2020, doi: 10.12693/aphyspola.137.355.
  12.  A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, no. 11, p. 2130, 2018, doi:10.3390/ma11112130.
  13.  A. Zieliński, J. Dobrzański, H. Purzyńska, R. Sikora, M. Dziuba-Kałuża, and Z. Kania, “Evaluation of Creep Strength of Heterogeneous Welded Joint in HR6W Alloy and Sanicro 25 Steel,” Arch. Metall. Mater. vol. 62, no. 4, pp. 2057–2064, 2017, doi: 10.1515/amm-2017- 0305.
  14.  M. Sroka, A. Zieliński, A. Hernas, Z. Kania, R. Rozmus, T. Tański, and A. Śliwa, “The effect of long-term impact of elevated temperature on changes in the microstructure of inconel 740H alloy,” Metalurgija, vol. 56, no. 3‒4, pp. 333‒336, 2017.
  15.  M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The Influence of the Temperature and Ageing Time on the NiCr23Co12Mo Alloy Microstructure,” Rev. Chim-Bucharest., vol. 68, no. 4, pp. 737–741, 2017, doi: 10.37358/rc.17.4.5541.
  16.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 913‒921, doi: 10.24425/bpasts.2020.134184.
  17.  A. Zieliński, M. Miczka, and M. Sroka, “The effect of temperature on the changes of precipitates in low-alloy steel,” Mater. Sci. Tech- Lond., vol. 32, no. 18, pp. 1899‒1910, 2016, doi: 10.1080/02670836.2016.1150242.
  18.  T. Tokairin et al., “Investigation on long-term creep rupture properties and microstructure stability of Fe–Ni based alloy Ni–23Cr–7W at 700°C,” Mat. Sci. Eng. A-Struct., vol. 565, pp. 285–291, 2013, doi: 10.1016/j.msea.2012.12.019.
  19.  G. Golański, C. Kolan, A. Zieliński, and P. Urbańczyk, Degradation process of heat–resistant austenitic stainless steel, Energetics, vol. 11, pp. 727‒730, 2017 [in polish].
  20.  M. Igarashi, Alloy design philosophy of creep – resistant steels In: Abe F., Kern T.U., Viswanathan R. (ED.), Creep resistant steels. Cambridge: Woodhead Publishing, 2008.
  21.  C. Chi, H. Yu, J. Dong, W. Liu, S. Cheng, Z. Liu, and X. Xie, “The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application,” Prog. Nat. Sci., vol. 22, no. 3, pp. 175–185, 2012., doi: 10.1016/j.pnsc.2012.05.002.
  22.  H. Yu and Ch. Chi, “Precipitation behaviour of Cu-rich phase in 18Cr9Ni3CuNbN austenitic heat – resistant steel at early aging state”, Chin. J. Mater. Res., vol. 29, pp. 195‒200, 2015.
Go to article

Authors and Affiliations

Adam Zieliński
1
ORCID: ORCID
Robert Wersta
2
Marek Sroka
3
ORCID: ORCID

  1. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, ul. K. Miarki 12-14, 44-100 Gliwice, Poland
  2. Office of Technical Inspection, Regional Branch Office based in Wrocław, ul. Grabiszyńska 51, 53-503 Wrocław, Poland
  3. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44 100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The rod specimens were produced from Pr9Fe50 + xCo13Zr1Nb4B23 – x (x = 0, 5, 8) alloys using the suction-casting technique. Subsequent devitrification annealing of those samples resulted in the change of their phase structure and magnetic properties. For annealed specimens of all investigated compositions, the Rietveld analyses of X-ray diffractions have shown the presence of three crystalline phases: the hard magnetic Pr2Fe11.2Co2.8B, soft magnetic α-Fe, and paramagnetic Pr1 + xFe4B4, which have precipitated within the amorphous matrix. This technique allowed us to determine the weight fractions of constituent phases. Furthermore, the microstructural changes with the alloy composition were observed. Magnetic measurements of annealed rods allowed us to calculate the switching field distributions (SFD) and δM plots in order to determine the strength and character of magnetic interactions between grains of constituent phases.
Go to article

Bibliography

  1.  A. Łebkowski, “A way of neodymium-iron-boron magnets regeneration in surface-mounted PMSM used in electric vehicles”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 751–758, 2017, doi: 10.1515/bpasts-2017-0081.
  2.  S. Hirosawa, H. Kanekiyo, Y. Shigemoto, and T. Miyoshi, in Proceedings of 18th International Workshop on High Performance Magnets and Their Applications, 2004, pp. 655–666.
  3.  P. Pawlik, K. Pawlik, H.A. Davies, J.J. Wysocki, and W. Kaszuwara, “Nanocrystalline (Pr, Dy)-(Fe, Co)-Zr-Ti-B magnets produced directly by rapid solidification,” J. Phys. Conf. Ser., vol. 144, pp. 1–5, 2009, doi: 10.1088/1742-6596/144/1/012060.
  4.  J. Zhang, K.Y. Lim, Y.P. Feng, and Y. Li, “Fe-Nd-B-based hard magnets from bulk amorphous precursor,” Scr. Mater., vol. 56, no. 11, pp. 943–946, Jun. 2007, doi: 10.1016/j.scriptamat.2007.02.016.
  5.  X. Bao, J. Zhu, W. Li, X. Gao, and S. Zhou, “Influence of zirconium addition on microstructure, magnetic properties and thermal stability of nanocrystalline Nd12.3Fe81.7B6.0 alloy,” J. Rare Earths, vol. 27, no. 5, pp. 843–847, Oct. 2009, doi: 10.1016/S1002-0721(08)60347-6.
  6.  K. Pawlik, P. Pawlik, J.J. Wysłocki, and W. Kaszuwara, “Structural and magnetic studies of bulk nanocomposite magnets derived from rapidly solidified Pr-(Fe,Co)-(Zr,Nb)-B alloy,” Materials, vol. 13, no. 7, pp. 1–16, 2020, doi: 10.3390/ma13071515.
  7.  W. Zhang and A. Inoue, “Bulk nanocomposite permanent magnets produced by crystallization of (Fe,Co)-(Nd,Dy)-B bulk glassy alloy,” Appl. Phys. Lett., vol. 80, no. 9, pp. 1610–1612, Mar. 2002, doi: 10.1063/1.1456259.
  8.  Y. Long, W. Zhang, X. Wang, and A. Inoue, “Effects of transition metal substitution on the glass-formation ability and magnetic properties of Fe62Co9.5Nd3Dy0.5B25 glassy alloy,” J. Appl. Phys., vol. 91, no. 8, pp. 5227–5229, Apr. 2002, doi: 10.1063/1.1457538.
  9.  H.W. Chang et al., “Magnetic properties, phase evolution and microstructure of directly quenched bulk Pr-Fe-B-Nb magnets,” Scr. Mater., vol. 59, no. 2, pp. 227–230, Jul. 2008, doi: 10.1016/j.scriptamat.2008.03.011.
  10.  I. Betancourt and H.A. Davies, “Influence of Zr and Nb dopant additions on the microstructure and magnetic properties of nanocomposite RE2(Fe,Co)14B/(Fe,Co) (RE =  Nd-Pr) alloys,” J. Magn. Magn. Mater., vol. 261, no. 3, pp. 328–336, May 2003, doi: 10.1016/S0304- 8853(02)00366-9.
  11.  P. Pawlik and H.A. Davies, “Glass formability of Fe-Co-Pr-Dy-Zr-B alloys and magnetic properties following devitrification,” Scr. Mater., vol. 49, no. 8, pp. 755–760, Oct. 2003, doi: 10.1016/S1359-6462(03)00428-7.
  12.  K. Pawlik, P. Pawlik, W. Kaszuwara, and J.J. Wysłocki, “Glass forming abilities and crystallization process in amorphous Pr-Fe-Co-Zr-Nb-B alloys of various B content,” in Acta Physica Polonica A, vol. 131, no. 4, pp. 979–981, Apr. 2017, doi: 10.12693/APhysPolA.131.979.
  13.  K. Pawlik, P. Pawlik, and J. J. Wysłocki, “The Bulk Glass Forming Ability and Magnetic Properties of Pr9Fe50 + xCo13Zr1 Nb4B23−x (x = 0, 2, 5, 8) Alloys,” Acta Phys. Pol. A, vol. 118, no. 5, pp. 900–902, 2010.
  14.  P. Pawlik, K. Pawlik, and A. Przybył, “Investigation of the cooling rate in the suction casting process,” Rev. Adv. Mater. Sci, vol. 18, pp. 81–84, 2008, [Online]. Available: https://www.researchgate.net/publication/285013213 (Accessed: Feb. 10, 2021).
  15.  K. Pawlik, P. Pawlik, J.J. Wysłocki, and W. Kaszuwara, “Microstructure and magnetic interactions in Pr-Fe-Co-Zr-Nb-B magnets,” J. Alloys Compd., vol. 536, no. SUPPL.1, pp. S348–S353, Sep. 2012, doi: 10.1016/j.jallcom.2011.12.003.
  16.  P. Pawlik, H.A. Davies, and M.R.J. Gibbs, “Magnetic properties and glass formability of Fe61Co10Zr5W4B20 bulk metallic glassy alloy,” Appl. Phys. Lett., vol. 83, no. 14, pp. 2775–2777, 2003, doi: 10.1063/1.1614419.
  17.  K. Pawlik, “Effect of heat treatment on the phase transformation and magnetic properties of the rapidly solidified Pr9Fe58Co13 Zr1Nb4B15 alloy ribbons,” Acta Phys. Pol. A, vol. 131, no. 5, pp. 1264–1269, 2017, doi: 10.12693/APhysPolA.131.1264.
  18.  E.F. Kneller and R. Hawig, “The exchange-spring magnet: A new material principle for permanent magnets,” IEEE Trans. Magn., vol. 27, no. 4, pp. 3588–3600, 1991, doi: 10.1109/20.102931.
  19.  P.I. Mayo, R.M. Erkkila, A. Bradbury, and R.W. Chantrell, “Interaction Effects in Longitudinally Oriented and Non-Oriented Barium Hexaferrite Tapes,” IEEE Trans. Magn., vol. 26, no. 5, pp. 1894–1896, 1990, doi: 10.1109/20.104560.
  20.  B.E. Meacham, D.J. Branagan, and J.E. Shield, “Understanding the link between nanoscale microstructural features and dynamic hysteresis phenomena,” J. Magn. Magn. Mater., vol. 277, no. 1–2, pp. 123–129, Jun. 2004, doi: 10.1016/j.jmmm.2003.10.034.
  21.  S. Aich and J.E. Shield, “A study on the order-disorder phase transformations of rapidly solidified Sm-Co-based permanent magnets,” J. Magn. Magn. Mater., vol. 313, no. 1, pp. 76–83, Jun. 2007, doi: 10.1016/j.jmmm.2006.12.006.
  22.  M. Fearon, R.W. Chantrell, and E.P. Wohlfarth, “A theoretical study of interaction effects on the remanence curves of particulate dispersions,” J. Magn. Magn. Mater., vol. 86, no. 2–3, pp. 197–206, May 1990, doi: 10.1016/0304-8853(90)90121-6.
  23.  J.E. Shield, B.B. Kappes, D.J. Branagan, and J. Bentley, “Chemical partitioning during crystallization and its effect on the microstructure and magnetic behavior of modified Nd-Fe-B permanent magnets,” J. Magn. Magn. Mater., vol. 246, no. 1–2, pp. 73–79, Apr. 2002, doi: 10.1016/S0304-8853(02)00028-8.
  24.  H. Chiriac, M. Marinescu, P. Tiberto, and F. Vinai, “Reversible magnetization behavior and exchange coupling in ttwo-phase NdFeB melt spun ribbons,” Mater. Sci. Eng. A, vol. 304–306, no. 1–2, pp. 957–960, May 2001, doi: 10.1016/S0921-5093(00)01599-9.
  25.  E.P. Wohlfarth, “Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles,” J. Appl. Phys., vol. 29, no. 3, pp. 595–596, Mar. 1958, doi: 10.1063/1.1723232.
  26.  P.E. Kelly, K. O’Grady, P.L. Mayo, and R.W. Chantrell, “Switching mechanisms in cobalt-phosphorus thin f ilms,” IEEE Trans. Magn., vol. 25, no. 5, pp. 3881–3883, 1989, doi: 10.1109/20.42466.
Go to article

Authors and Affiliations

Katarzyna Pawlik
1

  1. Department of Physics, Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Magnesium-based alloys are widely used in the construction, automotive, aviation and medical industries. There are many parameters that can be modified during their synthesis in order to obtain an alloy with the desired microstructure and advantageous properties. Modifications to the chemical composition and parameters of the synthesis process are of key importance. In this work, an Mg-based alloy with a rare-earth element addition was synthesized by means of mechanical alloying (MA). The aim of this work was to study the effect of milling times on the Mg-based alloy with a rare-earth addition on its structure and microhardness. A powder mixture of pure elements was milled in a SPEX 8000D high energy shaker ball mill under an argon atmosphere using a stainless steel container and balls. The sample was mechanically alloyed at the following milling times: 3, 5, 8 and 13 h, with 0.5 h interruptions. The microstructure and hardness of samples were investigated. The Mg-based powder alloy was examined by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and using a Vickers microhardness test. The results showed that microhardness of the sample milled for 13 h was higher than that of those with milling time of 3, 5 and 8 h.
Go to article

Bibliography

  1.  F. Witte, “The history of biodegradable magnesium implants: A review,” Acta Biomater., vol. 6, no. 5, pp. 1680–1692, 2010.
  2.  N. Eliaz, “Corrosion of metallic biomaterials: A review,” Materials (Basel)., vol. 12, no. 3, 2019.
  3.  S. Lesz, J. Kraczla, and R. Nowosielski, “Structure and compression strength characteristics of the sintered Mg-Zn-Ca-Gd alloy for medical applications,” Arch. Civ. Mech. Eng., vol. 18, no. 4, pp. 1288–1299, 2018.
  4.  T. Narushima, New-generation metallic biomaterials, 2nd ed. Elsevier Ltd., 2019.
  5.  D. Persaud-Sharma and A. Mcgoron, “Biodegradable magnesium alloys: A review of material development and applications,” J. Biomim. Biomater. Tissue Eng., vol. 12, no. 1, pp. 25–39, 2012.
  6.  N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, and M. Koç, “Review of magnesium-based biomaterials and their applications,” J. Magnes. Alloy., vol. 6, no. 1, pp. 23–43, 2018.
  7.  M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review,” Biomaterials, vol. 27, no. 9, pp. 1728–1734, Mar. 2006.
  8.  S. Lesz, B. Hrapkowicz, M. Karolus, and K. Gołombek, “Characteristics of the Mg-Zn-Ca-Gd alloy after mechanical alloying,” Materials (Basel)., vol. 14, no. 1, pp. 1–14, 2021.
  9.  A. Drygała, L.A. Dobrzański, M. Szindler, M. Prokopiuk Vel Prokopowicz, M. Pawlyta, and K. Lukaszkowicz, “Carbon nanotubes counter electrode for dye-sensitized solar cells application,” Arch. Metall. Mater., vol. 61, no. 2A, pp. 803–806, 2016.
  10.  A. Drygała, M. Szindler, M. Szindler, and E. Jonda, “Atomic layer deposition of TiO2 blocking layers for dye-sensitized solar cells,” Microelectron. Int., vol. 37, no. 2, pp. 87–93, 2020.
  11.  M. Beniyel, M. Sivapragash, S.C. Vettivel, and P.S. Kumar, “Optimization of tribology parameters of AZ91D magnesium alloy in dry sliding condition using response surface methodology and genetic algorithm,” Bull. Polish Acad. Sci. Tech. Sci., pp. 1–10, 2021.
  12.  L.A. Dobrzański, L.B. Dobrzański, and A.D. Dobrzańska-Danikiewicz, “Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics,” J. Achiev. Mater. Manuf. Eng., vol. 99, no. 1, pp. 14–41, 2020.
  13.  L.A. Dobrzański, L.B. Dobrzański, and A.D. Dobrzańska-Danikiewicz, “Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage,” J. Achiev. Mater. Manuf. Eng., vol. 98, no. 2, pp. 56–85, 2020.
  14.  K. Cesarz-Andraczke and A. Kazek-Kęsik, “PEO layers on Mg-based metallic glass to control hydrogen evolution rate,” Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 119–124, 2020.
  15.  M.K. Datta et al., “Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying,” Mater. Sci. Eng. B, vol. 176, no. 20, pp. 1637–1643, Dec. 2011.
  16.  S.A. Abdel-Gawad and M.A. Shoeib, “Corrosion studies and microstructure of Mg-Zn-Ca alloys for biomedical applications,” Surf. Interfaces, vol. 14, no. August 2018, pp. 108–116, 2019.
  17.  M. Krämer et al., “Corrosion behavior, biocompatibility and biomechanical stability of a prototype magnesium-based biodegradable intramedullary nailing system,” Mater. Sci. Eng. C, vol. 59, pp. 129–135, 2016.
  18.  J. Kuhlmann et al., “Fast escape of hydrogen from gas cavities around corroding magnesium implants,” Acta Biomater., vol. 9, no. 10, pp. 8714–8721, 2013.
  19.  B. Hrapkowicz and S.T. Lesz, “Characterization of Ca 50 Mg 20 Zn 12 Cu 18 Alloy,” Arch. Foundry Eng., vol. 19, no. 1, pp. 75–82, 2019.
  20.  J. Wilson, Metallic biomaterials. Elsevier Ltd, 2018.
  21.  H.J. Yu, J.Q. Wang, X.T. Shi, D. V. Louzguine-Luzgin, H.K. Wu, and J.H. Perepezko, “Ductile biodegradable Mg-based metallic glasses with excellent biocompatibility,” Adv. Funct. Mater., vol. 23, no. 38, pp. 4793–4800, 2013.
  22.  B. Zberg, P.J. Uggowitzer, and J.F. Löffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants,” Nat. Mater., vol. 8, p. 887, Sep. 2009.
  23.  J. Byrne, E. O’Cearbhaill, and D. Browne, “Comparison of crystalline and amorphous versions of a magnesium-based alloy: corrosion and cell response,” Eur. Cells Mater., vol. 30, no. Supplement 3, p. 75, 2015.
  24.  O. Baulin, D. Fabrègue, H. Kato, A. Liens, T. Wada, and J.M. Pelletier, “A new, toxic element-free Mg-based metallic glass for biomedical applications,” J. Non. Cryst. Solids, vol. 481, no. September 2017, pp. 397–402, 2018.
  25.  M.B. Kannan and R.K.S. Raman, “In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified- simulated body fluid,” Biomaterials, vol. 29, no. 15, pp. 2306–2314, 2008.
  26.  M. Salahshoor and Y.B. Guo, “Biodegradation control of magnesium-calcium biomaterial via adjusting surface integrity by synergistic cutting-burnishing,” Procedia CIRP, vol. 13, pp. 143–149, 2014.
  27.  H. Wang, Y. Estrin, and Z. Zúberová, “Bio-corrosion of a magnesium alloy with different processing histories,” Mater. Lett., vol. 62, no. 16, pp. 2476–2479, 2008.
  28.  Y. Guangyin, L. Manping, D. Wenjiang, and A. Inoue, “Microstructure and mechanical properties of Mg-Zn-Si-based alloys,” Mater. Sci. Eng. A, vol. 357, no. 1–2, pp. 314–320, 2003.
  29.  Z. Liang et al., “Effects of Ag, Nd, and Yb on the microstructures and mechanical properties of Mg-Zn-Ca metallic glasses,” Metals (Basel)., vol. 8, no. 10, pp. 1–10, 2018.
  30.  S. Lesz, T. Tański, B. Hrapkowicz, M. Karolus, J. Popis, and K. Wiechniak, “Characterisation of Mg-Zn-Ca-Y powders manufactured by mechanical milling,” J. Achiev. Mater. Manuf. Eng., vol. 103, no. 2, pp. 49–59, 2020.
  31.  S.M. Al Azar and A.A. Mousa, Mechanical and physical methods for the metal oxide powders production. INC, 2020.
  32.  I. Polmear, D. StJohn, J.-F. Nie, and M. Qian, Novel Materials and Processing Methods. 2017.
  33.  C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, and Y. Zhao, “Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review,” Scanning, vol. 2018. 2018.
  34.  M. Pogorielov, E. Husak, A. Solodivnik, and S. Zhdanov, “Magnesium-based biodegradable alloys: Degradation, application, and alloying elements,” Interventional Med. Appl. Sci., vol. 9, no. 1. pp. 27–38, 2017.
  35.  Y.Q. Tang, Q.Y. Wang, Q.F. Ke, C.Q. Zhang, J.J. Guan, and Y.P. Guo, “Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing,” Chem. Eng. J., vol. 387, no. January, p. 124166, 2020.
  36.  C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater Sci., vol. 46, no. 1–2. Pergamon, pp. 1–184, 01-Jan-2001.
  37.  M. Karolus, “Applications of Rietveld refinement in Fe-B-Nb alloy structure studies,” J. Mater. Process. Technol., vol. 175, no. 1–3, pp. 246–250, 2006.
  38.  L.A. Dobrzański, B. Tomiczek, G. Matula, and K. Gołombek, “Role of Halloysite Nanoparticles and Milling Time on the Synthesis of AA 6061 Aluminium Matrix Composites,” Adv. Mater. Res., vol. 939, pp. 84–89, May 2014.
  39.  M. Jurczyk, Bionanomaterials for Dental Applications. Pan Stanford Publishing, 2012.
Go to article

Authors and Affiliations

Sabina Lesz
1
ORCID: ORCID
Bartłomiej Hrapkowicz
1
ORCID: ORCID
Klaudiusz Gołombek
1
ORCID: ORCID
Małgorzata Karolus
2
ORCID: ORCID
Patrycja Janiak
1

  1. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100, Gliwice, Poland
  2. Institute of Materials Engineering, University of Silesia, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Magnesium-based materials constitute promising alternatives for medical applications, due to their characteristics, such as good mechanical and biological properties. This opens many possibilities for biodegradable materials to be used as less-invasive options for treatment. Degradation is prompted by their chemical composition and microstructure. Both those aspects can be finely adjusted by means of proper manufacturing processes, such as mechanical alloying (MA). Furthermore, MA allows for alloying elements that would normally be really hard to mix due to their very different properties. Magnesium usually needs various alloying elements, which can further increase its characteristics. Alloying magnesium with rare earth elements is considered to greatly improve the aforementioned properties. Due to that fact, erbium was used as one of the alloying elements, alongside zinc and calcium, to obtain an Mg₆₄Zn₃₀Ca₄Er₁ alloy via mechanical alloying. The alloy was milled in the SPEX 8000 Dual Mixer/Mill high energy mill under an argon atmosphere for 8, 13, and 20 hours. It was assessed using X-ray diffraction, energy dispersive spectroscopy and granulometric analysis as well as by studying its hardness. The hardness values reached 232, 250, and 302 HV, respectively, which is closely related to their particle size. Average particle sizes were 15, 16, and 17 μm, respectively
Go to article

Bibliography

  1.  C. Suryanarayana and N. Al-Aqeeli, “Mechanically alloyed nanocomposites,” Prog. Mater. Sci., vol. 58, no. 4, pp. 383–502, May 2013.
  2.  C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., vol. 46, no. 1–2, pp. 1–184, Jan. 2001.
  3.  A. Drygała, L.A. Dobrzański, M. Szindler, M. Prokopiuk Vel Prokopowicz, M. Pawlyta, and K. Lukaszkowicz, “Carbon nanotubes counter electrode for dye-sensitized solar cells application,” Arch. Metall. Mater., vol. 61, no. 2A, pp. 803–806, 2016.
  4.  L.A. Dobrzański and A. Drygała, “Influence of Laser Processing on Polycrystalline Silicon Surface,” Mater. Sci. Forum, vol. 706–709, pp. 829–834, Jan. 2012.
  5.  L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, and A. Drygała, “Structures, properties and development trends of laser-surface-treated hot-work steels, light metal alloys and polycrystalline silicon,” in Laser Surface Engineering: Processes and Applications, Elsevier Inc., 2015, pp. 3–32.
  6.  C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., vol. 46, no. 1–2, pp. 1–184, Jan. 2001.
  7.  M. Toozandehjani, K.A. Matori, F. Ostovan, S.A. Aziz, and M.S. Mamat, “Effect of milling time on the microstructure, physical and mechanical properties of Al-Al2O3 nanocomposite synthesized by ball milling and powder metallurgy,” Materials (Basel)., vol. 10, no. 11, p. 1232, 2017.
  8.  A. Kennedy et al., “A Definition and Categorization System for Advanced Materials: The Foundation for Risk-Informed Environmental Health and Safety Testing,” Risk Anal., vol. 39, no. 8, pp. 1783–1795, 2019.
  9.  M. Tulinski and M. Jurczyk, “Nanomaterials Synthesis Methods,” in Metrology and Standardization of Nanotechnology, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, pp. 75–98.
  10.  K. Cesarz-Andraczke and A. Kazek-Kęsik, “PEO layers on Mg-based metallic glass to control hydrogen evolution rate,” Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 119–124, 2020.
  11.  M. Beniyel, M. Sivapragash, S.C. Vettivel, and P.S. Kumar, “Optimization of tribology parameters of AZ91D magnesium alloy in dry sliding condition using response surface methodology and genetic algorithm,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 1–10, 2021.
  12.  M. Abbasi, S.A. Sajjadi, and M. Azadbeh, “An investigation on the variations occurring during Ni3Al powder formation by mechanical alloying technique,” J. Alloys Compd., vol. 497, no. 1–2, pp. 171–175, May 2010.
  13.  F. Neves, F.M.B. Fernandes, I. Martins, and J.B. Correia, “Parametric optimization of Ti–Ni powder mixtures produced by mechanical alloying,” J. Alloys Compd., vol. 509, pp. S271–S274, Jun. 2011.
  14.  L. Beaulieu, D. Larcher, R. Dunlap, and J. Dahn, “Nanocomposites in the Sn–Mn–C system produced by mechanical alloying,” J. Alloys Compd., vol. 297, no. 1–2, pp. 122–128, Feb. 2000.
  15.  J.S. Benjamin and T.E. Volin, “The mechanism of mechanical alloying,” Metall. Trans., vol. 5, pp. 1929–1934, 1974.
  16.  S. Lesz, J. Kraczla, and R. Nowosielski, “Structure and compression strength characteristics of the sintered Mg–Zn–Ca–Gd alloy for medical applications,” Arch. Civ. Mech. Eng., vol. 18, no. 4, pp. 1288–1299, Sep. 2018.
  17.  S. Lesz, B. Hrapkowicz, M. Karolus, and K. Gołombek, “Characteristics of the Mg-Zn-Ca-Gd alloy after mechanical alloying,” Materials (Basel)., vol. 14, no. 1, pp. 1–14, 2021.
  18.  S. Lesz, T. Tański, B. Hrapkowicz, M. Karolus, J. Popis, and K. Wiechniak, “Characterisation of Mg-Zn-Ca-Y powders manufactured by mechanical milling,” J. Achiev. Mater. Manuf. Eng., vol. 103, no. 2, pp. 49–59, 2020.
  19.  M. Karolus and J. Panek, “Nanostructured Ni-Ti alloys obtained by mechanical synthesis and heat treatment,” J. Alloys Compd., vol. 658, pp. 709–715, Feb. 2016.
  20.  A. Chrobak, V. Nosenko, G. Haneczok, L. Boichyshyn, M. Karolus, and B. Kotur, “Influence of rare earth elements on crystallization of Fe 82Nb2B14RE2 (RE = Y, Gd, Tb, and Dy) amorphous alloys,” J. Non. Cryst. Solids, vol. 357, no. 1, pp. 4–9, Jan. 2011.
  21.  B. Hrapkowicz and S.T. Lesz, “Characterization of Ca 50 Mg 20 Zn 12 Cu 18 Alloy,” Arch. Foundry Eng., vol. 19, no. 1, pp. 75–82, 2019.
  22.  M.K. Datta et al., “Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying,” Mater. Sci. Eng. B, vol. 176, no. 20, pp. 1637–1643, Dec. 2011.
  23.  J. Zhang et al., “The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study,” Acta Biomater., vol. 69, pp. 372–384, 2018.
  24.  M. Yuasa, M. Hayashi, M. Mabuchi, and Y. Chino, “Improved plastic anisotropy of Mg–Zn–Ca alloys exhibiting high-stretch formability: A first-principles study,” Acta Mater., vol. 65, pp. 207–214, Feb. 2014.
  25.  L.M. Plum, L. Rink, and H. Haase, “The essential toxin: impact of zinc on human health.,” Int. J. Environ. Res. Public Health, vol. 7, no. 4, pp. 1342–65, 2010.
  26.  M. Salahshoor and Y. Guo, “Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance.,” Mater. (Basel, Switzerland), vol. 5, no. 1, pp. 135–155, Jan. 2012.
  27.  H.S. Brar, M.O. Platt, M. Sarntinoranont, P.I. Martin, and M.V. Manuel, “Magnesium as a biodegradable and bioabsorbable material for medical implants,” Jom, vol. 61, no. 9. pp. 31–34, 2009.
  28.  M. Pogorielov, E. Husak, A. Solodivnik, and S. Zhdanov, “Magnesium-based biodegradable alloys: Degradation, application, and alloying elements,” Interventional Medicine and Applied Science, vol. 9, no. 1. pp. 27–38, 2017.
  29.  N. Hort et al., “Magnesium alloys as implant materials – Principles of property design for Mg–RE alloys,” Acta Biomater., vol. 6, no. 5, pp. 1714–1725, May 2010.
  30.  Y. Kawamura and M. Yamasaki, “Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure,” Mater. Trans., vol. 48, no. 11, pp. 2986–2992, 2007.
  31.  C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, and Y. Zhao, “Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review,” Scanning, vol. 2018. p. 9216314, 2018.
  32.  S. Seetharaman, S. Tekumalla, B. Lalwani, H. Patel, N.Q. Bau, and M. Gupta, “Microstructure and Mechanical Properties New Magnesium- Zinc-Gadolinium Alloys,” in Magnesium Technology 2016, Cham: Springer International Publishing, 2016, pp. 159–163.
  33.  S. Seetharaman et al., “Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg-Al alloys,” J. Alloys Compd., vol. 648, pp. 759–770, Jul. 2015.
  34.  R. Ahmad, N.A. Wahab, S. Hasan, Z. Harun, M.M. Rahman, and N.R. Shahizan, “Effect of erbium addition on the microstructure and mechanical properties of aluminium alloy,” in Key Engineering Materials, 2019, vol. 796, pp. 62–66.
  35.  C.L. Chen and Y.M. Dong, “Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe-Cr-Al ODS alloys,” Mater. Sci. Eng. A, vol. 528, no. 29–30, pp. 8374–8380, Nov. 2011.
  36.  K. Kowalski, M. Nowak, J. Jakubowicz, and M. Jurczyk, “The Effects of Hydroxyapatite Addition on the Properties of the Mechanically Alloyed and Sintered Mg-RE-Zr Alloy,” J. Mater. Eng. Perform., vol. 25, no. 10, pp. 4469–4477, Oct. 2016.
  37.  L.A. Dobrzański, B. Tomiczek, G. Matula, and K. Gołombek, “Role of Halloysite Nanoparticles and Milling Time on the Synthesis of AA 6061 Aluminium Matrix Composites,” Adv. Mater. Res., vol. 939, pp. 84–89, May 2014.
  38.  J. Dutkiewicz, S. Schlueter, and W. Maziarz, “Effect of mechanical alloying on structure and hardness of TiAl-V powders,” in Journal of Metastable and Nanocrystalline Materials, 2004, vol. 20–21, pp. 127–132.
Go to article

Authors and Affiliations

Bartłomiej Hrapkowicz
1
ORCID: ORCID
Sabina Lesz
1
ORCID: ORCID
Marek Kremzer
1
ORCID: ORCID
Małgorzata Karolus
2
ORCID: ORCID
Wojciech Pakieła
1
ORCID: ORCID

  1. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  2. Institute of Materials Engineering, University of Silesia, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
Download PDF Download RIS Download Bibtex

Abstract

This research presents an experimental study carried out for the modeling and optimization of some technological parameters for the machining of metallic materials. Certain controllable factors were analyzed such as cutting speed, depth of cut, and feed per tooth. A dedicated research methodology was used to obtain a model which subsequently led to a process optimization by performing a required number of experiments utilizing the Minitab software application. The methodology was followed, and the optimal value of the surface roughness was obtained by the milling process for an aluminum alloy type 7136-T76511. A SECO cutting tool was used, which is standard in aluminum machining by milling. Experiments led to defining a cutting regime that was optimal and which shows that the cutting speed has a significant influence on the quality of the machined surface and the depth of cut and feed per tooth has a relatively small impact on the chosen ranges of process parameters.
Go to article

Bibliography

  1.  B. Reddy, J. Sidda, Suresh Kumar, and K. Vijaya Kumar Reddy, “Optimization of surface roughness in CNC end milling using response surface methodology and genetic algorithm”, Int. J. Eng. Sci. Technol., vol. 3, no. 8, pp. 102‒109, 2011.
  2.  N.V. Prajina, “Multi-response optimisation of CNC end milling using response surface methodology and desirability function”, Int. J. Eng. Res. Technol., vol. 6, no. 6, pp. 739‒746, 2013.
  3.  K.V. Raju, K. Murali, G.R.Janardhana, P.N. Kumar, and V.D.P. Rao, “Optimization of cutting conditions for surface roughness in CNC end milling”, Int. J. Precis. Eng. Manuf., vol. 12, no. 3, pp. 383‒391, 2011.
  4.  S. Patel, Bharat, and H. Pal, “Optimization of machining parameters for surface roughness in milling operation”, Int. J. Applied Eng. Res., vol. 7, no. 11, 2012.
  5.  A.M. Ț î țu and A.B. Pop, “A Comparative Analysis of the Machined Surfaces Quality of an Aluminum Alloy According to the Cutting Speed and Cutting Depth Variations”, Lecture Notes in Network and Systems: New Technologies, Development and Application , vol II, no. 76, pp. 212‒218, 2019.
  6.  A.B. Pop and A.M. Ț î țu, “A Comparative Analysis of the Machined Surfaces Quality of an Aluminum Alloy According to the Cutting Speed and Feed per Tooth Variations”, Lecture Notes in Network and Systems: New Technologies, Development and Application, vol II, no. 76, 238‒244, 2019.
  7.  A.M. Ț îțu, A.V. Sandu, A.B. Pop, Ș. Țîțu, and T.C. Ciungu, “The Taguchi Method application to improve the quality of a sustainable process”, IOP Conf. Ser.: Mater. Sci. Eng., vol. 374, p. 012054, 2018.
  8.  A. Abdallah, B. Rajamony, and A. Embark, “Optimization of cutting parameters for surface roughness in CNC turning machining with aluminum alloy 6061 material” Optimization, vol 4, no. 10, pp. 1‒10, 2014.
  9.  K. Kadirgama, M.M. Noor, M.M. Rahman, M.R.M. Rejab, Ch.H. CheHaron, and K. A. Abou-El-Hossein,“Surface roughness prediction model of 6061-T6 aluminium alloy machining using statistical method”Euro. J. Sci. Res., vol. 25, no. 2, pp. 250‒256, 2009.
  10.  Q. Arsalan, S. Nisar, and A. Shah, M.S. Khalid, and M.A. Sheikh, “Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA”, Simul. Modell. Pract. Theory, vol 59, pp. 36‒51, 2015.
  11.  F.Kahraman, “The use of response surface methodology for the prediction and analysis of surface roughness of AISI 4140 steel”, Mater. Technol., vol. 43, pp. 267–270, 2009.
  12.  B.C. Routara, A. Bandyopadhyay, and P. Sahoo, “Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation”, Int. J. Adv. Manuf. Technol. , vol 40, no. 11‒12, pp. 1166‒1180, 2009.
  13.  P. Sahoo, “Optimization of turning parameters for surface roughness using RSM and GA”, Adv. Prod. Eng. Manag., vol. 6 no. 3, pp. 197– 208, 2011.
  14.  R.H. Myers and D.C. Montgomery, “Response surface methodology process and product optimization using designed experiments”, John Wiley and Sons, New York, 2002.
  15.  G.E.P Box and N.R. Draper, “Response surface mixtures and ridge analysis”, John Wiley and Sons, New Jersey, 2007.
  16.  R.H. Myers, D.C. Montgomery, and C. M. Anderson-Cook, “Response surface methodology: process and product optimization using designed experiments”, John Wiley & Sons, Inc, 2016.
  17.  T.Prvan and D.J. Street, “An annotated bibliography of application papers using certain classes of fractional factorial and related designs”, J. Stat. Plann. Inference, vol. 106, pp. 245‒269, 2002.
  18.  A.M. Țîțu et al., “Design of Experiment in the Milling Process of Aluminum Alloys in the Aerospace Industry”, Appl. Sci., vol. 10, p. 6951, 2020.
  19.  M. Kuntoğlu, A. Aslan, D.Y. Pimenov, K. Giasin, T. Mikolajczyk, and S. Sharma, “Modeling of Cutting Parameters and Tool Geometry for Multi-Criteria Optimization of Surface Roughness and Vibration via Response Surface Methodology in Turning of AISI 5140 Steel”, Materials, vol. 13, p. 4242, 2020.
  20.  X. Li, Z. Liu, and X. Liang, “Tool Wear, Surface Topography, and Multi-Objective Optimization of Cutting Parameters during Machining AISI 304 Austenitic Stainless Steel Flange”, Metals, vol. 9, p. 972, 2019.
  21.  Y. Su, G. Zhao, Y. Zhao, J. Meng, and C. Li, “Multi-Objective Optimization of Cutting Parameters in Turning AISI 304 Austenitic Stainless Steel”, Metals, vol. 10, p. 217, 2020.
  22.  A. Ahmad, M.A. Lajis, N.K. Yusuf, and S.N. Ab Rahim, “Statistical Optimization by the Response Surface Methodology of Direct Recycled Aluminum-Alumina Metal Matrix Composite, MMC-AlR) Employing the Metal Forming Process”, Processes, vol. 8, p. 805, 2020.
  23.  A.K. Parida, and K. Maity, “Modeling of machining parameters a_ecting flank wear and surface roughness in hot turning of Monel-400 using response surface methodology, RSM)”, Measurement, vol. 137, pp. 375–381, 2019.
  24.  N.K. Sahu and A.B. Andhare, “Modelling and multiobjective optimization for productivity improvement in high-speed milling of Ti– 6Al–4V using RSM and GA”, J. Braz. Soc. Mech. Sci. Eng., vol. 39, pp. 5069–5085, 2017.
  25.  I. Asilturk, S. Neseli, and M.A. Ince, “Optimization of parameters affecting surface roughness of Co28Cr6Mo medical material during CNC lathe machining by using the Taguchi and RSM methods”, Measurement, vol. 78, pp. 120–128, 2016.
  26.  M. Beniyel, M. Sivapragash, S.C. Vettivel, P. Senthil Kumar, K.K. Ajith Kumar, and K. Niranjan, “Optimization of tribology parameters of AZ91D magnesium alloy in dry sliding condition using response surface methodology and genetic algorithm”, Bulletin of The Polish Academy of Sciences, Technical Sciences, vol. 69(1), 1‒10, 2021.
  27.  S.C. Cagan, M. Aci, B.B. Buldum, and C. Aci, “Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 729‒739, 2019.
  28.  M. Nabiałek, “Influence of the quenching rate on the structure and magnetic properties of the Fe-based amorphous alloy”, Arch. Metall. Mater., vol. 61, no. 1, pp. 439–444, 2016.
  29.  J. Michalczyk, M. Nabiałek, and M. Szota, “Mathematical modelling of thermo-elasto-plastic problems and the solving methodology on the example of the tubular section forming process”, Arch. Metall. Mater., vol. 61, no. 3, pp. 1655–1662, 2016.
Go to article

Authors and Affiliations

Aurel Mihail Titu
1 2
ORCID: ORCID
Alina Bianca Pop
3
ORCID: ORCID
Marcin Nabiałek
4
ORCID: ORCID
Camelia Cristina Dragomir
2 5
Andrei Victor Sandu
6 7
ORCID: ORCID

  1. Lucian Blaga University of Sibiu, 10 Victoriei Street, 550024, Sibiu, Romania
  2. The Academy of Romanian Scientists, 54 Splaiul Independenței, Sector 5, 050085, Bucharest, Romania
  3. Technical University of Cluj-Napoca, 62A Victor Babeș Street, Baia Mare, Romania
  4. Department of Physics, Częstochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
  5. Transilvania University of Brasov, 500036 Brasov, Romania
  6. Gheorghe Asachi Technical University, Blvd. D. Mangeron 71, 700050 lasi, Romania
  7. Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

Magnesium alloys have recently become increasingly popular in many sectors of the industry due to their unique properties, such as low density, high specific strength, vibration damping ability along with their recyclability and excellent machinability. Nowadays, thin films have been attracting more attention in applications that improve mechanical and corrosion properties. The following alloys were used for the coated Mg-Al-RE and the ultra-light magnesium-lithium alloy of the Mg-Li-Al-RE type. A single layer of TiO2 was deposited using the atomic layer deposition ALD method. Multiple layers of the Ti/TiO₂ and Ti/TiO₂/Ti/TiO₂ type were obtained by the MS-PVD magnetron sputtering technique. Samples were investigated by scanning and a transmission electron microscope (SEM, TEM) and their morphology was studied by an atomic forces microscope (AFM). Further examinations, including electrochemical corrosion, roughness and tribology, were also carried out. As a result of the research, it was found that the best electrochemical properties are exhibited by single TiO2 layers obtained by the ALD method. Moreover, it was found that the Ti/TiO₂/Ti/TiO₂ double film has better properties than the Ti/TiO₂ film.
Go to article

Bibliography

  1.  K.-J. Huang, L. Yan, C.-S. Wang, C.-S. Xie, and C.-R. Zhou, “Wear and corrosion properties of laser cladded Cu47Ti34Zr11Ni8/SiC amorphous composite coatings on AZ91D magnesium alloy”, Trans. Nonferrous Met. Soc. China, vol. 20, no. 7, pp. 1351‒1355, 2010, doi: 10.1016/S1003-6326(09)60303-4.
  2.  J. Song, J. She, D. Chen, and F. Pan, “Latest research advances on magnesium and magnesium alloys worldwide”, J. Magnes. Alloy., vol. 8, no. 1, pp. 1‒41, 2020, doi: 10.1016/j.jma.2020.02.003.
  3.  M. Król, P. Snopiński, M. Pagáč, J. Hajnyš, and J. Petrů, “Hot Deformation Treatment of Grain-Modified Mg-Li Alloy”, Materials, vol. 13, pp. 4557‒4570, 2020, doi: 10.3390/ma13204557.
  4.  M. Król, “Magnesium–lithium alloys with TiB and Sr additions”, J. Therm. Anal. Calorim., vol 138, pp. 4237‒4245, 2019, doi: 10.1007/ s10973-019-08341-2.
  5.  F. Liu, Z. Sun, and Y. Ji, “Corrosion resistance and tribological behavior of particles reinforced AZ31 magnesium matrix composites developed by friction stir processing” J. Mater. Res. Technol-JMRT, vol. 11, pp. 1019‒1030, 2021, doi: 10.1016/j.jmrt.2021.01.071.
  6.  H. Yu, W. Li, Y. Tan, and Y. Tan, “The Effect of Annealing on the Microstructure and Properties of Ultralow-Temperature Rolled Mg– 2Y–0.6Nd–0.6Zr Alloy”, Metals, vol. 11, no 2, pp. 315‒331, 2021, doi: 10.3390/met11020315.
  7.  K. Cesarz-Andraczke and A. Kazek-Kęsik, “PEO layers on Mg-based metallic glass to control hydrogen evolution rate”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, pp119‒124, 2020, doi: 10.24425/bpasts.2020.131841.
  8.  L. Zhu and G. Song, “Improved corrosion resistance of AZ91D magnesium alloy by an aluminum-alloyed coating” Surf. Coat. Technol., vol. 200, No. 8, pp. 2834‒2840, 2006.
  9.  J.D. Majumdar, R. Galun, B.L. Mordike, and I. Manna, “Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy”, Mater. Sci. Eng. A, vol. 361, no.  1‒2, pp. 119‒129, 2003.
  10.  A. Woźniak, W. Walke, A. Jakóbik-Kolon, B. Ziębowicz, Z. Brytan, and M. Adamiak “The Influence of ZnO Oxide Layer on the Physicochemical Behavior of Ti6Al4V Titanium Alloy” Materials, vol. 14, p. 230, 2021, doi: 10.3390/ma14010230.
  11.  F. Vargas, H. Ageorges, P. Fournier, P. Fauchais, and M.E. López, “Mechanical and tribological performance of Al2O3-TiO2 coatings elaborated by flame and plasma spraying”, Surf. Coat. Technol., vol. 205, pp. 1132‒1136, 2010, doi: 10.1016/j.surfcoat.2010.07.061.
  12.  H. Hu, X. Nie, and Y. Ma, “Corrosion and Surface Treatment of Magnesium Alloys”, in Magnesium alloys properties in solid and liquid states, vol. 3, pp. 67‒108, 2013, doi: 10.1155/2013/532896.
  13.  K.J. Singh, M. Sahni, and M. Rajoriya, “Study of Structural, Optical and Semiconducting Properties of TiO2 Thin Film deposited by RF Magnetron Sputtering”, Mater. Today: Proc., vol.  12, no. 3, pp. 565‒572, 2019.
  14.  T. Tański, W. Matysiak, D. Kosmalska, and A. Lubos “Influence of calcination temperature on optical and structural properties of TiO2 thin films prepared by means of sol-gel and spin coating”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 2, pp. 151‒156, 2018, doi: 10.24425/119069.
  15.  Y. Zhao, Z. Zhang, L. Shi, F. Zhang, S. Li, and R. Zeng, “Corrosion resistance of a self-healing multilayer film based on SiO2 and CeO2 nanoparticles layer-by-layer assembly on Mg alloys”, Mater. Lett., vol. 237, pp. 14‒18, 2019.
  16.  K. Trembecka-Wojciga, R. Major, J.M. Lackner, F. Bruckert, E. Jasek, and B. Major, “Biomechanical properties of the thin PVD coatings defined by red blood cells”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 3, pp. 697‒705, 2015, doi: 10.1515/bpasts-2015-0081.
  17.  A. Kania, W. Pilarczyk, and M.M. Szindler, “Structure and corrosion behavior of TiO2 thin films deposited onto Mg-based alloy using magnetron sputtering and sol-gel”, Thin Solid Films, vol. 701, pp. 252‒259, 2020, doi: 10.1016/j.tsf.2020.137945.
  18.  P. Pansila, N. Witit-anunb, and S. Chaiyakun, “Influence of sputtering power on structure and photocatalyst properties of DC magnetron sputtered TiO2 thin film”, Procedia Eng., vol. 32, pp. 862‒867, 2012.
  19.  M. Basiaga, W. Walke, M. Staszuk, W. Kajzer, A. Kajzer, and K. Nowińska, “Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents”, Arch. Civ. Mech. Eng., vol. 17, pp. 32‒42, 2017, doi: 10.1016/j.acme.2016.08.001.
  20.  L. Velardi, L. Scrimieri, L. Maruccio, V. Nassisi, A. Serra, D Manno, L. Calcagnile, and G. Quarta, “Synthesis and doping of TiO2 thin films via a new type of laser plasma source”, Vacuum, vol. 184, p. 109890, 2021, doi: 10.1016/j.vacuum.2020.109890.
  21.  A. Kozlovskiy, I. Shlimas, K. Dukenbayevc, and M. Zdorovets, “Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering”, Vacuum, vol.  164, pp. 224‒232, 2019, doi: 10.1016/j.vacuum.2019.03.026.
  22.  M. Esmaily et al., “Fundamentals and advances in magnesium alloy corrosion”, Prog. Mater. Sci., vol. 89, pp. 92‒193, 2017, doi: 10.1016/j. pmatsci.2017.04.011.
  23.  W. Zhang, W. Liu, B. Li, and G. Mai, “Characterization and Tribological Investigation of Sol-Gel Titania and Doped Titania Thin Films”, J. Am. Ceram. Soc., vol. 85, no. 7, pp.  1770‒1776, 2002, doi: 10.1111/j.1151-2916.2002.tb00351.x.
Go to article

Authors and Affiliations

Marcin Staszuk
1
ORCID: ORCID
Łukasz Reimann
1
Aleksandra Ściślak
1
Justyna Jaworska
1
Mirosława Pawlyta
1
Tomasz Mikuszewski
2
Dariusz Kuc
2
Tomasz Tański
1
ORCID: ORCID
Antonín Kříž
3

  1. Silesian University of Technology, Faculty of Mechanical Engineering, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  2. Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, ul. Krasińskiego 8, Katowice, Poland
  3. University of West Bohemia, Faculty of Mechanical Engineering, Univerzitni 22 St., 30614 Plzen, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

In this paper, thermal oxidation resistance of silicide-coated niobium substrates was tested in a temperature range of 1300–1450°C using an HVOF burner. Pure niobium specimens were coated using the pack cementation CVD method. Three different silicide thickness coatings were deposited. Thermal oxidation resistance of the coated niobium substrates was tested in a temperature range of 1300–1450°C using an HVOF burner. All samples that passed the test showed their ability to stabilize the temperature over a time of 30 s during the thermal test. The rise time of substrate temperature takes about 10 s, following which it keeps constant values. In order to assess the quality of the Nb-Si coatings before and after the thermal test, light microscopy, scanning electron microscopy (SEM) along with chemical analysis (EDS), X-ray diffraction XRD and Vickers hardness test investigation were performed. Results confirmed the presence of substrate Nb compounds as well as Si addition. The oxygen compounds are a result of high temperature intense oxidizing environment that causes the generation of SiO phase in the form of quartz and cristobalite during thermal testing. Except for one specimen, all substrate surfaces pass the high temperature oxidation test with no damages.
Go to article

Bibliography

  1.  S. Knittel, S. Mathieu, L. Portebois, S. Drawin, and M. Vilasi, “Development of silicide coatings to ensure the protection of Nb and silicide composites against high temperature oxidation”, Surf. Coat. Technol., 235, pp. 401‒406, 2013, doi: 10.1016/j.surfcoat.2013.07.053.
  2.  J. Cheng, S. Yi, and J. Park, “Oxidation behavior of Nb–Si–B alloys with the NbSi2 coating layer formed by a pack cementation technique”, Int. J. Refract. Met. Hard Mat., vol. 41, pp. 103‒109, 2013, doi: 10.1016/j.ijrmhm.2013.02.010.
  3.  S. Cheng, S. Yi, and J. Park, “Oxidation behaviors of Nb–Si–B ternary alloys at 1100°C under ambient atmosphere”, Intermetallics, vol. 23, pp. 12‒19, 2012, doi: 10.1016/j.intermet.2011.11.007.
  4.  B.P. Bewlay, M.R. Jackson, P.R. Subramanian, and J.C. Zhao, “A review of very-high-temperature Nb-silicide-based composites”, Metall. Mater. Trans. A, vol. 34, pp. 2043–2052, 2003, doi: 10.1007/s11661-003-0269-8.
  5.  R. Swadźba, “High temperature oxidation behavior of C103 alloy with boronized andsiliconized coatings during 1000h at 1100°C in air”, Surf. Coat. Technol., vol. 370, pp. 331‒339, 2019, doi: 10.1016/j.surfcoat.2019.04.019.
  6.  J. Sun, Q.G. Fu, L.P. Guo, and L. Wang, “Silicide coating fabricated by HAPC/SAPS combination to protect niobium alloy from oxidation”, ACS Appl. Mater. Interfaces, vol. 8, pp. 15838–15847, 2016, doi: 10.1021/acsami.6b04599.
  7.  J. Sun, T. Li, G.-P. Zhang, and Q.-G. Fu, “Different oxidation protection mechanisms of HAPC silicide coating on niobium alloy over a large temperature range”, Journal of Alloys and Compounds, vol. 790, pp. 1014‒1022, 2019, doi: 10.1016/j.jallcom.2019.03.229.
  8.  H.P. Martinz, B. Nigg, J. Matej, M. Sulik, H. Larcher, and A. Hoffmann, “Properties of the SIBOR® oxidation protective coating on refractory metal alloys”, Int. J. Refract. Met. Hard Mat., vol. 24, pp. 283‒291, 2006, doi: 10.1016/j.ijrmhm.2005.10.013.
  9.  K. Tatemoto, Y. Ono, and R.O. Suzuki, “Silicide coating on refractory metals in molten salt”, J. Phys. Chem. Solids, vol. 66, pp. 526‒529, 2005, doi: 10.1016/j.jpcs.2004.06.043.
  10.  B.V. Cockeram and R.A. Rapp, “Oxidation-resistant boron- and germanium-doped silicide coatings for refractory metals at high temperature”, Mater. Sci. Eng. A, vol. 192–193, part 2, pp. 980‒986, 1995, doi: 10.1016/0921-5093(95)03342-4.
  11.  L. Zheng, E. Liu, Z. Zheng, L. Ning, J. Tong, and Z. Tan, “Preparation of alumina/aluminide coatings on molybdenum metal substrates, and protection performance evaluation utilizing a DZ40M superalloy casting test”, Surf. Coat. Technol., vol. 395, p. 125931, 2020, doi: 10.1016/j.surfcoat.2020.125931.
  12.  M. Zielińska, M. Zagula-Yavorska, J. Sieniawski, and R. Filip, “Microstructure and oxidation resistance of an aluminide coating on the nickel based superalloymar m247 deposited by the cvd aluminizing process”, Arch. Metall. Mater., vol. 58, no. 3 pp. 697–701, 2013, doi: 10.2478/amm-2013-0057.
  13.  Y. Garip, “Production and microstructural characterization of nb-si based in-situ composite”, Bull. Pol. Acad. Sci. Arch. Metall. Mater., vol. 65, no. 2 pp. 917‒921, 2020, doi: 10.24425/amm.2020.132839.
  14.  M. Vilasi, G. Venturini, J. Steinmetz, and B. Malaman, “Crystal structure of triniobium triiron chromium hexasilicide Nb3Fe3 Cr1Si6: an intergrowth of Zr4Co4Ge7 and Nb2Cr4Si5 blocks”, J. Alloy. Compd., vol. 194, pp. 127‒132, 1993, doi: 10.1016/0925-8388(93)90657- 9.
  15.  M. Vilasi, M. Francois, R. Podor, and J. Steinmetz, “New silicides for new niobium protective coatings”, J. Alloy. Compd., vol. 264, pp. 244‒251, 1998, doi: 10.1016/S0925-8388(97)00234-X
  16.  M. Vilasi, M. Francois, H. Brequel, R. Podor, G. Venturini, and J. Steinmetz, “Phase equilibria in the Nb–Fe–Cr–Si System”, J. Alloy. Compd., vol. 269, pp. 187‒192, 1998, doi: 10.1016/S0925-8388(98)00142-X.
  17.  S. Knittel, S. Mathieu, and M. Vilasi, “Nb4Fe4Si7 coatings to protect niobium and niobium silicide composites against high temperature oxidation”, Surf. Coat. Technol., vol. 235, pp. 144–154, 2013, doi: 10.1016/j.surfcoat.2013.07.027.
  18.  S. Majumdar, T.P. Senguptab, G.B. Kaleb, and I.G. Sharma, “Development of multilayer oxidation resistant coatings on niobium and tantalum”, Surf. Coat. Technol., vol. 200, pp. 3713–3718, 2006, doi: 10.1016/j.surfcoat.2005.01.034.
  19.  S. Majumdar, A. Arya, I.G. Sharma, A.K. Suri, and S. Banerjee, “Deposition of aluminide and silicide based protective coatings on niobium”, App. Surf. Sci., vol. 257, pp. 635–640, 2010, doi: 10.1016/j.apsusc.2010.07.055.
  20.  L. Portebois, S. Mathieu, Y. Bouizi, M. Vilasi, and S. Mathieu, “Effect of boron addition on the oxidation resistance of silicide protective coatings: A focus on boron location in as-coated and oxidised coated niobium alloys”, Surf. Coat. Technol., vol. 253, pp. 292–299, 2014, doi: 10.1016/j.surfcoat.2014.05.058.
  21.  L. Xiao, X. Zhou, Y. Wang, R. Pu, G. Zhao, Z. Shen, and Y. Huang, S.Liu, Z.Cai, X.Zhao,, “Formation and oxidation behavior of Ce- modified MoSi2–NbSi2 coating on niobium alloy”, Corrosion Sci., vol. 173, p. 108751, 2020, doi: 10.1016/j.corsci.2020.108751.
  22.  J. Sun, Q. Fu, and L.Guo, “Influence of siliconizing on the oxidation behavior of plasma sprayed MoSi2 coating for niobium based alloy”, Intermetallics, vol. 72, pp. 9‒16, 2016, doi: 10.1016/j.intermet.2016.01.006.
  23.  M. Pons, M. Caillet, and A. Galerie, “High temperature oxidation of niobium superficially coated by laser treatment”, Mater. Chem. Phys., vol. 15, pp. 423‒432, 1987, doi: 10.1016/0254-0584(87)90062-9.
  24.  B.A. Pinto, A. Sofia, and C.M. D’Oliveira, “Nb silicide coatings processed by double pack cementation: Formation mechanisms and stability”, Surf. Coat. Technol. 409, 2021, doi: 10.1016/j.surfcoat.2021.126913.
  25.  R. Swadźba et al., “Characterization of Si-aluminide coating and oxide scale microstructure formed on γ-TiAl alloy during long-term oxidation at 950°C”, Intermetallics, vol. 87, pp. 81–89, 2017, doi: 10.1016/j.intermet.2017.04.015.
  26.  R. Swadźba, L. Swadźba, B. Mendala, P.-P. Bauer, N. Laska, and U. Schulz, “Microstructure and cyclic oxidation resistance of Si-aluminide coatings on γ-TiAl at 850°C”, Intermetallics, vol. 87, pp. 81‒89, 2017, doi: 10.1016/j.surfcoat.2020.126361.
  27.  J.A. Thornton, “High rate thick film growth”, Ann. Rev. Mater. Sci., vol. 7, pp. 239‒246, 1977, doi: 10.1146/annurev.ms.07.080177.001323.
Go to article

Authors and Affiliations

Radosław Szklarek
1 2 3
Tomasz Tański
1
ORCID: ORCID
Bogusław Mendala
1
Marcin Staszuk
1
ORCID: ORCID
Łukasz Krzemiński
1
Paweł Nuckowski
1
Kamil Sobczak
3

  1. Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
  2. Spinex Spinkiewicz Company, Klimontowska 19, 04-672 Warsaw, Poland
  3. Łukasiewicz Research Network – Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The growing interest in one-dimensional tin oxide-based nanomaterials boosts research on both high-quality nanomaterials as well as production methods. This is due to the fact that they present unique electrical and optical properties that enable their application in various (opto)electronic devices. Thus, the aim of the paper was to produce ceramic SnO₂ nanowires using electrospinning with the calcination method, and to investigate the influence of the calcination temperature on the morphology, structure and optical properties of the obtained material. A scanning electron microscope (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to examine the morphology and chemical structure of obtained nanomaterials. The optical properties of manufactured one-dimensional nanostructures were investigated using UV-Vis spectroscopy. Moreover, based on the UV-Vis spectra, the energy band gap of the prepared nanowires was determined. The analysis of the morphology of the obtained nanowires showed that both the concentration of the precursor in the spinning solution and the calcination temperature have a significant impact on the diameter of the nanowires and, consequently, on their optical properties.
Go to article

Bibliography

  1.  W. Matysiak and T. Tański, “Novel bimodal ZnO (amorphous)/ZnO NPs (crystalline) electrospun 1D nanostructure and their optical characteristic,” Appl. Surf. Sci., vol. 474, pp. 232–242, Apr. 2019.
  2.  P. Jarka, T. Tański, W. Matysiak, Ł. Krzemiński, B. Hajduk, and M. Bilewicz, “Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles,” Appl. Surf. Sci., vol. 424, pp. 206–212, Dec. 2017.
  3.  V.R. Bandi et al., “Synthesis, structural and optical properties of pure and rare-earth ion doped TiO2 nanowire arrays by a facile hydrothermal technique,” Thin Solid Films, vol. 547, pp. 207–211, 2013.
  4.  V.M.D.S. Rocha, M.D.G. Pereira, L.R. Teles, and M.O.D.G. Souza, “Effect of copper on the photocatalytic activity of semiconductor- based titanium dioxide (anatase) and hematite (α-Fe2O3),” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 185, no. 1, pp. 13–20, Jul. 2014.
  5.  Z. Tao, Y. Li, B. Zhang, G. Sun, J. Cao, and Y. Wang, “Bi-doped urchin-like In2O3 hollow spheres: Synthesis and improved gas sensing and visible-light photocatalytic properties,” Sensors Actuators B Chem., vol. 321, p. 128623, Oct. 2020.
  6.  M. Parthibavarman, M. Karthik, and S. Prabhakaran, “Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material,” Vacuum, vol. 155, pp. 224–232, Sep. 2018.
  7.  Y. Chen et al., “SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress,” J. Energy Chem., vol. 35, pp. 144–167, Aug. 2019.
  8.  M. Dou and C. Persson, “Comparative study of rutile and anatase SnO2 and TiO2: Band-edge structures, dielectric functions, and polaron effects,” J. Appl. Phys., vol. 113, no. 8, p. 083703, Feb. 2013.
  9.  X. Zhang et al., “SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells,” J. Power Sources, vol. 402, pp. 460–467, Oct. 2018.
  10.  V.S. Jahnavi, S.K. Tripathy, and A.V.N. Ramalingeswara Rao, “Structural, optical, magnetic and dielectric studies of SnO2 nano particles in real time applications,” Phys. B Condens. Matter, vol. 565, pp. 61–72, Jul. 2019.
  11.  M.A. Yildirim, S.T. Yildirim, E.F. Sakar, and A. Ateş, “Synthesis, characterization and dielectric properties of SnO2 thin films,” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., vol. 133, pp. 60–65, Dec. 2014.
  12.  K. Bhuvaneswari et al., “Enhanced photocatalytic activity of ethylenediamine-assisted tin oxide (SnO2) nanorods for methylene blue dye degradation,” Mater. Lett., vol. 276, p. 128173, Oct. 2020.
  13.  L.R. Hou, L. Lian, L. Zhou, L.H. Zhang, and C.Z. Yuan, “Interfacial hydrothermal synthesis of SnO2 nanorods towards photocatalytic degradation of methyl orange,” Mater. Res. Bull., vol. 60, pp. 1–4, Dec. 2014.
  14.  D. Narsimulu, E.S. Srinadhu, and N. Satyanarayana, “Surfactant-free microwave-hydrothermal synthesis of SnO2 flower-like structures as an anode material for lithium-ion batteries,” Materialia, vol. 4, pp. 276–281, Dec. 2018.
  15.  S. Sharma and S. Chhoker, “CVD grown doped and Co-doped SnO2 nanowires and its optical and electrical studies,” Mater. Today Proc., vol. 28, pp. 375–378, Jan. 2020.
  16.  C. Gao, S. Yuan, B. Cao, and J. Yu, “SnO2 nanotube arrays grown via an in situ template-etching strategy for effective and stable perovskite solar cells,” Chem. Eng. J., vol. 325, pp. 378–385, Oct. 2017.
  17.  W. Matysiak, T. Tanski, and W. Smok, “Electrospinning as a versatile method of composite thin films fabrication for selected applications,” Solid State Phenom., vol. 293, pp. 35–49, 2019.
  18.  T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, and S.S. Ramkumar, “Electrospinning of nanofibers,” J. Appl. Polym. Sci., vol. 96, no. 2, pp. 557–569, Apr. 2005.
  19.  T. Tański, W. Matysiak, and P. Jarka, “Introductory Chapter: Electrospinning-smart Nanofiber Mats,” in Electrospinning Method Used to Create Functional Nanocomposites Films, InTech, 2018.
  20.  W. Matysiak, T. Tański, and W. Smok, “Study of optical and dielectric constants of hybrid SnO2 electrospun nanostructures,” Appl. Phys. A Mater. Sci. Process., vol. 126, no. 2, p. 115, Feb. 2020.
  21.  Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 132, no. 1, pp. 67–73, May 2008.
  22.  S.S. Mali et al., “Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells,” Nanoscale, vol. 10, no. 17, pp. 8275–8284, May 2018.
  23.  K. Zhang et al., “An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction,” J. Electroanal. Chem., vol. 781, pp. 198–203, Nov. 2016.
  24.  F. Li, T. Zhang, X. Gao, R. Wang, and B. Li, “Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor,” Sensors Actuators, B Chem., vol. 252, pp. 822–830, 2017.
  25.  Z. Jiang et al., “Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers,” Ceram. Int., vol. 42, no. 14, pp. 15881– 15888, Nov. 2016.
  26.  J.Y. Cheong, C. Kim, J. W. Jung, K.R. Yoon, and I.D. Kim, “Porous SnO2-CuO nanotubes for highly reversible lithium storage,” J. Power Sources, vol. 373, pp. 11–19, Jan. 2018.
  27.  Y.Y. Li, J.G. Wang, H.H. Sun, W. Hua, and X.R. Liu, “Heterostructured SnS2/SnO2 nanotubes with enhanced charge separation and excellent photocatalytic hydrogen production,” Int. J. Hydrogen Energy, vol. 43, no. 31, pp. 14121–14129, Aug. 2018.
  28.  Z. Huang, Z. Chen, S. Ding, C. Chen, and M. Zhang, “Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification,” Mater. Lett., vol. 219, pp. 19–22, May 2018.
  29.  K. Wang and J. Huang, “Natural cellulose derived nanofibrous Ag-nanoparticle/SnO2/carbon ternary composite as an anodic material for lithium-ion batteries,” J. Phys. Chem. Solids, vol. 126, pp. 155–163, Mar. 2019.
  30.  S. Javanmardi, S. Nasresfahani, and M.H. Sheikhi, “Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature,” Mater. Res. Bull., vol. 118, Oct. 2019.
  31.  Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 132, no. 1, pp. 67–73, May 2008.
  32.  W.Q. Li et al., “Synthesis of hollow SnO2 nanobelts and their application in acetone sensor,” Mater. Lett., vol. 132, pp. 338–341, Oct. 2014.
  33.  L. Cheng et al., “Synthesis and characterization of SnO2 hollow nanofibers by electrospinning for ethanol sensing properties,” Mater. Lett., vol. 131, pp. 23–26, Sep. 2014.
  34.  L. Liu et al., “High toluene sensing properties of NiO-SnO2 composite nanofiber sensors operating at 330°C,” Sensors Actuators, B Chem., vol. 160, no. 1, pp. 448–454, Dec. 2011.
  35.  S.H. Yan et al., “Synthesis of SnO2-ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sensors Actuators, B Chem., vol. 221, pp. 88–95, Jul. 2015.
  36.  F. Li, X. Gao, R. Wang, T. Zhang, and G. Lu, “Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor,” Sensors Actuators, B Chem., vol. 248, pp. 812–819, 2017.
  37.  S.W. Choi, J. Zhang, K. Akash, and S.S. Kim, “H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 169, pp. 54–60, Jul. 2012.
  38.  X. Xu et al., “Effects of Al doping on SnO2 nanofibers in hydrogen sensor,” Sensors Actuators, B Chem., vol. 160, no. 1, pp. 858–863, Dec. 2011.
  39.  S.M. Hwang et al., “A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries,” Nano Energy, vol. 10, pp. 53–62, Nov. 2014.
  40.  W. Wang et al., “Carbon-coated SnO2@carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries,” Mater. Chem. Phys., vol. 223, pp. 762–770, Feb. 2019.
  41.  J. Zhu, G. Zhang, X. Yu, Q. Li, B. Lu, and Z. Xu, “Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries,” Nano Energy, vol. 3, pp. 80–87, Jan. 2014.
  42.  Q. Wali, A. Fakharuddin, I. Ahmed, M.H. Ab Rahim, J. Ismail, and R. Jose, “Multiporous nanofibers of SnO2 by electrospinning for high efficiency dye-sensitized solar cells,” J. Mater. Chem. A, vol. 2, no. 41, pp. 17427–17434, Nov. 2014.
  43.  T. Tański, W. Matysiak, and Ł. Krzemiński, “Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers,” Mater. Manuf. Process., vol. 32, no. 11, pp. 1218–1224, Aug. 2017.
  44.  W. Matysiak, T. Tański, P. Jarka, M. Nowak, M. Kępińska, and P. Szperlich, “Comparison of optical properties of PAN/TiO2, PAN/ Bi2O3, and PAN/SbSI nanofibers,” Opt. Mater. (Amst)., vol. 83, pp. 145–151, Sep. 2018.
  45.  T. Tański, W. Matysiak, D. Kosmalska, and A. Lubos, “Influence of calcination temperature on optical and structural properties of TiO2 thin films prepared by means of sol-gel and spin coating,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 2, pp. 151–156, Apr. 2018.
  46.  W. Matysiak, T. Tański, and M. Zaborowska, “Manufacturing process and characterization of electrospun PVP/ZnO NPs nanofibers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 193–200, 2019.
  47.  W. Matysiak, T. Tański, and M. Zaborowska, “Manufacturing process, characterization and optical investigation of amorphous 1D zinc oxide nanostructures,” Appl. Surf. Sci., vol. 442, pp. 382–389, Jun. 2018.
  48.  J. Muangban and P. Jaroenapibal, “Effects of precursor concentration on crystalline morphologies and particle sizes of electrospun WO3 nanofibers,” Ceram. Int., vol. 40, no. 5, pp. 6759–6764, Jun. 2014.
  49.  W. Matysiak and T. Tański, “Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with sol-gel and electrospinning methods,” Appl. Surf. Sci., vol. 489, pp. 34–43, Sep. 2019.
  50.  O.V. Otieno et al., “Synthesis of TiO2 nanofibers by electrospinning using water-soluble Ti-precursor,” J. Therm. Anal. Calorim., vol. 139, no. 1, pp. 57–66, Jan. 2020.
  51.  N. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, and E.K. Suh, “Spectral studies of SnO2 nanofibres prepared by electrospinning method,” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., vol. 64, no. 1, pp. 136–140, May 2006.
  52.  S.R. Ch, L. Zhang, T. Kang, Y. Lin, Y. Qiu, and S.R. A, “Annealing impact on the structural and optical properties of electrospun SnO2 nanofibers for TCOs,” Ceram. Int., vol. 44, no. 5, pp. 4586–4591, Apr. 2018.
  53.  S. Das, S. Kar, and S. Chaudhuri, “Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process,” J. Appl. Phys., vol. 99, no. 11, p. 114303, Jun. 2006.
  54.  N.S. Mohammad, “Understanding quantum confinement in nanowires: Basics, applications and possible laws,” J. Phys.-Condens. Matter, vol. 26, no. 42. Institute of Physics Publishing, 22-Oct-2014.
Go to article

Authors and Affiliations

Tomasz Tański
1
ORCID: ORCID
Weronika Smok
1
ORCID: ORCID
Wiktor Matysiak
1

  1. Department of Engineering Material and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the main issues of the management of electrical grids. Selected information technology tools supporting electrical grids maintenance are presented. In electrical infrastructure maintenance of power companies, geographic information systems are increasingly used to support the management of their resources. Their functionalities in terms of creating comprehensive databases for the electrical infrastructure of the power sector are described. The important information technology tools regarding spatial systems for supporting maintenance and operation management electrical grids and the conditions of their implementation are presented. This paper also attempts to present an innovative multidimensional evaluation of the technical and economic benefits resulting from the use of modern information technology tools for the management of energy infrastructure.
Go to article

Bibliography

  1.  Y. Sakamoto, “Improvement of operability and maintainability using new information and telecommunication technologies”, in Study Committee D2, 48th Session CIGRE. Paper D2 – 106, Paris, 2020.
  2.  M. Cepin, “Assessment of Power System Reliability. Methods and Applications”, Springer, London, 2011.
  3.  J. Piotrowski, “Systemy informatyczne i telekomunikacyjne”, Study Committee D2, 48th Session CIGRE Energetyka, problemy energetyki i gospodarki paliwowo – energetycznej, pp. 319‒323, March 2021.
  4.  S. Samek and M. Lizer, “Działalność CIGRE i CIGRE Polska”, 48th Session CIGRE 2020 – Energetyka, problemy energetyki i gospodarki paliwowo – energetycznej, pp. 157‒161, March 2021.
  5.  A.P. Apostolov, “Artificial Intelligence Applications to Electric Power System”, in Study Committee D2, 48th Session CIGRE, Paper D2 – 102. Paris, 2020.
  6.  A. Fraioli, “Failure reduction and predictive replacement approach for overhead lines using big data and advanced analytics”, Study Committee D2, 48th Session CIGRE, Paper D2 – 103, Paris, 2020.
  7.  A. Rodionov, “Application of modern information and communication technologies for improving the effectiveness power systems”, Study Committee D2, 48th Session CIGRE. Paper D2 – 112. Paris 2020.
  8.  X. Dong, “Research on the Architecture for Smart Energy Service System Based on Industrial Internet”, Study Committee D2, 48th Session CIGRE, Paper D2 – 114. Paris, 2020.
  9.  S. Guo, “The IoT solution architecture for Power Distribution and its Application”, Study Committee D2, 48th Session CIGRE, Paper D2 – 115, Paris, 2020.
  10.  M. Savinek, “Management of data from smart measuring device for predictive maintenance”, Study Committee D2, 48th Session CIGRE, Paper D2 – 130, Paris, 2020.
  11.  D. Campara, “Applying Automated Cyber Risk Assessment for Smart Grid”, Study Committee D2, 48th Session CIGRE, Paper D2 – 204, Paris, 2020.
  12.  A. Augusiak and W. Kamrat, “Automated network control and supervision”, IEEE Comput. Appl. Power, vol. 15, no. 1, pp. 20‒23, Aug. 2002, doi: 10.1109/67.976987.
  13.  M. Shahidehpour, “Energy Efficiency – perfect power system techniques”, IEEE Power Energy, vol. 6, no. 6, pp. 25‒26. Oct. 2008, doi: 10.1109/MPE.2008.929795. [Accessed: 17 Jan. 2021].
  14.  J. Girl, D. Sun, and R. Auila-Rosales, “Wanted A More Intelligent Grid”, IEEE Power Energy, vol. 7, no. 2, pp. 34‒40, Feb. 2009, doi: 10.1109/MPE.2008.931391.
  15.  W. Kamrat and T. Szczepański, “Wybrane zagadnienia budowy i eksploatacji linii przesyłowych najwyższych napięć”, Energetyka, problemy energetyki i gospodarki paliwowo – energetycznej, pp. 649‒668, Oct. 2009.
  16.  M. Bartosik, W. Kamrat, M. Kaźmierkowski, W. Lewandowski, M. Pawlik, T. Peryt, T. Skoczkowski, A. Strupczewski, and A. Szeląg, “Przesył energii elektrycznej – potrzeby, progi i bariery”, Przegląd Elektrotechniczny, vol. 11, pp. 297‒302, Nov. 2016.
  17.  T. Pakulski and J. Klucznik, “Expected range of cooperation between transmissions system operators and distribution systems operators after implementation of ENTSO-e Grids Codes”, Acta Energ. Power Eng. Quarterly, vol. 2, pp. 14‒19, Jun. 2015, doi: 10.12736/issn.2300- 3022.2015202.
  18.  P. Marchel, J. Paska, K. Pawlak, and K. Zagrajek, “A practical approach to optimal strategies of electricity contracting from Hybrid Power Sources”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6 pp. 1543‒1551, doi: 10.24425/bpasts.2020.135377.
  19.  W. Kamrat, “Wybrane zagadnienia lokalizacji turbin wiatrowych ze względu na ich aerodynamiczne oddziaływanie na przesyłowe linie elektroenergetyczne”, Elektroenergetyka: współczesność i rozwój Biuletyn PSE, vol. 1, pp. 58‒65, 2020.
  20.  SIEMENS NIXDORF information materials, “SICAD from Siemens Nixdorf GIS for your business”, Siemens AG.
  21.  ELBUD – SAG, “Geographic information systems for the energy sector. SICAD/open as a system for managing energy network documentation”, 2017, Gdansk, Poland.
  22.  FLI-MAP, “System presentation materials from Fugro-In-park B.V.”, Leidschendam, Netherlands”, [Online] Available: www.fugro-inpark. nl [Accessed: 17 Jan. 2021].
  23.  Article-GeoEurope, “Laser Altimetry Survey Populates GIS Database”, Leidschendam, Netherlands, [Online] Available: www.fugro-inpark. nl [Accessed: 17 Jan. 2021].
  24.  W. Kamrat and M. Dubert, “Selected Problems of Energy Infrastructure Diagnostics”, Ciepłownictwo, Ogrzewnictwo, Wentylacja, vol. 9, pp. 343‒346, Oct. 2018, doi: 10.15199/9.2018.9.1.
Go to article

Authors and Affiliations

Waldemar Kamrat
1

  1. Gdansk University of Technology, Faculty of Electrical and Control Engineering, Power Engineering Department, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The increasing demand for electricity and global attention to the environment has led energy planners and developers to explore developing control techniques for energy stability. The primary objective function of this research in an interconnected electrical power system to increase the stability of the system with the proposed RRVR technique is evaluated in terms of the different constraints like THD (%), steady-state error (%), settling time (s), overshoot (%), efficiency (%) and to maintain the frequency at a predetermined value, and controlling the change of the power flow of control between the areas renewable energy generation (solar, wind, and fuel cell with battery management system) based intelligent grid system. To provide high-quality, reliable and stable electrical power, the designed controller should perform satisfactorily, that is, suppress the deviation of the load frequency. The performance of linear controllers on non-linear power systems has not yet been found to be effective in overcoming this problem. In this work, a fractional high-order differential feedback controller (FHODFC) is proposed for the LFC problems in a multi-area power system. The gains of FHODFC are best adjusted by resilience random variance reduction technique (RRVR) designed to minimize the overall weighted absolute error performance exponential time. Therefore, the controller circuit automatically adjusts the duty cycle value to obtain a desired constant output voltage value, despite all the grid system’s source voltage and load output changes. The proposed interconnected multi-generation energy generation topology is established in MATLAB 2017b software.
Go to article

Bibliography

  1.  E. Sahin, “Design of an Optimized Fractional High Order Differential Feedback Controller for Load Frequency Control of a Multi-Area Multi-Source Power System With Nonlinearity,” IEEE Access, vol. 8, pp. 12327‒12342, 2020, doi: 10.1109/ACCESS.2020.2966261.
  2.  B. Zhao et al., “Energy Management of Multiple Microgrids Based on a System of Systems Architecture,” in IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6410‒6421, Nov. 2018, doi: 10.1109/TPWRS.2018.2840055.
  3.  M. Nilsson, L.H. Söder, and G.N. Ericsson, “Balancing Strategies Evaluation Framework Using Available Multi-Area Data,” in IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1289‒1298, March 2018, doi: 10.1109/TPWRS.2017.2736604.
  4.  E. Tómasson and L. Söder, “Generation Adequacy Analysis of Multi-Area Power Systems With a High Share of Wind Power,” in IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3854‒3862, July 2018, doi: 10.1109/TPWRS.2017.2769840.
  5.  B. Pan, W. Cong, M. Sun, J. Yu, and M. Zheng, “Fault location determination method for relay protection communication system based on power grid operation and maintenance multi-source data,” 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 2019, pp. 2351‒2356, doi: 10.1109/iSPEC48194.2019.8975178.
  6.  G. Liu, M. Vrakopoulou and P. Mancarella, “Assessment of the capacity credit of renewables and storage in multi-area power systems,” IEEE Trans. Power Syst., doi: 10.1109/TPWRS.2020.3034248.
  7.  R. Patel et al., “Enhancing Optimal Automatic Generation Control in a Multi-Area Power System With Diverse Energy Resources,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 3465‒3475, Sept. 2019, doi: 10.1109/TPWRS.2019.2907614.
  8.  H. Chen et al., “Key Technologies for Integration of Multitype Renewable Energy Sources – Research on Multi-Timeframe Robust Scheduling/Dispatch,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 471‒480, Jan. 2016, doi: 10.1109/TSG.2015.2388756.
  9.  T.K. Mohapatra and B.K. Sahu, “Design and implementation of SSA based fractional order PID controller for automatic generation control of a multi-area, multi-source interconnected power system,” 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Bhubaneswar, 2018, pp. 1‒6, doi: 10.1109/ICSESP.2018.8376697.
  10.  C. Wang, K. Jia, B. Liu, and J. Zhang, “Coordination Control and Protection for Photovoltaic DC Distribution System,” 2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES), Bangkok, Thailand, 2020, pp. 526‒530, doi: 10.1109/ SPIES48661.2020.9243132.
  11.  H. Zhang, B. Zhang, A. Bose, and H. Sun, “A Distributed Multi-Control-Center Dynamic Power Flow Algorithm Based on Asynchronous Iteration Scheme,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1716‒1724, March 2018, doi: 10.1109/TPWRS.2017.2721405.
  12.  A. Khoaei, M. Shahidehpour, L. Wu, and Z. Li, “Coordination of Short-Term Operation Constraints in Multi-Area Expansion Planning,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2242‒2250, Nov. 2012, doi: 10.1109/TPWRS.2012.2192507.
  13.  D. Xu, J. Liu, X. Yan, and W. Yan, “A Novel Adaptive Neural Network Constrained Control for a Multi-Area Interconnected Power System With Hybrid Energy Storage,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6625‒6634, Aug. 2018, doi: 10.1109/TIE.2017.2767544.
  14.  A. Nassaj and S.M. Shahrtash, “An Accelerated Preventive Agent-Based Scheme for Postdisturbance Voltage Control and Loss Reduction,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4508‒4518, July 2018, doi: 10.1109/TPWRS.2017.2778098.
  15.  Y. Zhang, X. Liu,, and B. Qu, “Distributed model predictive load frequency control of multi-area power system with DFIGs,” IEEE/CAA J. Autom. Sin., vol. 4, no. 1, pp. 125‒135, Jan. 2017, doi: 10.1109/JAS.2017.7510346.
  16.  G. Tang, Z. Xu, H. Dong and Q. Xu, “Sliding Mode Robust Control Based Active-Power Modulation of Multi-Terminal HVDC Transmissions,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1614‒1623, March 2016, doi: 10.1109/TPWRS.2015.2429690.
  17.  C. Zhong, J. Zhang, and Y. Zhou, “Adaptive Virtual Capacitor Control for MTDC System With Deloaded Wind Power Plants,” IEEE Access, vol. 8, pp. 190582‒190595, 2020, doi: 10.1109/ACCESS.2020.3032284.
  18.  M. Kahl, C. Freye, and T. Leibfried, “A Cooperative Multi-Area Optimization With Renewable Generation and Storage Devices,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2386‒2395, Sept. 2015, doi: 10.1109/TPWRS.2014.2363762.
  19.  J. Zhao et al., “A Multi-Source Coordinated Optimal Operation Model Considering the Risk of Nuclear Power Peak Shaving and Wind Power Consumption,” IEEE Access, vol. 8, pp.  189702‒189719, 2020, doi: 10.1109/ACCESS.2020.3027705.
  20.  W. Wang, L. Jiang, Y. Cao, and Y. Li, “A Parameter Alternating VSG Controller of VSC-MTDC Systems for Low-Frequency Oscillation Damping,” IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4609‒4621, Nov. 2020, doi: 10.1109/TPWRS.2020.2997859.
  21.  T. Yang, S. Bozhko, J. Le-Peuvedic, G. Asher, and C.I. Hill, “Dynamic Phasor Modeling of Multi-Generator Variable Frequency Electrical Power Systems,” IEEE Trans. Power Syst., vol. 31, no. 1, pp.  563‒571, Jan. 2016, doi: 10.1109/TPWRS.2015.2399371.
  22.  P.M. Dash, S.K. Mohapatra, and A.K. Baliarsingh, “Tuning of LFC in Multi-source Electrical Power Systems Implementing Novel Nature- Inspired MFO Algorithm Based Controller Parameter,” 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), Keonjhar, Odisha, India, 2020, pp. 1‒5, doi: 10.1109/CISPSSE49931.2020.9212199.
  23.  F. Qi, M. Shahidehpour, F. Wen, Z. Li, Y. He, and M. Yan, “Decentralized Privacy-Preserving Operation of Multi-Area Integrated Electricity and Natural Gas Systems With Renewable Energy Resources,” IEEE Trans. Sustainable Energy, vol. 11, no. 3, pp. 1785‒1796, July 2020, doi: 10.1109/TSTE.2019.2940624.
  24.  X.S. Zhang, T. Yu, Z.N. Pan, B. Yang, and T. Bao, “Lifelong Learning for Complementary Generation Control of Interconnected Power Grids With High-Penetration Renewables and EVs,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4097‒4110, July 2018, doi: 10.1109/ TPWRS.2017.2767318.
  25.  A. Khanjanzadeh, S. Soleymani, and B. Mozafari, “A decentralized control strategy to bring back frequency and share reactive power in isolated microgrids with virtual power plant,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, No. 1, pp. 1‒9, 2021, doi: 10.24425/ bpasts.2021.136190.
  26.  M. Parol and M. Polecki, “The performance of passive methods of detecting island operation implemented in PV inverters during selected disturbances in distribution power grids,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 1087‒1098, 2020. doi: 10.24425/ bpasts.2020.134658.
  27.  A. Bobori, S. Paszek, A. Nocori, and P. Pruski, “Determination of synchronous generator nonlinear model parameters based on power rejection tests using a gradient optimization algorithm,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 4, pp. 479‒488, 2017, doi: 10.1515/ bpasts-2017-0053.
  28.  G. Benysek, “Improvement in the efficiency of the distributed power systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 57, no. 4, pp. 369‒374, 2009, doi: 10.2478/v10175-010-0140-1.
  29.  H. Rezk, M.A. Mohamed, A.A. Zaki Diab, and N. Kanagaraj, “Load Frequency control of Multi-interconnected Renewable Energy Plants using Multi-Verse Optimizer,” Comput. Syst. Sci. Eng., vol. 37, no. 2, pp. 219‒231, 2021, doi: 10.32604/csse.2021.015543.
  30.  H. Sun, C. Peng, D. Yue, Y.L. Wang, and T. Zhang, “Resilient Load Frequency Control of Cyber-Physical Power Systems Under QoS- Dependent Event-Triggered Communication,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 4, pp. 2113‒2122, doi: 10.1109/ TSMC.2020.2979992.
  31.  E. Canelas, T. Pinto-Varela, and B. Sawik, “Electricity Portfolio Optimization for Large Consumers: Iberian Electricity Market Case Study,” Energies, vol. 13, no. 9, p. 2249, 2020, doi: 10.3390/en13092249.
Go to article

Authors and Affiliations

B. Prakash Ayyappan
1
R. Kanimozhi
2

  1. Department of Electrical and Electronics Engineering, V.S.B Engineering College, Karur and Research Scholar (Electrical), Anna University, Chennai, Tamilnadu, India
  2. Department of Electrical and Electronics Engineering, University College of Engineering, Anna University-BIT Campus, Tiruchirapalli, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

Diagnostic methodologies are of fundamental importance for operational strategies of electrical devices, both in the power grid and in industrial applications. This paper reports about a novel approach based on partial discharge analysis applied to high voltage electrical insulation. Especially dynamics of charges deposited by partial discharges is explored applying a chopped sequence. The applications refer to microvoids occurring inside solid insulating systems or at the interfaces, such as delaminations at the electrodes. The experiments were carried out on embedded voids having distinctive wall dielectric materials. The underlying physical phenomena of post discharge charge transport are analyzed. The assessment is performed using phase-resolved partial discharge patterns acquired applying a chopped sequence. The chopped partial discharge (CPD) method provides quantitative insight into post discharge charge decay processes due to deposited and accumulated charges fluctuations. The assessment indicator is based on comparing partial discharge inception angle between chopped sequence and continuous run. The experiments have shown that materials with distinctive surface conductivity revealed adequately different charge decay time dynamics. The detailed analysis yields time constant of walls charge decay for insulating paper equal to 12 ms and cross-linked polyethylene 407 ms. The CPD method may be further used to investigate streamer physics inside bounded cavities in the form of voids. The presented method provides a quantitative approach for charge non-invasive decay assessment and offers high potential in future diagnostics applications.
Go to article

Bibliography

  1.  T. Tanaka and Y. Ikeda, “Internal discharges in polyethylene with an artificial cavity,” IEEE Trans. Power Apparatus Syst., vol. 90, no. 6, pp. 2692–2702, 1971.
  2.  B. Fruth and L. Niemeyer, “The importance of statistical characteristics of partial discharge data,” IEEE Trans. Electr. Insul., vol. 27, no. 1, pp. 60–69, 1992.
  3.  L. Niemeyer, “Generalized approach to partial discharge modelling,” IEEE Trans. Dielectr. Electr. Insul., vol. 2, no. 4, pp. 510–528, 1995.
  4.  H. Illias, G. Chen, and P.L. Lewin, “Partial discharge behavior within a spherical cavity in a solid dielectric material as a function of frequency and amplitude of the applied voltage,” IEEE Trans. Dielectr. Electr. Insul.. vol. 18, pp. 432–443, 2011, doi: 10.1109/TDEI.2011.5739447.
  5.  M.A. Saleh, S.S. Refaat, M. Olesz, H. Abu-rub, and J. Guźiński, “The effect of protrusions on the initiation of partial discharges in XLPE high voltage cables,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, 2021, doi: 10.24425/bpasts.2021.136037.
  6.  M. Florkowski, M. Kuniewski, and P. Zydroń, “Partial discharges in HVDC insulation with superimposed AC harmonics,” IEEE Trans. Dielectr. Electr. Insul., vol. 27, no. 6, pp. 1875‒1882, 2020.
  7.  G.C. Crichton, P.W. Karlsson, and A. Pedersen, “partial discharges in ellipsoidal and speroidal voids,” IEEE Trans. Electr. Insul., vol. 24, no. 2, pp. 335–342, 1989.
  8.  I.W. McAllister, “Decay of charge deposited on the wall of gaseous void,” IEEE Trans. Electr. Insul., vol. 27, no. 6, pp. 1202‒1207, 1992.
  9.  T. Tanaka and M. Uchiumi, “Two kinds of decay time constants for interfacial space charge in polyethylene-laminated dielectrics,” in Proc. Conf. on Electr. Insul. Dielectri. Phenom. (CEIDP), 1999, pp.  472‒475.
  10.  T. Mizutani, Y. Taniguchi, and M. Ishioka, “Charge decay and space charge in corona-charged LDPE,” in Proc. 11th International Symposium on Electrets, 2002, pp. 15–18.
  11.  B. Florkowska, “Partial discharge measurements with computer aided system in polyethyleneterephthalate and polypropylene films,” in Proc. High voltage engineering. 8th International Symposium, Yokohama, Japan, 1993, pp. 41–44.
  12.  H.J.M. Blennow, M.L.A. Sjoberg, M.A.S. Leijon, and S.M. Gubanski, “Effects of charge accumulation in a dielecric covered electrode system in air,” in Proc. IEEE Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), 1999, pp. 484‒487.
  13.  K. Wu et al., “Contribution of surface conductivity to the current forms of partial discharges in voids,” IEEE Trans. Dielectr. Electr. Insul., vol. 12, no.  6, pp. 1116–1124, 2005.
  14.  L.A. Dissado et al., “Decay of space charge in a glassy epoxy resin following voltage removal,” IEEE Trans. Dielectr. Electr. Insul., vol. 13, no. 4, pp. 903–916, 2006.
  15.  Y. Serdyuk and S. Gubanski, “Computer modeling of interaction of gas discharge plasma with solid dielectric barriers,” IEEE Trans. Dielectr. Electr. Insul., vol. 12, pp. 725–735, 2005, doi: 10.1109/tdei.2005.1511098.
  16.  S. Kumara, Y.V. Serdyuk, and S.M. Gubanski, “Surface charge decay on polymeric materials under different neutralization modes in air,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 5, pp. 1779–1788, 2011.
  17.  K. Wu, C. Pan, Y. Meng, Y. Cheng, and M. Ding, “Dynamic behavior of surface charge distribution during partial discharge sequence,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 2, pp. 612–619, 2013.
  18.  M. Florkowski, B. Florkowska, P. Zydron, “Chopped Partial Discharge Sequence,” IEEE Trans. Dielectr. Electr. Insul., vol.  22, no. 6, pp. 3451‒3458, 2015.
  19.  H.A. Illias, M.A. Tunio, A.H.A. Bakar, H. Mokhlis, and G. Chen, “Partial discharge phenomena within an artificial void in cable insulation geometry: experimental validation and simulation,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 1, pp. 451–459, 2016.
  20.  J. Kindersberger and C. Lederle, “Surface charge decay on insulators in air and sulfurhexafluorid – Part I: simulation,” IEEE Trans. Dielectr. Electr. Insul., vol. 15, no. 4, pp. 941–948, 2008.
  21.  M. Florkowski, “Influence of insulating material properties on partial discharges at dc voltage,” Energies, vol. 13, p. 4305, 2020.
  22.  L. Xing, L. Weidong, X. Yuan, C. Weijiang, and B. Jiangang, “Surface charge accumulation and pre-flashover characteristics induced by metal particles on the insulator surfaces of 1100 kV GILs under AC voltage,” High Voltage, vol. 5, no. 2, pp. 134‒142, 2020.
  23.  M. Florkowski, Partial discharges in high-voltage insulating systems – mechanisms, processing, and analytics, AGH Press, Kraków, 2020.
  24.  Y. Luo et al., “Dynamics of surface charge and electric field distributions on basin-type insulator in GIS/GIL due to voltage polarity reversal,” High Voltage, vol. 5, no.  2, pp. 151‒159, 2020.
  25.  Q. Li et al., “Surface charge pattern analysis based on the field-dependent charging theory: a review,” IEEE Trans. Dielectr. Electr. Insul., vol. 27, no.  1, pp. 257‒269, 2020.
  26.  C. Pan et al., “Understanding partial discharge behavior from the memory effect induced by residual charges: A review,” IEEE Trans. Dielectr. Electr. Insul., vol. 27, no. 6, pp. 1936‒1950, 2020, doi: 10.1109/TDEI.2020.008960.
  27.  C. Pan et al., “The effect of surface charge decay on the variation of partial discharge location,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 4, pp. 2241–2249, 2016.
  28.  M. Florkowski, B. Florkowska, and R. Włodek, “Investigations on Post Partial Discharge Charge Decay in Void Using Chopped Sequence,” IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 6, pp. 3831‒3838, 2017.
  29.  M. Florkowski, B. Florkowska, M. Kuniewski, and P. Zydroń, “Mapping of discharge channels in void creating effective partial discharge area,” IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 6, pp. 2220–2228, 2018.
  30.  G. Callender, K.F. Goddard, and P.L. Lewin, “Simulating surface charge dynamics,” IEEE Trans. Dielectr. Electr. Insul., vol. 28, no. 1, pp. 19‒27, 2021.
  31.  H. He et al., “Simulation of positive streamer propagation in an air gap with a GFRP composite barrier,” High Voltage, pp. 1–13, 2021, doi: 10.1049/hve2.12112.
Go to article

Authors and Affiliations

Marek Florkowski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Self-healing grids are one of the most developing concepts applied in electrical engineering. Each restoration strategy requires advanced algorithms responsible for the creation of local power systems. Multi-agent automation solutions dedicated for smart grids are mostly based on Prim’s algorithm. Graph theory in that field also leaves many problems unsolved. This paper is focused on a variation of Prim’s algorithm utility for a multi-sourced power system topology. The logic described in the paper is a novel concept combined with a proposal of a multi-parametrized weight calculation formula representing transmission features of energy delivered to loads present in a considered grid. The weight is expressed as the combination of three elements: real power, reactive power, and real power losses. The proposal of a novel algorithm was verified in a simulation model of a power system. The new restoration logic was compared with the proposal of the strategy presented in other recently published articles. The novel concept of restoration strategy dedicated to multi-sourced power systems was verified positively by simulations. The proposed solution proved its usefulness and applicability.
Go to article

Bibliography

  1.  S.A. Arefifar, Y.A.-R.I. Mohamed, and T.H.M. EL-Fouly, “Comprehensive Operational Planning Framework for Self-Healing Control Actions in Smart Distribution Grids,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4192‒4200, 2013, doi: 10.1109/tpwrs.2013.2259852.
  2.  J. Quiros-Tortos and V. Terzija, “A Graph Theory Based New Approach for Power System Restoration,” in Proc. 2013 IEEE Grenoble PowerTech (POWERTECH), 2013, doi: 10.1109/ptc.2013.6652108.
  3.  T.D. Sudhakar and K.N. Srinivs, “Power System Reconfiguration Based on Prim’s Algorithm,” in Proc. 2011 1st International Conference on Electrical Energy Systems (ICEES), 2011, doi: 10.1109/ICEES.2011.5725295.
  4.  M.M. Ibrahim, H.A. Mostafa, M.M.A. Salama, R. El-Shatshat, and K.B. Shaban, “A Graph-theoretic Service Restoration Algorithm for Power Dystribution Systems,” in Proc. 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), 2018, doi: 10.1109/itce.2018.8316647.
  5.  A. Golshani, W. Sun, and K. Sun, “Advanced power system partitioning method for fast and reliable restoration: toward a self-healing grid,” IET Gener. Transmiss. Distrib., vol. 12, no,1, pp.45‒52, 2018, doi: 10.1049/iet-gtd.2016.1797.
  6.  J. Quiros-Tortos, M. Panteli, P. Wall, and V. Tereija, “Sectionalising methodology for paraller system restoration based on graph theory,” IET Gener. Transmiss. Distrib., vol. 9, no. 11, pp. 1216‒1225, 2015, doi: 10.1049/iet-gtd.2014.0727.
  7.  M. Parol, P. Kapler, J. Marzecki, R. Parol, M. Połecki, and Ł. Rokitnicki, “Effective approach to distributed optimal operation control in rural low voltage microgrids,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 661‒678, 2020, doi: 10.24425/bpasts.2020.134178.
  8.  S. Sannigrahi, S.R. Ghatak, and P. Acharjee, “Multi-objective optimisation-based active distribution system planning with reconfiguration, intermittent RES and DSTATCOM,” IET Renew. Power Gener., vol. 13, no. 13, pp. 2418‒2429, 2019, doi: 10.1049/iet-rpg.2018.6060.
  9.  A. Bonfilio, M. Invernizzi, A. Labella, and R. Procopio, “Design and Implementation of a Variable Synthetic Inertia Controller for Wind Turbine Generators,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 754‒764, 2019, doi: 10.1109/tpwrs.2018.2865958.
  10.  F. Vazinram, R. Effatnejad, M. Hedayati, and P. Hajihosseini, “Decentralised self-healing model for gas and electricity distribution network,” IET Gener. Transmiss. Distrib., vol. 13, no.  19, pp. 4451‒4463, October 2019, doi: 10.1049/iet-gtd.2019.0416.
  11.  M. Eriksson, M. Armendariz, O. Vasilenko, A. Saleem, and L. Nordström, “Multi-Agent Based Distribution Automation Solution for Self-Healing Grids,” IEEE Trans. Ind. Electron., vol.  62, no. 4, pp. 2620‒2628, 2015, doi: 10.1109/tie.2014.2387098.
  12.  J. Li, Reconfiguration of power network based on graph-theoretic algorithms, Graduate Theses and Dissertations, Iowa State University, 2010, pp. 10‒35, doi: 10.31274/etd-180810-2753.
  13.  T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Section 23.2: The algorithms of Kruscal and Prim” in Introduction to Algorithms, 3rd ed., MIT Press, 2009, pp. 631‒638.
  14.  J. Ansari, A. Gholami, and A. Kazemi, “Multi-agent systems for reactive power control in smart grids,” Int. J. Electr. Power Energy Syst., vol. 83, pp. 411‒425, 2016, doi: 10.1016/j.ijepes.2016.04.010.
  15.  M. Borecki, M. Ciuba, Y. Kharchenko, and Y. Khanas, “Substation reliability evaluation in the context of the stability prediction of power grids,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 769‒776, 2020, doi: 10.24425/bpasts.2020.134170.
  16.  Q. Wang, S. Tao, X. Du, C. Zhong, and Y. Tang, “Coordinating Control Strategy for Multi Micro Energy Systems Within Distribution Grid Considering Dynamic Characteristics and Contradictory Interests,” IEEE Access, vol. 7, pp. 139548‒139559, 2019, doi: 10.1109/ access.2019.2943926.
  17.  Z. Wang and J. Wang, “Self-healing resilient distribution systems based on sectionalization into microgrids,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3139‒3149, 2015, doi: 10.1109/tpwrs.2015.2389753.
  18.  W. Bąchorek and M. Benesz, “Analysis of sectionizing switch placement in medium voltage distribution networks in the aspect of improving the continuity of power supply,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 3, pp. 459‒466, 2020, doi: 10.24425/bpasts.2020.133377.
  19.  R.J. Wilson, Introduction to Graph Theory, London, Pearson Education Limited, 2010, pp. 8‒79.
  20.  J.A. Bondy and U.S.R. Murty, Graph theory with applications. London, Citeseer, 1976, pp. 10‒55.
  21.  B.S. Torres, L.R. Ferreira, and A.R. Aoki, “Distributed Intelligent System for Self-Healing in Smart Grids,” IEEE Trans. Power Del., vol. 33, no. 5, pp. 2394‒2403, 2018, doi: 10.1109/tpwrd.2018.2845695.
  22.  X. Yang, Y. Zhang, H. He, S. Ren, and G. Weng, “Real-Time Demand Side Management for a Microgrid Considering Uncertainties,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3401‒3414, 2019, doi: 10.1109/tsg.2018.2825388.
  23.  A. Younesi, H. Shayeghi, A. Safari, and P. Siano, “Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation,” Energy, vol. 207, 118220, 2020, doi: 10.1016/j.energy.2020.118220.
  24.  Y. Shen, Y. Chen, J. Zhang, Z. Sang, and Q. Zhou, “Self-Healing Evaluation of Smart Distribution Network Based on Uncertainty Theory,” IEEE Access, vol. 7, pp. 140022‒140029, 2019, doi: 10.1109/access.2019.2939537.
  25.  K. Anoh, S. Maharjan, A. Ikpehai, Y. Zhang, and B. Adebisi, “Energy Peer-to-Peer Trading in Virtual Microgrids in Smart Grids: A Game- Theoretic Approach,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1264‒1275, 2020, doi: 10.1109/tsg.2019.2934830.
  26.  A. Chris and V. Koivunen, “Coalitional Game-Based Cost Optimalization of Energy Portfolio in Smart Grid Communities,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1960‒1970, 2019, doi: 10.1109/TSG.2017.2784902.
  27.  M. Zadsar, M.R. Haghifam, and S.M.M. Larimi, “Approach for self-healing resilient operation of active distribution network with microgrid,” IET Gener. Transmiss. Distrib., vol. 11, no. 18, pp. 4633‒4643, 2017, doi: 10.1049/iet-gtd.2016.1783.
  28.  W. Jiang, C. Yang, Z. Liu, M. Liang, P. Li, and G. Zhou, “A Hierarchical Control Structure of Distributed Energy Storage System in DC Micro-Grid,” IEEE Access, vol. 7, pp. 128787‒128795, 2019, doi: 10.1109/access.2019.2939626.
  29.  K. Karimizadeh, S. Soleymani, and F. Faghihi, “Optimal placement of DG units for the enhancement of MG networks performance using coalition game theory,” IET Gener. Transmiss. Distrib., vol. 14, no. 5, pp. 853‒862, 2020, doi: 10.1049/iet-gtd.2019.0070.
  30.  J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics: Stabilty and Control. Haboken, New Jersey, John Wiley & Sons, Ltd., 2008, pp. 89‒99.
  31.  P. Li, J. Ji, H. Ji, G. Song, Ch. Wang, and J. Wu, “Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks,” Energy, vol. 195, 116968, 2020, doi: 10.1016/j.energy.2020.116968.
  32.  S. Pochpor and H.M. Suryawanshi, “Design and Analysis of Triplen Controlled Resonant Converter for Renewable Sources to Interface DC Micro Grid,” IEEE Access, vol. 7, pp. 15330‒15339, 2019, doi: 10.1109/access.2019.2891165.
  33.  S. Heinen and M.J. O’Malley, “Complementarities of Supply and Demand Sides in Integrated Energy Systems,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 1156‒1165, 2019, doi: 10.1109/tsg.2018.2871393.
  34.  F. Liberati, A. Di Giorgio, A. Giuseppi, A. Pietrabissa, E. Habib, and L. Martirano, “Joint Model Predictive Control of Electric and Heating Resources in a Smart Building,” IEEE Trans. Ind. Electron, vol. 55, no. 6, pp. 7015‒7027, 2019, doi: 10.1109/TIA.2019.2932954.
  35.  A. Mojallal, S. Lotfifard, and S.M. Azimi, “A Nonlinear Supplementary Controller for Transient Response Improvement of Distributed Generations in Micro-Grids,” IEEE Trans. Sustain. Energy, vol. 11, no. 1, pp. 489‒499, 2020, doi: 10.1109/tste.2019.2895961.
  36.  S. Gude and Ch-Ch Chu, “Single Phase Enhanced Phase-Locked Loops Based on Multiple Delayed Signal Cancellation Filters for Micro- Grid Applications,” IEEE Trans. Ind. Electron, vol. 55, no.  6, pp. 7122‒7133, 2019, doi: 10.1109/TIA.2019.2915563.
Go to article

Authors and Affiliations

Artur Łukaszewski
ORCID: ORCID
Łukasz Nogal
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the non-fragile event-triggered control of positive switched systems with random nonlinearities and controller perturbations. The random nonlinearities and controller perturbations are assumed to obey Bernoulli and Binomial sequence, respectively. A class of linear event-triggering conditions is introduced. A switched linear co-positive Lyapunov function is constructed for the systems. For the same probability with respect to nonlinearities and controller perturbations in each subsystem, a non-fragile controller of positive switched systems is designed in terms of linear programming. Then, the different probability case is considered and the corresponding non-fragile event-triggered control is explored. Finally, the effectiveness of theoretical findings is verified via two examples.
Go to article

Bibliography

  1.  L. Fainshil, M. Margaliot, and P. Chigansky, “On the stability of positive linear switched systems under arbitrary switching laws,” IEEE Trans. Autom. Contr., vol. 54, no. 4, pp. 897–899, 2009.
  2.  T. Kaczorek, “Simple sufficient conditions for asymptotic stability of positive linear systems for any switchings,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 343–347, 2013.
  3.  J. Zhang, Z. Han, and F. Zhu, “L1-gain analysis and control synthesis of positive switched systems,” Int. J. Syst. Sci., vol.  46, no. 12, pp. 2111–2121, 2015.
  4.  T. Kaczorek, “Global stability of positive standard and fractional nonlinear feedback systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 285–288, 2020.
  5.  H. Yang and Y. Hu, “Stability and stabilization of positive linear dynamical systems: new equivalent conditions and computations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 307‒315, 2020.
  6.  L. Farina and S. Rinaldi, Positive linear systems: theory and applications. John Wiley and Sons, 2011.
  7.  T. Kaczorek, Positive 1D and 2D systems. Springer Science and Business Media, 2012.
  8.  J. Lam et al., Positive Systems. Springer, 2019.
  9.  E. Hernandez-Vargas et al., “Discrete-time control for switched positive systems with application to mitigating viral escape,” Int. J. Robust Nonlinear Contr., vol. 21, no.  10, pp. 1093–1111, 2011.
  10.  L. Gurvits, R. Shorten, and O. Mason, “On the stability of switched positive linear systems,” IEEE Trans. Autom. Contr., vol. 52, no. 6, pp. 1099–1103, 2007.
  11.  E. Fornasini and M. Valcher, “Stability and stabilizability criteria for discrete-time positive switched systems,” IEEE Trans. Autom. Contr., vol. 57, no. 5, pp. 1208‒1221, 2011.
  12.  J. Zhang et al., “Stability and stabilization of positive switched systems with mode-dependent average dwell time,” Nonlinear Anal.-Hybrid Syst., vol. 9, pp. 42–55, 2013.
  13.  J. Klamka, A. Czornik, and M. Niezabitowski, “Stability and controllability of switched systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 3, pp. 547–555, 2013.
  14.  O. Mason and R. Shorten, “On linear copositive Lyapunov functions and the stability of switched positive linear systems,” IEEE Trans. Autom. Contr., vol. 52, no. 7, pp. 1346–1349, 2007.
  15.  F. Blanchini, P. Colaneri, and M. Valcher, “Co-positive Lyapunov functions for the stabilization of positive switched systems,” IEEE Trans. Autom. Contr., vol. 57, no. 12, pp. 3038–3050, 2012.
  16.  X. Liu, “Stability analysis of switched positive systems: A switched linear copositive Lyapunov function method,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 56, no. 5, pp. 414– 418, 2009.
  17.  M. Li et al., “Nonfragile reliable control for positive switched systems with actuator faults and saturation,” Optim. Contr. Appl. Met., vol. 40, no. 4, pp. 676–690, 2019.
  18.  J. Zhang, X. Zhao, and R. Zhang, “An improved approach to controller design of positive systems using controller gain decomposition,” J. Franklin Inst., vol. 354, no. 3, pp. 1356–1373, 2017.
  19.  R.C. Dorf, M. Farren, and C. Phillips, “Adaptive sampling frequency for sampled-data control systems,” IEEE Trans. Autom. Contr., vol. 7, no. 1, pp. 38–47, 1962.
  20.  P. Li et al., “Dynamic event-triggered control for networked switched linear systems,” in 2017 36th Chin. Contr. Conf., 2017, pp. 7984– 7989.
  21.  Y. Qi, P. Zeng, and W. Bao, “Event-triggered and self-triggered H1 control of uncertain switched linear systems,” IEEE Trans. Syst. Man Cybern. Syst., pp. 1–13, 2018.
  22.  S. Xiao, Y. Zhang, and B. Zhang, “Event-triggered networked fault detection for positive Markovian systems,” Signal Process., vol. 157, pp. 161–169, 2019.
  23.  Y. Yin et al., “Event-triggered constrained control of positive systems with input saturation,” Int. J. Robust Nonlinear Contr., vol. 28, no. 11, pp. 3532–3542, 2018.
  24.  L. Liu et al., “Event-triggered control of positive switched systems based on linear programming,” IET Control Theory A., vol. 14, no. 1, pp. 145–155, 2020.
  25.  H. Yang et al., “Non-fragile control of positive Markovian jump systems,” J. Frankl. Inst.-Eng. Appl. Math., vol. 356, no. 5, pp. 2742–2758, 2019.
  26.  J. Zhang, T. Raïssi, and S. Li, “Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays,” Nonlinear Dyn., vol. 97, no. 1, pp. 1–19, 2019.
  27.  D. Ding et al., “H1 state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 725–736, 2012.
  28.  W. He et al., “Almost sure stability of nonlinear systems under random and impulsive sequential attacks,” IEEE Trans. Autom. Contr., vol. 65, no. 9, pp. 3879–3886, 2020.
  29.  J. Hu et al., “On state estimation for nonlinear dynamical networks with random sensor delays and coupling strength under event-based communication mechanism,” Informa. Sciences, vol. 511, pp. 265–283, 2020.
  30.  J. Hu et al., “On co-design of filter and fault estimator against randomly occurring nonlinearities and randomly occurring deception attacks,” Int. J. Gen. Syst., vol.  45, no. 5, pp. 619–632, 2016.
  31.  J. Zhang et al., “Adaptive event-triggered communication scheme for networked control systems with randomly occurring nonlinearities and uncertainties,” Neurocomputing, vol. 174, pp. 475–482, 2016.
  32.  Z. Wang, Y. Wang, and Y. Liu, “Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays,” IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 11–25, 2009.
  33.  J. Zhang, X. Zhao, and X. Cai, “Absolute exponential L1-gain analysis and synthesis of switched nonlinear positive systems with time- varying delay,” Appl. Math. Comput., vol. 284, pp. 24–36, 2016.
  34.  J. Zhang, H. Yang, and T. Rassi, “Stability analysis and saturation control for nonlinear positive Markovian jump systems with randomly occurring actuator faults,” Int. J. Robust Nonlinear Contr., vol. 30, no. 13, pp. 5062–5100, 2020.
  35.  M.A. Rami, U. Helmke, and F. Tadeo, “Positive observation problem for linear time-delay positive systems,” in proceedings of 15th IEEE Med. Conf. Contr. Autom., 2007, pp. 5004–5009.
  36.  P. Bolzern and P. Colaneri, “Positive Markov jump linear systems,” Found. Trends Syst. Contr., vol. 2, no. 3, pp. 275–427, 2015.
  37.  D. Li et al., “Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching,” J. Differ. Equ., vol. 263, no. 12, pp. 8873–8915, 2017.
Go to article

Authors and Affiliations

Yanqi Wu
1
Junfeng Zhang
1
Shizhou Fu
1

  1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
Download PDF Download RIS Download Bibtex

Abstract

In the paper we propose a fractional-piecewise-constant-order PID controller and discuss the stability and robustness of a closed loop system. In stability analysis we use the transform method and include the Nyquist-like criteria. Simulations for designed controllers are performed for the second-order plant with a delay.
Go to article

Bibliography

  1.  R. Hilfer, Applications of Fractional Calculus in Physics, Singapore: World Scientific Publishing Company, 2000.
  2.  R. Almeida, N.R.O. Bastos, and M.T.T. Monteiro, “A fractional Malthusian growth model with variable order using an optimization approach”, Stat. Optim. Inf. Comput. vol. 6, no. 1, pp.  4–11, 2018.
  3.  R. Caponetto, G. Dongola, G. Fortuna, and I. Petras, Fractional Order Systems: Modeling and Control Applications, World Scientific, Singapore, 2010.
  4.  I. Podlubny, “Fractional-order systems and PIlDm controllers”, IEEE Trans. Autom. Control, vol. 44, no. 1, pp. 208–214, 1999.
  5.  D. Xue and Y.Q. Chen, “A Comparative Introduction of Four Fractional Order Controllers”, Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P.R. China, 2002, pp. 3228–3235.
  6.  Y.Q. Chen, “Ubiquitous fractional order controls?”, IFAC Proc. Vol., vol. 39, no. 11, pp. 481–492, 2006.
  7.  C.A Monje, Y. Chen, B.M. Vinagre, and V. Feliubatlle, Fractional-Order Systems and Fractional-Order Controllers, Springer Science & Business Media, 2010.
  8.  I. Petras, “Tuning and implementation methods for fractionalorder controllers”, Fract. Calc. Appl. Anal., vol. 15, no. 2, pp. 282–303, 2012.
  9.  S. Debarma, L.C. Saikia, and N. Sinha, “Automatic generation control using two degree of freedom fractional order PID controller”, Int. J. Electr. Power Energy Syst., vol. 58, pp. 120–129, 2014.
  10.  F. Padula and A. Visioli, “Set-point weight tuning rules for fractional order PID controllers”, Asian J. Control, vol. 15, no. 3, pp. 678–690, 2013.
  11.  A. Tepljakov, E. Petlenkov, and J. Belikov, “A flexible MATLAB tool for optimal fractional-order PID controller design subject to specifications”, Proceedings of the 31st Chinese Control Conference, 2012, pp. 4698–4703.
  12.  P. Shah and S. Agashe, “Review of fractional PID controller”, Mechatronics, vol. 38, pp. 29–41, 2016.
  13.  A. Veloni and N. Miridakis, Digital Control Systems, Pearson Education Limited, 2017.
  14.  P. Oziablo, D. Mozyrska, and M. Wyrwas, “A Digital PID Controller Based on Grünwald-Letnikov Fractional-, Variable-Order Operator”, 24th International Conference on Methods and Models in Automation and Robotics (MMAR), 2019, pp. 460–465.
  15.  D. Mozyrska, P. Oziablo, and M.Wyrwas, “Fractional-, variableorder PID controller implementation based on two discretetime fractional order operators”, 7th International Conference on Control, Mechatronics and Automation (ICCMA), 2019, pp. 26–32.
  16.  P. Oziablo, D. Mozyrska, and M. Wyrwas, “Discrete-Time Fractional, Variable-Order PID Controller for a Plant with Delay”, Entropy, vol. 22, no. 7, p. 771, 2020.
  17.  P. Ostalczyk, “Variable-, fractional-order discrete PID controllers”, 17th International Conference on Methods and Models in Automation and Robotics (MMAR), 2012, pp. 534–539.
  18.  D. Sierociuk, W. Malesza, and M. Macias, “On a new definition of fractional variable-order derivative”, Proc. of the 14th International Carpathian Control Conference (ICCC), 2013, pp.  340–345.
  19.  D. Sierociuk, and W. Malesza, “Fractional variable order antiwindup control strategy”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 4, pp. 427–432, 2018.
  20.  D. Mozyrska and P. Ostalczyk, “Generalized Fractional-Order Discrete-Time Integrator”, Complexity, vol. 2017, p.  3452409, 2017.
  21.  D. Mozyrska, and M. Wyrwas, “Systems with fractional variable-order difference operator of convolution type and its stability”, Elektronika i Elektrotechnika, vol. 24, no. 5, pp. 69‒73, 2018.
  22.  F. Haugen, PID Control, Tapir Academic Press, 2004.
  23.  R.C. Dorf and R.H. Bishop, Modern Control Systems, CRC Press, Taylor & Francis Group, 2018.
  24.  O. Mayr, The origins in feedback control, MIT Press, Cambridge, Mass, 1970.
  25.  F. Haugen, TechTeach: Discrete-time signals and systems, 2005.
  26.  K. Chen, R. Tang, and Ch. Li, “Phase-constrained fractional order PI controller for second-order-plus dead time systems”, Trans. Inst. Meas. Control, vol. 39, no. 8, pp. 1225–1235, 2016.
  27.  M. Micev, M. Calasan, and D. Oliva, “Fractional Order PID Controller Design for an AVR System Using Chaotic Yellow Saddle Goatfish Algorithm”, Mathematics, vol. 8, no. 7, p. 1182, 2020.
  28.  MathWorks. [Online]. Available: https://www.mathworks.com/help/control/ref/stepinfo.html. [Accessed Aug. 28, 2020].
  29.  G.F. Franklin, J.D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, Prentice Hall, 2004.
Go to article

Authors and Affiliations

Piotr Oziablo
1
Dorota Mozyrska
1
Malgorzata Wyrwas
1

  1. Bialystok University of Technology, ul. Wiejska 45A, 15-351 Bialystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

All universities are responsible for assessing the quality of education. One of the required factors is the results of the students’ research. The procedure involves, most often, the preparation of the questionnaire by the staff, which is voluntarily answered by students; then, the university staff uses the statistical methods to analyze data and prepare reports. The proposed EQE method by the application of the fuzzy relations and the optimistic fuzzy aggregation norm may show a closer connection between the students’ answers and the achieved results. Moreover, the objects obtained by the application of the EQE method can be visualized by using the t-SNE technique, cosine between vectors and distances of points in five-dimensional space.
Go to article

Bibliography

  1.  A. Mrówczyńska, A. Król, and P. Czech, “Artificial immune system in planning deliveries in a short time,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 969–980, 2019, doi: 10.24425/bpas.2019.126630.
  2.  G. Kovacs, “Layout design for efficiency improvement and cost reduction,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 547–555, 2019, doi: 10.24425/bpasts.2019.129653.
  3.  A. Zaborowski, “Data processing in self-controlling enterprise processes, “ Bull. Pol. Acad Sci. Tech. Sci, vol. 67, no. 1, pp. 3–20, 2019, doi: 10.24425/bpas.2019.127333.
  4.  M.J. Cobo, A.G. López-Herrera, E. Herrera-Viedma, and F. Herrera, “An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field,” J. Infom., 5, pp. 146–166, 2011, doi: 10.1016/j.joi.2010.10.002.
  5.  V. Osińska, O. Sokolov, and A. Mreła, “Nonlinear Estimation of Similarity Between Scientists’ Disciplinary Profiles. Case Study,” ZIN Studia Informacyjne, 57(2A), pp. 12–27, 2019, doi: 10.36702/zin.467.
  6.  Law on higher education (Dz.U. 2005 nr 164 poz. 1365). [On line]. Available: http://isap.sejm.gov.pl/isap.nsf/DocDetails. xsp?id=WDU20051641365. (Accessed: 30 Jun. 2019) [in Polish].
  7.  R. Biswas, “An application of fuzzy sets in students’ evaluation,” Fuzzy Sets Syst., vol. 74, no. 2, pp. 187–194, 1995, doi: 10.1016/0165- 0114(95)00063-Q.
  8.  S.M. Chen and C.H. Lee, “New methods for students’ evaluating using fuzzy sets,” Fuzzy Sets Syst., vol. 104, no. 2, pp. 209–2018, 1999.
  9.  J. Ma and D. Zhou, “Fuzzy set approach to the assessment of students-centered learning,” IEEE Trans. Educ., vol. 43, no. 2, pp. 237–241, 2000, doi: 10.1109/13.848079.
  10.  D. Molodsov, “Soft Set Theory – First Results,” Comput. Math. Appl., vol. 37, pp. 19–31, 1999, doi: 10.1016/S0898-1221(99)00056-5.
  11.  B. Ahmad and A. Kharal, “On Fuzzy Soft Sets,” Adv. Fuzzy Syst., vol. 2009, no. 4–9, pp. 1–6, 2019, doi: 10.1155/2009/586507.
  12.  P. Majumdar and S.K. Samanta, “A Generalized Fuzzy Soft Set Based Student Ranking System,” Int. J. Adv. Soft Comput. Appl., vol. 3, no. 3, pp. 42‒51, Nov. 2011. [Online]. Available: http://home.ijasca.com/data/documents/A-Generalised-Fuzzy-Soft-Set.pdf (Accessed: 20 Aug. 2019).
  13.  S. Weon and J. Kim, “Learning achievement evaluation strategy using fuzzy membership function,” in Proc. 31st ASEE/IEEE Frontiers in Education Conference, Reno, NV, USA, 2001, pp. T3A-19, doi: 10.1109/FIE.2001.963904. [Online]. Available: http://archive.fie- conference.org/fie2001/papers/1215.pdf (Accessed: 21 Aug. 2019).
  14.  S.M. Bai and S.M. Chen, “Evaluating students’ learning achievement using fuzzy membership functions and fuzzy rules,” Expert Syst. Appl., vol. 34, no. 1, pp. 399–410, 2008, doi: 10.1016/j.eswa.2006.09.010.
  15.  F. Dayan, M. Zulqarnain, and N. Hassan, “A Ranking Method for Students of Different Socio Economic Backgrounds Based on Generalized Fuzzy Soft Sets,” Int. J. Sci. Res. (IJSR), vol. 6, no 9, pp. 691‒694, Sep. 2017, [Online] Available: https://www.ijsr.net/search_index_ results_paperid.php?id=ART20176512. (Accessed: 20 Aug. 2019).
  16.  A. Mreła, O. Sokolov, and W. Urbaniak, “The method of learning outcomes assessment based on fuzzy relations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 527‒533, 2019, doi: 10.24425/bpasts.2019.129651.
  17.  Report on the quality of education in Adam Mickiewicz University in Poznań. [Online]. Available: http://brjk.amu.edu.pl/badanie-jakosci- ksztalcenia/badanie-jakosci-ksztalcenia-na-uam (Accessed: 30 Jun. 2019) [in Polish].
  18.  Report on the quality of education at Warsaw University of Technology, Faculty of Materials Science and Engineering. [Online]. Available: https://www.wim.pw.edu.pl/content/download/1668/14211/file/ankietyzacja.pdf (Accessed: 30 Jun. 2019) [in Polish].
  19.  Report on the quality of education at Kazimierz Wielki University in Bydgoszcz, [Online]. Available: https://www.ukw.edu.pl/download/34273/raport_oceny_ankietyzacja_2017_2018_ukw_bydgoszcz.pdf (Accessed: 30 Jun. 2019) [in Polish].
  20. [20]  L.A. Zadeh, “Fuzzy sets,” Inf.Control, vol. 8, no. 3, pp. 338–353, 1965, doi: 10.1016/S0019-9958(65)90241-X.
  21.  L.A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning –1,” Inf. Sci., vol. 8, pp. 199–249, 1975, doi: 10.1016/0020-0255(75)90036-5.
  22.  L. Rutkowski, Methods and techniques of artificial intelligence, PWN, Warsaw, pp. 1–452, 2012, [in Polish].
  23.  O. Sokolov, W. Osińska, A. Mreła, and W. Duch, “Modeling of Scientific Publications Disciplinary Collocation Based on Optimistic Fuzzy Aggregation Norms,” in Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018., eds. J. Światek, L. Borzemski and Z. Wilmowska, Advances in Intelligent Systems and Computing. Information Systems Architecture and Technology Part II, vol. 853, pp. 145–156, 2019, doi: 10.1007/978-3-319-99996-8.
  24.  L.J.P. Van der Maaten and G.E. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008, [Online]. Available: https://research.tilburguniversity.edu/en/publications/visualizing-high-dimensional-data-using-t-sne (Accessed: 21 Jun. 2019).
  25.  C.L. Hwang and K. Yoon, “Methods for multiple attribute decision making”, in Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, vol. 186. Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-48318-9_3.
Go to article

Authors and Affiliations

Grzegorz Śmigielski
1
ORCID: ORCID
Aleksandra Mreła
1
ORCID: ORCID
Oleksandr Sokolov
2
ORCID: ORCID
Mykoła Nedashkovskyy
1
ORCID: ORCID

  1. Kazimierz Wielki University in Bydgoszcz, Institute of Informatics, ul. Kopernika 1, 85-074 Bydgoszcz, Poland
  2. Nicolaus Copernicus University in Toruń, Faculty of Physics, Astronomy and Informatics, ul. Grudziądzka 5, 87-100 Toruń, Poland
Download PDF Download RIS Download Bibtex

Abstract

Developing novel methods, approaches and computational techniques is essential for solving efficiently more and more demanding up-to-date engineering problems. Designing durable, light and eco-friendly structures starts at the conceptual stage, where new efficient design and optimization tools need to be implemented. Nowadays, apart from the traditional gradient-based methods applied to optimal structural and material design, innovative techniques based on versatile heuristic concepts, like for example Cellular Automata, are implemented. Cellular Automata are built to represent mechanical systems where the special local update rules are implemented to mimic the performance of complex systems. This paper presents a novel concept of flexible Cellular Automata rules and their implementation into topology optimization process. Despite a few decades of development, topology optimization still remains one of the most important research fields within the area of structural and material design. One can notice novel ideas and formulations as well as new fields of their implementation. What stimulates that progress is that the researcher community continuously works on innovative and efficient topology optimization methods and algorithms. The proposed algorithm combined with an efficient analysis system ANSYS offers a fast convergence of the topology generation process and allows obtaining well-defined final topologies.
Go to article

Bibliography

  1.  M.P. Bendsoe, “Optimal shape design as a material distribution problem,” Struct. Optim., vol. 1, pp. 193–202, 1989.
  2.  O. Sigmund, “A 99 line topology optimization code written in MATLAB,” Struct. Multidiscip. Optim., vol. 21, pp. 120–127, 2001.
  3.  E. Andreassen, A. Clausen, M. Schvenels, B.S. Lazarov, and O. Sigmund, “Efficient topology optimization in Matlab using 88 lines of code,” Struct. Multidiscip. Optim., vol. 4, pp.  1–16, 2011.
  4.  K. Liu and A. Tovar, “An efficient 3D topology optimization code written in Matlab,” Struct. Multidiscip. Optim., vol.  50, pp. 1175–1196, 2014.
  5.  X.M. Xieand and G.P. Steven, Evolutionary Structural Optimization, Berlin: Springer, 1997.
  6.  Q.M. Querin, G.P. Steven, and Y.M. Xie, “Evolutionary structural optimization using a bi-directional algorithm,” Eng. Comput., vol. 15, pp. 1034–1048, 1998.
  7.  K. Nabaki, J. Shen, and X. Xuang, “Evolutionary topology optimization of continuum structures considering fatigue failure,” Mater. Des., vol. 166, pp.13, 2019.
  8.  C. Kane, F. Jouveand, and M. Schoenauer, “Structural topology optimization in linear and nonlinear elasticity using genetic algorithms” in Proc. 21st ASME Design Automatic Conference, 1995, pp.1‒8.
  9.  R. Balamurugan, C. Ramakrishnan, and N. Singh, “Performance evaluation of a two stage adaptive genetic algorithm in structural topology optimization,” Appl. Soft Comput., vol. 8, pp.  1607–1624, 2008.
  10.  H.S. Gebremedhen, D.E. Woldemichael, and F.M. Hashimi, “A firefly algorithm based hybrid method for structural topology optimization,” Adv. Model. Simul. Eng. Sci., vol. 7, no. 44, p. 20, 2020.
  11.  A.A. Jaafer, M. Al-Bazoon, and A.O. Dawood, “Structural topology design optimization using the binary bat algorithm,” Appl. Sci., vol. 10, no. 4, p. 1481, 2020.
  12.  D. Gaweł, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 741–750, 2017.
  13.  S.Y. Chang and S.K.Youn, “Material cloud method for topology optimization,” Numer. Methods Eng., vol. 65, pp.  1585–1607, 2006.
  14.  H.A. Eschenauer, V.V. Kobelevand, and A. Schumacher, “Bubble method for topology and shape optimization of structures,” Struct. Optim., vol. 8, pp. 42–51, 1993.
  15.  M.Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng., vol. 192, pp. 227–246, 2003.
  16.  P. Wei, Z. Li, X. Li, and M.Y. Wang, “An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions,” Struct. Multidiscip. Optim., vol. 58, pp. 831–849, 2018.
  17.  E. Biyikliand and A.C. To, “Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in Matlab,” PLoSONE, vol. 10, pp. 1–23, 2015.
  18.  Y. Xian and D.W. Rosen, “A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model,” Struct. Multidiscip. Optim., vol. 62, pp. 19–39, 2020.
  19.  B. Xing and W.J. Gao, Innovative computational intelligence: a rough guide to 134 clever algorithms, Switzerland: Springer, 2014.
  20.  T. Tarczewski, L.J. Niewiara, and L.M. Grzesiak, “Artificial bee colony based state feedback position controller for PMSM servo-drive–the efficiency analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 997–1007, 2020.
  21.  Y. Li and X. Wang, “Improved dolphin swarm optimization algorithm based on information entropy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 679–685, 2019.
  22.  A. Paszyńska, K. Jopek, M. Woźniak, and M. Paszyński, “Heuristic algorithm to predict the location of C 0 separators for efficient isogeometric analysis simulations with direct solvers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 907–917, 2018.
  23.  J. Von Neumann, Theory of self-reproducing automata, Urbana IL: University of Illinois Press, 1966.
  24.  S. Ulam, “Random processes and transformations,” in Proc. International Congress of Mathematics, 1952, vol. 2, pp. 85–87.
  25.  B. Chopard and M. Droz, “Cellular automata model for the diffusion equation,” J. Stat. Phys., vol. 64, pp. 859–892, 1991.
  26.  J.P. Crutchfield and J.E. Hanson, “Turbulent pattern bases for cellular automata,” Physica D, vol. 69, pp. 279–301, 1993.
  27.  Y. Zhao, S.A. Billings, and D. Coca, “Cellular automata modelling of dendritic crystal growth based on Moore and von Neumann neighborhoods,” Int. J. Model. Identif. Control, vol.  2, no. 6, pp. 119–25, 2009.
  28.  P. Rosin, A. Adamatzky, and X. Sun (eds.), Cellular Automata in Image Processing and Geometry, Switzerland: Springer International Publishing, 2014.
  29.  N. Inou, N. Shimotai, and T. Uesugi, “A cellular automaton generating topological structures,” in Proc. 2nd European Conference on Smart Structures and Materials, 1994, vol. 2361, pp. 47–50.
  30.  N. Inou, T. Uesugi, A. Iwasaki, and S. Ujihashi, “Self-organization of mechanical structure by cellular automata,” Key Eng. Mater., vol. 145‒149, pp. 1115–1120, 1998.
  31.  E. Kita and T. Toyoda, “Structural design using cellular automata,” Struct. Multidiscip. Optim., vol. 19, pp. 64–73, 2000.
  32.  P. Hajela and B. Kim, “On the use of energy minimization for CA based analysis in elasticity,” Struct. Multidiscip. Optim., vol. 23, pp. 24–33, 2001.
  33.  B. Tatting and Z. Gurdal, “Cellular automata for design of two-dimensional continuum structures,” in Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2000, p. 10.
  34.  S. Missoum, Z. Gurdal, and S. Setoodeh, “Study of a new local update scheme for cellular automata in structural design,” Struct. Multidiscip.  Optim., vol. 29, pp. 103–112, 2005.
  35.  M.M. Abdalla and Z. Gurdal, “Structural design using cellular automata for eigenvalue problems,” Struct. Multidiscip.  Optim., vol. 19, pp. 64–73, 2004.
  36.  B. Hassani and M. Tavakkoli, “A multi-objective structural optimization using optimality criteria and cellular automata,” Asian J Civ. Eng. Build. Hous., vol. 8, pp. 77–88, 2007.
  37.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” in Proc. 8th World Congress on Struct. Multidiscip. Optim., 2009, p. 10.
  38.  J. Jia et al., “Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata,” Struct. Multidiscip. Optim.,vol. 62, pp. 757–770, 2020.
  39.  M. Afrousheh, J. Marzbanrad, and D. Gohlich, “Topology optimization of energy absorbers under crashworthiness using modified hybrid cellular automata (MHCA) algorithm,” Struct. Multidiscip.  Optim., vol. 60, pp. 1021‒1034, 2019.
  40.  A. Tovar, N.M. Patel, and A.K. Kaushik, “Hybrid cellular automata: a biologically-inspired structural optimization technique,” in Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, p.15.
  41.  A. Tovar, N.M. Patel, G.L. Niebur, M. Sen, and J.E. Renaud, “Topology optimization using a hybrid cellular automaton method with local control rules,” J. Mech. Des., vol. 128, pp. 1205–1216, 2006.
  42.  C.L. Penninger, A. Tovar, L.T. Watson, and J.E. Renaud, “KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization,” Int. J. Pure Appl. Math., vol. 66, pp. 245–262, 2011.
  43.  B. Bochenek and K. Tajs-Zielinska, “Novel local rules of Cellular Automata applied to topology and size optimization,” Eng. Optim., vol. 44, pp. 23–35, 2012.
  44.  B. Bochenek and K. Tajs-Zielinska, “Topology optimization with efficient rules of cellular automata,” Eng. Comput., vol. 30, pp. 1086– 1106, 2013.
  45.  B. Bochenek and K. Tajs-Zielinska, “Minimal compliance topologies for maximal buckling load of columns,” Struct. Multidiscip.  Optim., vol. 51, pp. 1149–1157, 2015.
  46.  B. Bochenek and K. Tajs-Zielinska, “GOTICA – generation of optimal topologies by irregular cellular automata,” Struct. Multidiscip.  Optim., vol. 55, pp. 1989–2001, 2017.
  47.  M.P. Bendsoe and N. Kikuchi, “Generating optimal topologies in optimal design using a homogenization method,” Comput. Methods Appl. Mech. Eng., vol. 71, pp. 197–224, 1988.
  48.  J. Lim, C. You, and I. Dayyani, “Multi-objective topology optimization and structural analysis of periodic spaceframe structures,” Mater. Des., vol. 190, pp.16, 2020.
  49.  P. Gomes and R. Palacios, “Aerodynamic-driven topology optimization of compliant airfoils,” Struct. Multidiscip. Optim., vol. 62, pp. 2117– 2130, 2020.
  50.  J. Wu and J. Wu, “Revised level set-based method for topology optimization and its applications in bridge construction,” Open Civ. Eng. J., vol. 11, pp. 153–166, 2017.
  51.  A.J. Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 477–483, 2020.
  52.  L.L. Beghini, A. Beghini, N. Katz, W.F. Baker, and G.H. Paulino, “Connecting architecture and engineering through structural topology optimization,” Eng. Struct., vol. 59, pp. 716–726, 2014.
  53.  K. Tajs-Zielinska and B. Bochenek, “Topology optimization – engineering contribution to architectural design,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 245, pp.10, 2017.
  54.  F. Regazzoni, N. Parolini, and M. Verani, “Topology optimization of multiple anisotropic materials, with application to self-assembling diblock copolymers,” Comput. Methods Appl. Mech. Eng., vol. 338, pp. 562–596, 2018.
  55.  S. Das and A. Sutradhar, “Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems,” Mater. Des., vol. 193, pp.13, 2020.
  56.  M.P. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications, Berlin Heidelberg New York: Springer, 2003.
  57.  O. Sigmund and K. Maute, “Topology optimization approaches,” Struct. Multidiscip. Optim., vol.48, pp. 1031–1055, 2013.
  58.  J.D. Deaton, and R.V. Grandhi, “A survey of structural and multidisciplinary continuum topology optimization: post 2000,” Struct. Multidiscip. Optim., vol. 49, pp. 1–38, 2014.
  59.  J. Liu et al., “Current and future trends in topology optimization for additive manufacturing,” Struct. Multidiscip.  Optim., vol. 57, pp. 2457– 2483, 2018.
  60.  M.A. Herfelt, P.N. Poulsen, and L.C. Hoang, “Strength-based topology optimization of plastic isotropic von Mises materials,” Struct. Multidiscip. Optim., vol.59, pp. 893–906, 2019.
  61.  B. Błachowski, P. Tauzowski, and J. Lógó, “Yield limited optimal topology design of elastoplastic structures,” Struct. Multidiscip.  Optim., vol.61, pp. 1953–1976, 2020.
  62.  L. Xia, F. Fritzen, and P. Breitkopf, “Evolutionary topology optimization of elastoplastic structures,” Struct. Multidiscip. Optim., vol. 55, pp. 569–581, 2017
  63.  B. Bochenek and M. Mazur, “A novel heuristic algorithm for minimum compliance optimization,” Eng. Trans., vol. 64, pp.  541–546, 2016.
Go to article

Authors and Affiliations

Katarzyna Tajs-Zielińska
1
Bogdan Bochenek
1

  1. Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper considers the problem of the accurate task space finite-time control susceptible to both undesirable disturbance forces exerted on the end-effector and unknown friction forces coming from joints directly driven by the actuators as well as unstructured forces resulting from the kinematic singularities appearing on the mechanism trajectory. We obtain a class of estimated extended transposed Jacobian controllers which seem to successfully counteract the external disturbance forces on the basis of a suitably defined task-space non-singular terminal sliding manifold (TSM) and the Lyapunov stability theory. Moreover, in order to overcome (or to minimise) the undesirable chattering effects, the proposed robust control law involves the second-order sliding technique. The numerical simulations (closely related to an experiment) ran for a mobile manipulator consisting of a non-holononic platform of (2;0) type and a holonomic manipulator of two revolute kinematic pairs show the performance of the proposed controllers and make a comparison with other well-known control schemes.
Go to article

Bibliography

  1.  J. Balleieul, “Kinematic programming alternatives for redundant manipulators,” in Proc. IEEE Int. Conf. on Robotics and Automation, IEEE, St. Louis, MO, USA, 1985, pp. 722–728.
  2.  M. Rani, N. Kumar, and H.P. Singh, “Efficient position/force control of constrained mobile manipulators,” Int. J. Dynam. Control, vol. 6, pp. 1629–1638, 2018.
  3.  W. Dong, “On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty,” Automatica, vol. 38, no. 9, pp. 1475–1484, 2002.
  4.  M. Przybyla, M. Kordasz, R. Madonski, P. Herman, and P. Sauer, “Active disturbance rejection control of a 2DOF manipulator with significant modeling uncertainty,” Bull. Pol. Acad. Sci. Tech. Sci. vol. 60, no. 3, pp. 509–520, 2012.
  5.  C. Baspinar, “On robust position/force control of robot manipu- lators with constraint uncertainties,” Proc. of the 10th IFAC Symposium on Robot Control, vol. 45, no. 22, pp. 555–560, 2012.
  6.  Z. Li and S.S. Ge, Fundamentals of modeling and control of mobile manipulators, Boca Raton, London, New York: CRC, 2013.
  7.  Z. Li, S.S. Ge, M. Adams, and W.S. Wijesoma, “Robust adaptive control of uncertain constrained nonholonomic mobile manipulators,” Automatica, vol. 44, pp. 776–784, 2008.
  8.  M. Kaczmarek, W. Domski, and A. Mazur, “Position-force control of mobile manipulator–nonadaptive and adaptive case,” Arch. Control Sci., vol. 27, no. 4, pp. 487–503, 2017.
  9.  G.D. White, R.M. Bhatt, C.P. Tang, and V.N. Krovi, “Experimental evaluation of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator,” IEEE/ASME Trans. Mechatron. vol. 14, no. 3, pp. 349–357, 2009.
  10.  G.D. White, R.M. Bhatt, and V.N. Krovi, “Dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator,” Robotica, vol. 25, no. 2, pp. 147–156, 2007.
  11.  B. Nemec and L. Zlaypah, “Force control of redundant robots in unstructured environment,” IEEE Trans. Ind. Electron. vol. 49, no. 1, pp. 233–240, 2002.
  12.  F. Inoue, T. Murakami, and K. Ohnishi, “A motion control of mobile manipulator with external force,” IEEE/ASME Trans. Mechatron. vol. 6, no. 2, pp. 137–142, 2001.
  13.  T. Shamir and Y. Yomdin, “Repeatability of redundant manipulators: Mathematical solution of the problem,” IEEE Trans. Autom. Control, vol. 33, no. 11, pp. 1004–1009, 1988.
  14.  M. Boukattaya, N. Mezghani, and T. Damak, “Adaptive motion/force control of uncertain nonholonomic mobile manipulator with estimation of unknown external force,” Multibody Sys. Dyn. vol. 44, pp. 223–250, 2018.
  15.  S. Dehghan, M. Danesh, and F. Sheikholeslam, “Adaptive hybrid force/position of robot manipulators using an adaptive force estimator in the presence of parametric uncertainty,” Adv. Rob. vol. 29, no 4, pp. 209–223, 2015.
  16.  M. Boukattaya, M. Jallouli, T. Damak, “On trajectory tracking control for nonholonomic mobile manipulators with dynamic uncertainties and external torque disturbances,” Rob. Auton. Syst. vol. 60, no. 12, pp. 1640–1647, 2012.
  17.  P. Gierlak and M. Szuster, “Adaptive position/force control for robot manipulator in contact with a flexible environment,” Rob. Auton. Syst., vol. 95, pp. 80–101, 2017.
  18.  C. Edwards and S.K. Spurgeon, Sliding mode control: Theory and Application, London, Taylor and Francis, 1998.
  19.  V.I. Utkin, Sliding Modes in Control and Optimization, Springer- Verlag, Berlin, Heidelberg, 1992.
  20.  L. Fridman, “Singularly perturbed analysis of chattering in relay control systems,” IEEE Trans. Autom. Control, vol. 47, no. 12, pp. 2079–2084, 2002.
  21.  M. Galicki, “Tracking the kinematically optimal trajectories by mobile manipulators,” J. Intell. Rob. Syst. vol. 93, pp. 635–648, 2018.
  22.  M. Galicki, “Optimal sliding control of mobile manipulators,”  Bull. Pol. Acad. Sci. Tech. Sci. vol. 67, no. 4, pp. 777–788, 2019.
  23.  G. Campion, G. Bastin, and B.D. Andrea-Novel, “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp. 47–62, 1996.
  24.  H. Seraji, “A unified approach to motion control of mobile manipulators,” Int. J. Rob. Res. vol. 17, no. 2, pp. 107–118, 1998.
  25.  H. Seraji and R. Colbaugh, “Improved configuration control for redundant robots,” J. Robotic Syst. vol. 7, no. 6, pp. 897–928, 1990.
  26.  M. Galicki, “Inverse kinematics solution to mobile manipulators” Int. J. Rob. Res. vol. 22, no. 12, pp. 1041–1064, 2003.
  27.  M. Galicki, “Finite-time control of robotic manipulators,” Automatica, vol. 51, pp. 49–54, 2015.
  28.  A.F. Filippov, Differential Equations with Discontinuous Righthand Side, Kluwer, Dordrecht, Springer Netherlands, 1988.
  29.  J. Wang and Y. Li, “Manipulation of a mobile modular manip- ulator interacting with the environment with the assistance of tactile sensing feedback,” Int. J. Humanoid Rob. vol. 8, no. 4, pp. 777–793, 2011.
  30.  D. Phong, J. Choi, W. Lee, and S. Kang, “A novel method for estimating external force: simulation study with a 4-DOF robot manipulator,” Int. J. Precis. Eng. Manuf. vol. 16, no. 4, pp. 755– 766, 2015.
  31.  C.C. Cheah, K. Lee, S. Kawamura, and S. Arimoto, “Asymptotic stability control with approximate Jacobian matrix and its application to visual servoing,” in Proc. 39th IEEE Conf. on Decision and Control, Sydney, NSW, Australia, 2000, vol. 4, pp. 3939–3944.
  32.  C.C. Cheah, “On duality of inverse Jacobian and transpose Jaco- bian in task-space regulation of robots,” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA 2006), Orlando, FL, USA, 2006, pp. 2571–2576.
  33.  S.A.A. Moosavian and E. Papadopoulos, “Modified transpose Jacobian control of robotic systems,” Automatica, vol. 43, no. 7, pp. 1226–1233, 2007.
  34.  M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “A novel higher order sliding mode control scheme,” Syst. Control Lett. vol. 58, no. 2, pp. 102–108, 2009.
  35.  M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “Higher order sliding modes in collaborative robotics,” in Lecture Notes in Control and Information Sciences Book Series (LNCIS), Springer, Berlin, Heidelberg, 2017, vol. 412, pp. 409–437.
  36.  M. Galicki, “Finite-time trajectory tracking control in a task space of robotic manipulators,” Automatica, vol. 67, pp. 165– 170, 2016.
  37.  A.N. Atasi and H.K. Khalil, “Separation results for the stabilization of nonlinear systems using different high-gain observer designs,” Syst. Control Lett. vol. 39, no. 3, pp. 183–191, 2000.
  38.  A. Levant, “Higher-order sliding modes, differentiation and output-feedback control,” Int. J. Control, vol. 76, no. 9-10, pp. 924–941, 2003.
  39.  A. Levant and M. Livne, “Exact differentiation of signals with unbounded higher derivatives,” IEEE Trans. Autom. Control, vol. 57, no. 4, pp. 1076–1080, 2012.
  40.  U. Ozbay, H.T. Sahin, and E. Zergeroglu, “Robust tracking con- trol of kinematically redundant robot manipulators subject to multiple selfmotion criteria,” Robotica, vol. 26, no. 6, pp. 711– 728, 2008.
  41.  J.D. Han, Y.Q. He, and W.L. Xu, “Angular acceleration esti- mation and feedback control: An experimental investigation,” Mechatronics, vol. 17, no. 9, pp. 524–532, 2007.
Go to article

Authors and Affiliations

Mirosław Galicki
1

  1. Centrum Badan Kosmicznych Polskiej Akademii Nauk, ul. Bartycka 18A, 00-716 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper contains a description of the geometry of Beveloid gears. It describes the distribution of forces in a Beveloid gear with a straight tooth line and a helical tooth line. The paper presents research on the experimentally determined parameters of transmission operation, including the sound pressure level and the amount of heat emitted during operation. The design and construction of the test stand were presented. The research methodology was described. Operational tests are carried out on household appliances with Beveloid gears: Grinder and Jam mixer. Thanks to an appropriately selected narrowing angle, estimated values of service life extension of the above-mentioned transmissions are given.
Go to article

Bibliography

  1. S. Beermann, “Estimation of lifetime for plastic gears,” Fall Technical Meeting of the American Gear Manufacturers Association, Detroit, Michigan, Oct. 2007, pp. 1‒17.
  2.  R. Keresztes, L. Zsidai, G. Kalácska, and P. De Baets, “Friction of polymer/steel gear pairs,” Scientific Bulletin of North University of Baia Mare, serie C, vol. XXIII, pp. 63–72, Jan. 2009.
  3.  P. Strojny, “Wpływ kąta zwężenia kół zębatych typu Beveloid na płynność przeniesienia napędu w przekładniach zębatych z tworzyw polimerowych,” Przegląd Mechaniczny, no. 6, Jun. 2016, [in Polish].
  4.  N. Agbetossou, A. Afio, K. Attipou, D. Koffi, K. Kassegne, and S. Tiem, “Modeling and Prediction of Wear for Gears in Plastic Materials and Their Composites,” Int. J. Eng. Res. Technol., vol.  9, no. 7, pp. 90–106, Jul. 2020.
  5.  A.J Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 477–483, 2020.
  6.  N.B. Thamba et al., “Study of Effect of Linear Tip Relief Modification in Power Transmission Efficiency of Spur Gears,” Arch. Acoust., vol. 45, no. 2, pp. 271–282, 2020.
  7.  G. Yu, H. Liu, K. Mao, C. Zhy and Z. Lu, “Examination on the wear process of polyformaldehyde gears under dry and lubricated conditions,” Friction, vol. 9, pp. 538–550, Jan. 2020.
  8.  Flir, [Online]. Available: www.flir.com (accessed Feb. 12, 2021).
  9.  A. Gebhardt, Rapid Prototyping, Carl Hanser Verlag GmbH & Co. KG, Munich, 2003.
  10.  W.F. Liu, Rapid Prototyping and engineering applications – a toolbox for prototype development, Taylor & Francis Group, Boca Raton, USA, 2008.
  11.  R.E. Śliwa, G. Budzik, J. Bernaczek, and T. Dziubek, “The rapid Prototyping of aircraft wheel hub model with the use of techniques JS, SLA, FDM,” J. KONES Powertrain Transp., vol. 18,pp.  439–443, Mar. 2011.
  12.  T. Singh, S. Kumar, and S. Sehgal, “3D printing of engineering materials: A state of the art review,” Mater. Today Proc., vol. 28, no. 3, pp. 1927‒1931, 2020.
  13.  N.B. Thamba et al., “Fault Analysis of Worm Gear Box Using Symlets Wavelet,” Arch. Acoust., vol 45, no. 3, pp. 521–540, 2020.
  14.  A. Hamrol, J. Gawlik, and J. Sładek, “Mechanical engineering in Industry 4.0,” Manag. Prod. Eng. Rev., vol. 10, pp.  14–28, Sep. 2019.
  15.  Dupont. [Online]. Available: www.dupont.com (accessed Feb. 10, 2021).
  16.  J.F. Rabek, “Współczesna wiedza o polimerach,” Tom 1. Budowa strukturalna polimerów i metody badawcze, PWN, Warszawa, 2017 [in Polish].
  17.  M. Sobolak and P. Strojny, “Effect of the narrowing angle in beveliod gear on the temperature profile on the active flank of tooth,” Adv. Sci. Technol. Res. J., vol. 7, pp. 67–69, Dec. 2013.
  18.  M. Płocica and A. Marciniec, Methodology of Preparing Hypoid Gears for Vibroacoustic Diagnostics in Laboratory Conditions, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2018.
Go to article

Authors and Affiliations

Piotr Strojny
1

  1. The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

3D scanning measurements are gaining popularity every year. Quick inspections on already captured point clouds are easy to prepare with the use of modern software and machine learning. To achieve repeatability and accuracy, some surface and measurement issues should be considered and resolved before the inspection. Large numbers of manufacturing scans are not intended for manual correction. This article is a case study of a small surface inspection of a turbine guide vane based on 3D scans. Small surface errors cannot be neglected as their incorrect inspection can result in serious faults in the final product. Contour recognition and deletion seem to be a rational method for making a scan inspection with the same level of accuracy as we have now for CMM machines. The main reason why a scan inspection can be difficult is that the CAD source model can be slightly different from the inspected part. Not all details are always included, and small chamfers and blends can be added during the production process, based on manufacturing standards and best practices. This problem does not occur during a CMM (coordinate measuring machine) inspection, but it may occur in a general 3D scanning inspection.
Go to article

Bibliography

  1.  W. Cuypers, N. Van Gestel, A. Voet, J. P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng., vol. 47, no.  3–4, pp. 292–300, 2009, doi: 10.1016/j.optlaseng.2008.03.013.
  2.  An International Standard: Geometrical product specifications (GPS) – Acceptance and reverification tests for coordinate measuring machines (CMM), ISO 10360:2011, 2011.
  3.  B.S. Marció, P. Nienhaysen, D. Habor, and R.C.C. Flesch, “Quality assessment and deviation analysis of three-dimensional geometrical characterization of a metal pipeline by pulse-echo ultrasonic and laser scanning techniques,” Meas. J. Int. Meas. Confed., vol. 145, pp. 30–37, 2019, doi: 10.1016/j.measurement.2019.05.084.
  4.  GOM Inspect Brochure, 2019. [Online]. Available: https://www.3dteam.pl/wp-content/uploads/2020/11/GOM-Software.pdf.
  5.  Geomagic Control X Overview, 2020. [Online]. Available: https://www.3dsystems.com/sites/default/files/2020-10/3d-systems-controlx- en-letter-web-2020-10-07.pdf.
  6.  An International Standard: Dimensioning and Tolerancing, ASME Y14.5, 2019.
  7.  An International Standard: Geometrical tolerancing, ISO 1101, 2017.
  8.  J. Fan, L. Ma, A. Sun, and Z. Zou, “An approach for extracting curve profiles based on scanned point cloud,” Meas. J. Int. Meas. Confed., vol. 149, p. 107023, 2020, doi: 10.1016/j.measurement.2019.107023.
  9.  L. Li, M. Sung, A. Dubrovina, L. Yi, and L. J. Guibas, “Supervised fitting of geometric primitives to 3D point clouds,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2019, pp.  2647–2655, doi: 10.1109/CVPR.2019.00276.
  10.  Y. Liu and Y. Xiong, “Automatic segmentation of unorganized noisy point clouds based on the Gaussian map,” CAD Comput. Aided Des., vol. 40, no. 5, pp. 576–594, 2008, doi: 10.1016/j.cad.2008.02.004.
  11.  Y. Yang, H. Fang, Y. Fang, and S. Shi, “Three-dimensional point cloud data subtle feature extraction algorithm for laser scanning measurement of large-scale irregular surface in reverse engineering,” Meas. J. Int. Meas. Confed., vol. 151, p. 107220, 2020, doi: 10.1016/j. measurement.2019.107220.
  12.  Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3D object recognition,” 2009 IEEE 12th Int. Conf. Comput. Vis. Work. ICCV Work, 2009, pp. 689–696, 2009, doi: 10.1109/ICCVW.2009.5457637.
  13.  M. Pauly, R. Keiser, and M. Gross, “Multi-scale Feature Extraction on Point-Sampled Surfaces,” vol. 22, no. 3, pp. 281–289, 2003.
  14.  D. Fehr, W.J. Beksi, D. Zermas, and N. Papanikolopoulos, “Covariance based point cloud descriptors for object detection and recognition,” Comput. Vis. Image Underst., vol. 142, pp. 80–93, 2016, doi: 10.1016/j.cviu.2015.06.008.
  15.  T. Hackel, J.D. Wegner, and K. Schindler, “Contour detection in unstructured 3D point clouds,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1610–1618, doi: 10.1109/CVPR.2016.178.
  16.  H. Wang, C. Wang, H. Luo, P. Li, Y. Chen, and J. Li, “3-D Point Cloud Object Detection Based on Supervoxel Neighborhood With Hough Forest Framework,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 4, pp. 1570–1581, 2015, doi: 10.1109/ JSTARS.2015.2394803.
  17.  Geomagic Design X Overview, 2020. [Online]. Available: https://www.3dsystems.com/sites/default/files/2019-11/3d-systems-designx- en-letter-web-2019-10-25.pdf.
  18.  Geomagic Wrap Overview, 2020. [Online]. Available: https://www.3dsystems.com/sites/default/files/2019-11/3d-systems-wrap-en-letter- web-2019-11-01.pdf.
  19.  The StL Format, 2021. [Online]. Available: http://www.fabbers.com/tech/STL_Format.
  20.  G. Lavoué, F. Dupont, and A. Baskurt, “A new CAD mesh segmentation method, based on curvature tensor analysis,” CAD Comput. Aided Des., vol. 37, no. 10, pp. 975–987, 2005, doi: 10.1016/j.cad.2004.09.001.
  21.  M. Centin and A. Signoroni, “RameshCleaner: conservative fixing of triangular meshes,” STAG Smart Tools Apps Graph. – Eurographics Italian Chapter Conference, 2015, doi: 10.2312/stag.20151300.
  22.  L. Di Angelo, P. Di Stefano, and A. E. Morabito, “Fillets, rounds, grooves and sharp edges segmentation from 3D scanned surfaces,” CAD Comput. Aided Des., vol. 110, pp. 78–91, 2019, doi: 10.1016/j.cad.2019.01.003.
  23.  L. Di Angelo and P. Di Stefano, “Geometric segmentation of 3D scanned surfaces,” CAD Comput. Aided Des., vol. 62, pp. 44–56, 2015, doi: 10.1016/j.cad.2014.09.006.
  24.  Q. Li, X. Huang, S. Li, and Z. Deng, “Feature extraction from point clouds for rigid aircraft part inspection using an improved Harris algorithm,” Meas. Sci. Technol., vol. 29, no. 11, 2018, doi: 10.1088/1361-6501/aadff6.
  25.  Y. Tao, Y. Q. Wang, H. B. Liu, and M. Li, “On-line three-dimensional point cloud data extraction method for scan-tracking measurement of irregular surface using bi-Akima spline,” Meas. J. Int. Meas. Confed., vol. 92, pp. 382–390, 2016, doi: 10.1016/j.measurement.2016.06.008.
  26.  G. Palma, P. Cignoni, T. Boubekeur, and R. Scopigno, “Detection of Geometric Temporal Changes in Point Clouds,” Comput. Graph. Forum, vol. 35, no. 6, pp. 33–45, 2016, doi: 10.1111/cgf.12730.
  27.  Computer workstation used by authors: “Intel(R) Xeon(R) CPU E5‒1650 v4 @ 3.60GHz.” 2020.
  28.  A. Jagannathan and E.L. Miller, “Three-dimensional surface mesh segmentation using curvedness-based region growing approach,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 12, pp.  2195–2204, 2007, doi: 10.1109/TPAMI.2007.1125.
Go to article

Authors and Affiliations

Marcin Jamontt
1
Paweł Pyrzanowski
2
ORCID: ORCID

  1. General Electric Company, al Krakowska 110-114, 02-265 Warsaw, Poland
  2. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, ul. Nowowiejska 24, 00-665 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The application of micro components in various fields such as biomedical, medical, automobile, electronics, automobile and aviation significantly improved. To manufacture the micro components, different techniques exist in the non-traditional machining process. In those techniques, electrochemical micromachining (ECMM) exhibits a unique machining nature, such as no tool wear, non-contact machining process, residual stress, and heat-affected zone. Hence, in this study, micro holes were fabricated on the copper work material. The sodium nitrate (NaNO₃) electrolyte is considered for the experiments. During the experiments, magnetic fields strength along with UV rays are applied to the electrolyte. The L₁₈ orthogonal array (OA) experimental design is planned with electrolyte concentration (EC), machining voltage (MV), duty cycle (DC) and electrolyte temperature (ET). The optimization techniques such as similarity to ideal solution (TOPSIS), VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and grey relational analysis (GRA) were employed to find the optimal parameter combinations. The entropy weight method is used to assess the weight of responses such as MR and OC. The optimal combination using TOPSIS, VIKOR and GRA methods shows the same results for the experimental runs 8, 9 and 7, and the best optimal parameter combination is 28 g/l EC, 11 V MV, 85 % DC and 37°C ET. Based on the analysis of variance (ANOVA) results, electrolyte concentration plays a significant role by contributing 86 % to machining performance. The second and least contributions are DC (3.86 %) and ET (1.74 %) respectively on the performance. Furthermore, scanning electron microscope (SEM) images analyses are carried out to understand the effect of magnetic field and heated electrolyte on the work material.
Go to article

Bibliography

  1. X. Wu, L. Li, N. He, M. Zhao, and Z. Zhan, “Investigation on the influence of material microstructure on cutting force and bur formation in the micro cutting of copper,” Int. J. Adv. Manuf. Technol., vol. 79, pp. 321–327, 2015, doi: 10.1007/s00170-015-6828-5.
  2.  R. Thanigaivelan, R.M. Arunachalam, and P. Drukpa, “Drilling of micro-holes on copper using electrochemical micromachining,” Int. J. Adv. Manuf. Technol. vol. 61, pp.1185–1190, 2012, doi: 10.1007/s00170-012-4093-4.
  3.  S.S. Anasane and B. Bhattacharyya, “Electrochemical Micromachining of Titanium and Its Alloys,” in Non-traditional Micromachining Processes. Materials Forming, Machining and Tribology, G. Kibria, B. Bhattacharyya, J. Davim, Eds., Springer, Cham, 2017, pp. 337–365, doi: 10.1007/978-3-319-52009-4_9.
  4.  S. Min, D.-E. Lee, A. de Grave, C.M. De Oliveira Valente, J. Lin, and D.A. Dornfeld, “Surface and edge quality variation in precision machining of single crystal and polycrystalline materials,” Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., vol. 220, no. 4, pp. 479–487, 2006, doi: 10.1243/095440506X77599.
  5.  M. Soundarrajan and R. Thanigaivelan, “Effect of coated geometrically modified tools on performance of electrochemical micromachining,” Mater. Manuf. Processes, vol. 35, no. 7, pp. 775–782, 2020, doi: 10.1080/10426914.2020.1740252.
  6.  T. Zhang, Z. Liu, and C. Xu, “Influence of size effect on burr formation in micro cutting,” Int. J. Adv. Manuf. Technol. vol. 68, pp.1911– 1917, 2013, doi: 10.1007/s00170-013-4801-8.
  7.  S. Ao, K. Li, W. Liu, X. Qin, T. Wang, Y. Dai, and Z. Luo, “Electrochemical micromachining of NiTi shape memory alloy with ethylene glycol–NaCl electrolyte containing ethanol,” J. Manuf. Process, vol. 53, pp. 223–228, 2020, doi: 10.1016/j.jmapro.2020.02.019.
  8.  M. Soundarrajan, R. Thanigaivelan, and S. Maniraj, “Investigation on Electrochemical Micromachining (EMM) of AA-MMC Using Acidified Sodium Nitrate Electrolyte,” in Advances in Industrial Automation and Smart Manufacturing, Springer 2019, pp. 367–376, doi: 10.1007/978-981-15-4739-3_30.
  9.  K. Pooranachandran, J. Deepak, P. Hariharan, and B. Mouliprasanth, “Effect of Flushing on Electrochemical Micromachining of Copper and Inconel 718 Alloy,” in Advances in Industrial Automation and Smart Manufacturing, Springer 2019, pp. 61–69, doi: 10.1007/978- 981-13-1724-8_6.
  10.  Y. Pan, Z. Hou, and N. Qu, “Improvement in accuracy of micro-dimple arrays prepared by micro-electrochemical machining with high- pressure hydrostatic electrolyte,” Int. J. Adv. Manuf. Technol., vol.100, no. 5, pp.1767–1777, 2019, doi: 10.1007/s00170-018-2822-z.
  11.  M. Baoji, P. Cheng, K. Yun, and P. Yin, “Effect of magnetic field on the electrochemical machining localization,” Int. J. Adv. Manuf. Technol., vol. 102, no. 1–4, pp. 949–956, 2019, doi: 10.1007/s00170-018-3185-1.
  12.  J. VinodKumaar, R. Thanigaivelan, and V. Dharmalingam, “A Study on the Effect of Oxalic Acid Electrolyte on Stainless Steel (316L) Through Electrochemical Micro-machining,” in Advances in Industrial Automation and Smart Manufacturing, Springer 2019, pp. 93–103 2019, doi: 10.1007/978-981-32-9425-7_8.
  13.  N. Rajan, R. Thanigaivelan, and K.G. Muthurajan, “Machinability studies on an A17075 composite with varying amounts of B4C using an induction-heated electrolyte in electrochemical machining,”Mater. Tehnol., vol. 53, no. 6, pp. 873–880, 2019.
  14.  R. Thanigaivelan, R.M. Arunachalam, M. Kumar, and B.P. Dheeraj, “Performance of electrochemical micromachining of copper through infrared heated electrolyte,” Mater. Manuf. Processes, vol. 33, no. 4, pp. 383–389, 2018, doi: 10.1080/10426914.2017.1279304.
  15.  K. Jiang et al., “Vibration-assisted wire electrochemical micromachining with a suspension of B4C particles in the electrolyte,” Int. J. Adv. Manuf. Technol., vol. 97, no. 9–12, pp. 3565–3574, 2018, doi: 10.1007/s00170-018-2190-8.
  16.  W. Liu et al., “Electrochemical micromachining on titanium using the NaCl-containing ethylene glycol electrolyte,” J. Mater. Process. Technol., vol. 255, pp. 784–794, 2018, doi: 10.1016/j.jmatprotec.2018.01.009.
  17.  A. Malik and A. Manna, “Investigation on the laser-assisted jet electrochemical machining process for improvement in machining performance,” Int. J. Adv. Manuf. Technol., vol. 96, no. 9–12, pp. 3917–3932, 2018, doi: 10.1007/s00170-018-1846-8.
  18.  H. Zhang, S. Ao, W. Liu, Z. Luo, W. Niu, and K. Guo, “Electrochemical micro-machining of high aspect ratio micro-tools using quasi-solid electrolyte,” Int. J. Adv. Manuf. Technol., vol. 91, no. 9‒12, pp. 2965–2973, 2017, doi: 10.1007/s00170-016-9900-x.
  19.  A. Speidel, J. Mitchell-Smith, D.A. Walsh, M. Hirsch, and A. Clare, “Electrolyte jet machining of titanium alloys using novel electrolyte solutions,” Procedia CIRP, vol. 42, pp. 367‒372, 2016, doi: 10.1016/j.procir.2016.02.200.
  20.  T. Sekar, M. Arularasu, and V. Sathiyamoorthy, “Investigations on the effects ofnano-fluid in ECM of die steel,” Measurement, vol. 83, pp. 38‒43. 2016, doi: 10.1016/j.measurement.2016.01.035.
  21.  A. Mohanty, G. Talla, S. Dewangan, and S. Gangopadhyay, “Microstructural investigation and multi response optimization using Fuzzy-TOPSIS during the electrochemical machining of Inconel 825,” Int. J. Precis. Technol., vol. 5, pp. 201–216, 2015, doi: 10.1504/ IJPTECH.2015.073825.
  22.  D. Singh and R.S. Shukla, “Optimization of electrochemical micromachining and electrochemical discharge machining process parameters using firefly algorithm,” Int. J. Mechatron. Manuf. Syst., vol. 9, pp.137–59, 2016, doi: 10.1504/IJMMS.2016.076169.
  23.  A. Mehrvar, A. Basti, and A. Jamali, “Optimization of electrochemical machining process parameters: Combining response surface methodology and differential evolution algorithm,” Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng., vol. 231, pp.1114–1126, 2017, doi: 10.1177/0954408916656387.
  24.  O.V. Mythreyi, P. Hariharan, and S. Gowri, “Multi-objective optimization of electrochemical micro drilling of titanium alloy,” Int. J. Precis. Technol., vol. 7, pp.188‒204, 2017, doi: 10.1504/IJPTECH.2017.090775.
  25.  M. Soundarrajan and R. Thanigaivelan, “Investigation of Electrochemical Micromachining Process Using Ultrasonic Heated Electrolyte,” in Advances in Micro and Nano Manufacturing and Surface Engineering, M. Shunmugam, M. Kanthababu, Eds., Springer, 2019, pp. 423–434, doi: 10.1007/978-981-32-9425-7_38.
  26.  M. Soundarrajan and R. Thanigaivelan, “Investigation on electrochemical micromachining (ECMM) of copper inorganic material using UV heated electrolyte,” Russ. J. Appl. Chem., vol. 91, no. 11, pp. 1805–1813, 2018, doi: 10.1134/S1070427218110101.
  27.  K. Motoyama, T. Umemoto, H. Shang, and T. Hasegawa “Effects of magnetic field and far-ultraviolet radiation on the structures of bright-rimmed clouds,” Astrophys. J., vol. 766, no 1, p. 50. 2013, doi: 10.1088/0004-637X/766/1/50.
  28.  T. Mythili and R. Thanigaivelan, “Optimization of wire EDM process parameters on Al6061/Al2O3 composite and its surface integrity studies,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 403–1412, 2020, doi: 10.24425/bpasts.2020.135382.
  29.  J.R. Vinod Kumaar and R. Thanigaivelan, “Performance of magnetic field-assisted citric acid electrolyte on electrochemical micro- machining of SS 316L,” Mater. Manuf. Processes, vol. 35, no. 9, pp. 969–977, 2020, doi: 10.1080/10426914.2020.1750630.
Go to article

Authors and Affiliations

K.G. Saravanan
R. Thanigaivelan
M. Soundarrajan
Download PDF Download RIS Download Bibtex

Abstract

Specific emitter identification (SEI) can distinguish single-radio transmitters using the subtle features of the received waveform. Therefore, it is used extensively in both military and civilian fields. However, the traditional identification method requires extensive prior knowledge and is time-consuming. Furthermore, it imposes various effects associated with identifying the communication radiation source signal in complex environments. To solve the problem of the weak robustness of the hand-crafted feature method, many scholars at home and abroad have used deep learning for image identification in the field of radiation source identification. However, the classification method based on a real-numbered neural network cannot extract In-phase/Quadrature (I/Q)-related information from electromagnetic signals. To address these shortcomings, this paper proposes a new SEI framework for deep learning structures. In the proposed framework, a complex-valued residual network structure is first used to mine the relevant information between the in-phase and orthogonal components of the radio frequency baseband signal. Then, a one-dimensional convolution layer is used to a) directly extract the features of a specific one-dimensional time-domain signal sequence, b) use the attention mechanism unit to identify the extracted features, and c) weight them according to their importance. Experiments show that the proposed framework having complex-valued residual networks with attention mechanism has the advantages of high accuracy and superior performance in identifying communication radiation source signals.
Go to article

Bibliography

  1.  K. Talbot, P. Duley, and M. Hyatt, “Specific emitter identification and verification,” Technol. Rev. J., vol.  Spring/Summer, pp. 113‒133, 2003.
  2.  G. Baldini, G. Steri, and R. Giuliani, “Identification of wireless devices from their physical layer radio-frequency fingerprints,” in Encyclopedia of Information Science and Technology, 4th Ed., 2018, ch. 533, pp. 6136‒6146.
  3.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific emitter identification based on nonlinear dynamical characteristics,” Can. J. Electr. Comput. Eng., vol. 39, no. 1, pp. 34–41, 2016, doi: 10.1109/cjece.2015.2496143.
  4.  Y. Pan, H. Peng, T. Li, and W. Wang, “High-fidelity symbol synchronization for specific emitter identification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 15‒17 March 2019, pp.  393‒398, doi: 10.1109/ITNEC.2019.8729181.
  5.  S. Ching-Sung and L. Chin-Teng, “A vector neural network for emitter identification,” IEEE Trans. Antennas Propag., vol. 50, no. 8, pp. 1120–1127, 2002, doi: 10.1109/TAP.2002.801387.
  6.  R. Klein, M.A. Temple, M.J. Mendenhall, and D.R. Reising, “Sensitivity Analysis of Burst Detection and RF Fingerprinting Classification Performance,” in 2009 IEEE International Conference on Communications, 14‒18 June 2009, pp. 1‒5, doi: 10.1109/ICC.2009.5199451.
  7.  O. Ureten and N. Serinken, “Bayesian detection of Wi-Fi transmitter RF fingerprints,” Electron. Lett., vol. 41, no. 6, pp.  373–374, 2005, doi: 10.1049/el:20057769.
  8.  J. Hall, M. Barbeau, and E. Kranakis, “Radio frequency fingerprinting for intrusion detection in wireless networks,” IEEE Trans. Dependable Secure Comput., vol. 12, pp. 1–35, 2005.
  9.  S. Guo, S. Akhtar, and A. Mella, “A Method for Radar Model Identification using Time-domain Transient Signals,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1‒1, 2021, doi: 10.1109/TAES.2021.3074129.
  10.  Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert–Huang transform-based time–frequency–energy distribution features,” IET Commun., vol. 8, no. 13, 2404–2412, 2014.
  11.  U. Satija, N. Trivedi, G. Biswal, and B. Ramkumar, “Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 581–591, 2019, doi: 10.1109/ tifs.2018.2855665.
  12.  L. Li, H. B. Ji, and L. Jiang, “Quadratic time-frequency analysis and sequential recognition for specific emitter identification,” IET Signal Proc., vol. 5, pp. 568–574, 2011, doi: 10.1049/iet-spr.2010.0070.
  13.  J. Zhang, F. Wang, Z. Zhong, and O. Dobre, “Novel Hilbert Spectrum-Based Specific Emitter Identification for Single-Hop and Relaying Scenarios,” in 2015 IEEE Global Communications Conference (GLOBECOM), 6–10 Dec. 2015 2015, pp. 1–6, doi: 10.1109/ GLOCOM.2015.7417299.
  14.  Z. Tang and S. Li, “Steady Signal-Based Fractal Method of Specific Communications Emitter Sources Identification,” in Wireless Communications, Networking and Applications, Q.-A. Zeng, Ed., Springer India, New Delhi, 2016, pp. 809–819, doi: 10.1007/978-81- 322-2580-5_73.
  15.  F. Zhuo, Y. Huang, and J. Chen, “Radio frequency fingerprint extraction of radio emitter based on I/Q imbalance,” Procedia Comput. Sci., vol. 107, pp. 472–477, 2017, doi: 10.1016/j.procs.2017.03.092.
  16.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific emitter identification based on nonlinear dynamical characteristics,” Can. J. Electr. Comput. Eng., vol. 39, pp. 34–41, 2016, doi: 10.1109/CJECE.2015.2496143.
  17.  M. Liu and J.F. Doherty, “Specific emitter identification using nonlinear device estimation,” in 2008 IEEE Sarnoff Symposium, 28‒30 April 2008, pp. 1–5, doi: 10.1109/SARNOF.2008.4520119.
  18.  M. Liu and J.F. Doherty, “Nonlinearity estimation for specific emitter identification in multipath channels,” IEEE Trans. Inf. Forensics Secur., vol. 6, no. 3, pp. 1076–1085, 2011, doi: 10.1109/TIFS.2011.2134848.
  19.  J. Dudczyk and A. Kawalec, “Specific emitter identification based on graphical representation of the distribution of radar signal parameters,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 2, pp. 391–396, 2015, doi: 10.1515/bpasts-2015-0044.
  20.  Y. Zhao, L. Wu, J. Zhang, and Y. Li, “Specific emitter identification using geometric features of frequency drift curve,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 99–108, 2018, doi: 10.24425/119063.
  21.  Ł. Rybak and J. Dudczyk, “A geometrical divide of data particle in gravitational classification of moons and circles data sets,” Entropy, vol. 22, p. 16, 2020, doi: 10.3390/e22101088.
  22.  J. Han, T. Zhang, D. Ren, and X. Zheng, “Mechanism analysis and feature extraction algorithm of communication emitter fingerprint,” AEU Int. J. Electron. Commun., vol. 106, 2019, doi: 10.1016/j.aeue.2019.04.020.
  23.  M.K.M. Fadul, D.R. Reising, and M. Sartipi, “Identification of OFDM-based radios under rayleigh fading using RF-DNA and deep learning,” IEEE Access, vol. 9, pp. 17100–17113, 2021, doi: 10.1109/ACCESS.2021.3053491.
  24.  J. Dudczyk, “A method of feature selection in the aspect of specific identification of radar signals,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, pp. 113–119, 2017, doi: 10.1515/bpasts-2017-0014.
  25.  K. Sa, D. Lang, C. Wang, and Y. Bai, “Specific emitter identification techniques for the internet of things,” IEEE Access, vol. 8, pp. 1644– 1652, 2020, doi: 10.1109/ACCESS.2019.2962626.
  26.  Y. Pan, S. Yang, H. Peng, T. Li, and W. Wang, “Specific emitter identification based on deep residual networks,” IEEE Access, vol. 7, pp. 54425–54434, 2019, doi: 10.1109/ACCESS.2019.2913759.
  27.  L.J. Wong, W.C. Headley, S. Andrews, R.M. Gerdes, and A.J. Michaels, “Clustering learned CNN features from raw I/Q data for emitter identification,” in MILCOM 2018 – 2018 IEEE Military Communications Conference (MILCOM), 29–31 Oct. 2018, pp. 26–33, doi: 10.1109/MILCOM.2018.8599847.
  28.  M. Zhang, M. Diao, and L. Guo, “Convolutional neural networks for automatic cognitive radio waveform recognition,” IEEE Access, vol. 5, pp. 11074–11082, 2017, doi: 10.1109/ACCESS.2017.2716191.
  29.  N.E. West and T.O. Shea, “Deep architectures for modulation recognition,” in 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), 6‒9 March 2017, pp.  1‒6, doi: 10.1109/DySPAN.2017.7920754.
  30.  Q. Wu et al., “Deep learning based RF fingerprinting for device identification and wireless security,” Electron. Lett., vol. 54, pp. 1405–1407, 2018, doi: 10.1049/el.2018.6404.
  31.  L. Ding, W. Shilian, F. Wang, and W. Zhang, “Specific emitter identification via convolutional neural networks,” IEEE Commun. Lett., vol. 22, no. 12, pp. 2591–2594, 2018, doi: 10.1109/LCOMM.2018.2871465.
  32.  G. Baldini, C. Gentile, R. Giuliani, and G. Steri, “A comparison of techniques for radiometric identification based on deep convolutional neural networks,” Electron. Lett., vol. 55, pp. 90–92, 2018, doi: 10.1049/el.2018.6229.
  33.  K. Huang, J. Yang, H. Liu, and P. Hu, “Deep adversarial neural network for specific emitter identification under varying frequency,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136716, 2021, doi: 10.24425/bpasts.2021.136737.
  34.  B. Wu, S. Yuan, P. Li, Z. Jing, S. Huang, and Y. Zhao, “Radar emitter signal recognition based on one-dimensional convolutional neural network with attention mechanism,” Sensors, vol. 20, p.  6350, 2020, doi: 10.3390/s20216350.
  35.  T.J. Shea and N. West, “Radio Machine Learning Dataset Generation with GNU Radio,” Proceedings of the GNU Radio Conference, vol 1, no.1, 2016. [Online]. Available: https://pubs.gnuradio.org/index.php/grcon/article/view/11.
  36.  T.J. O’Shea, T. Roy, and T.C. Clancy, “Over-the-Air deep learning based radio signal classification,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp. 168‒179, 2018, doi: 10.1109/JSTSP.2018.2797022.
  37.  A. Hirose and S. Yoshida, “Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence,” IEEE Trans. Neural Networks, vol. 23, pp.  541–551, 2012, doi: 10.1109/TNNLS.2012.2183613.
  38.  C. Trabelsi et al., “Deep complex networks,” presented at the ICLR 2018, 2018.
  39.  Y. Ying and J. Li, “Radio frequency fingerprint identification based on deep complex residual network,” IEEE Access, vol. 8, pp. 204417– 204424, 2020, doi: 10.1109/ACCESS.2020.3037206.
  40.  S. Woo, J. Park, J.-Y. Lee, and I.S. Kweon, “CBAM: Convolutional Block Attention Module,” in Computer Vision – ECCV 2018, Cham, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., Springer International Publishing, 2018, pp. 3–19.
Go to article

Authors and Affiliations

Lingzhi Qu
1
Junan Yang
1
Keju Huang
1
Hui Liu
1

  1. College of Electronic Engineering, National University of Defense Technology, Hefei, Anhui 230037, People’s Republic of China
Download PDF Download RIS Download Bibtex

Abstract

The paper analyzes the operation of innovative composite measurement instrumentation for spontaneous electromagnetic emission. The designed receiver measures and records both components of the EM field emitted by rocks subjected to increased mechanical stress. The range of signals transmitted by the receiver system and its dynamics were determined. A receiver was used to observe electromagnetic signals generated during a hard coal sample crushing in laboratory conditions. Test results confirmed the high dynamic range of the system at 98 dB and the ability to observe signals over a range of frequencies up to 50 kHz. The experimental results confirm the signal bandwidth characteristic of coal mine EM field emission obtained in earlier studies. The constructed autonomous receiver can be used in mine workings as a complementary warning system for emerging mine hazards.
Go to article

Bibliography

  1.  M. Akgun, “Coal mine accidents,” Turk Thorac Journal, vol. 16, no. 1, pp. s1–s2, 2015, doi: 10.5152/ttd.2015.008.
  2.  A. Tubis, S. Werbińska-Wojciechowska, and A. Wróblewski, “Risk assessment methods in mining industry – A systematic review,” Appl. Sci., vol. 10, pp.1‒34, 2020, doi: 10.3390/app10155172.
  3.  J.L.X. Meng, Y. Wang, and Z. Yang, “Prediction of coal seam details and mining safety using multicomponent seismic data: A case history from China,” Geophysics, vol. 81, no. 5 (September – October), pp. 149–165, 2016, doi: 10.1190/GEO2016-0009.1.
  4.  Y. Wang, N. Fu, X. Lu, and Z. Fu, “Application of a new geophone and geometry in tunnel seismic detection,” Sensors, vol.  19, p. 1246, 2019, doi: 10.3390/s19051246.
  5.  R.M. Bhattacharjeeb, A.K. Dasha, and P.S. Paulb, “A root cause failure analysis of coal dust explosion disaster – Gaps and lessons learnt,” Eng. Fail. Anal., vol. 111, pp. 1‒17, 2020, doi: 10.1016/j.engfailanal.2019.104229.
  6.  M. Li et al., “Piezoelectric effect and ignition properties of coal mine roof sandstone deformation and fracture,” Fuel, vol. 290, pp. 1‒9, 2021, doi: 10.1016/j.fuel.2020.120007.
  7.  M. Hayakawa, “Earthquake precursor studies in Japan” in Pre‐Earthquake Processes, Wiley, pp.7‒18, 2018, doi: 10.1002/ 9781119156949.ch2.
  8.  B. Kunar, “Risk assessment for disaster management in underground coal mines,” Indian Miner. Ind. J., vol. 11, pp.  113‒119, 2015.
  9.  G.-J. Liu, C.-P. Lu, H.-Y. Wang, P.-F. Liu, and Y. Liu, “Warning method of coal bursting failure danger by electromagnetic radiation,” Shock Vib., vol. 2015, p. 583862, 2015, doi: 10.1155/2015/583862.
  10.  E. Wang, H. Jia, D. Song, N. Li, and W. Qian, “Use of ultra-low-frequency electromagnetic emission to monitor stress and failure in coal mines,” Int. J. Rock Mech. Min. Sci., vol. 70, pp. 16–25, 2014, doi: 10.1016/j.ijrmms.2014.02.004.
  11.  A.A. Panfilov, “The results of experimental studies of VLF–ULF electromagnetic emission by rock samples due to mechanical action,” Nat. Hazards Earth Syst. Sci. Discuss., vol. 1, pp. 7821–7842, 2013, doi: 10.5194/nhessd-1-7821-2013.
  12.  Z. Shijiea, S. Xiaoyuanc, L. Chengwub, X. Xiaoxuan, and X. Zhuang, “The analysis of coal or rock electromagnetic radiation (EMR) signals based on Hilbert-Huang transform (HHT),” First International Symposium on Mine Safety Science and Engineering, Procedia Engineering, vol. 26, pp. 689‒698, 2011.
  13.  R. Mydlikowski and K. Maniak, “Measurement of electromagnetic field component emission as a precursor of emerging hazard in coal mines,” J. Telecomm. Inf.Technol., vol. 4, pp. 30‒35, 2019, doi: 10.26636/jtit.2020.145320.
  14.  A. Prałat, K. Maniak, and I. Pompura, “Electromagnetic phenomena in landslides,” Acta Geodynamica and Geomaterialia, vol.  2, no. 3, pp. 131‒138, 2005.
  15.  V. Frid, “Calculation of electromagnetic radiation criterion of rockburst hazard forecast in coal mines,” Pure Appl. Geophys., vol. 158, pp. 931‒944, 2001, doi: 10.1007/PL00001214.
  16.  V. Frid and K. Vozoff, “Electromagnetic radiation induced by mining rock failure,” Int. J. Coal Geol., vol. 64, pp. 57‒65, 2005, doi: 10.1016/j.coal.2005.03.005.
  17.  D. Lin-ming, L. Cai-ping, M. Zong-long, and G. Ming-shi, “Prevention and forecasting of rock burst hazards in coal mines,” Min. Sci. Technol., vol. 19, pp. 585–591, 2009, doi: 10.1016/S1674-5264(09)60109-5.
  18.  S.G. O’Keefe and D.Thiel, “Electromagnetic emissions during rock blasting,” Geophys. Res. Lett., vol. 18, no. 5, pp.  889‒892, 1991, doi: 10.1029/91GL01076.
  19.  P. Xiong et al., “Identification of electromagnetic pre-earthquake perturbations from the DEMETER data by machine learning,” Remote Sens., vol. 12, pp. 1‒27, 2020, doi: 10.3390/rs12213643.
  20.  A. Erturk and D.J. Inman, Piezoelectric Energy Harvesting, First Edition, John Wiley & Sons, Ltd. Published 2011, pp. 343‒344.
  21.  M. Krumbholz, M. Bock, S. Burchardt, U. Kelka, and A. Vollbrecht, “A critical discussion of the electromagnetic radiation (EMR) method to determine stress orientations within the crust,” Solid Earth, vol. 3, pp. 401‒414, 2012, doi: 10.5194/sed-4-993-2012.
  22.  A. Rabinovitch, V. Frid, D. Bahat ,and J. Goldbaum, “Decay mechanism of fracture induced electromagnetic pulses,” J. Appl. Phys., vol. 93, no. 9, pp 5085–5090, 2003, doi: 10.1063/1.1562752.
  23.  A. Rabinovitch, V. Frid, and D. Bahat, “Surface oscillations. A possible source of fracture induced electromagnetic radiation,” Tectonophysics, vol. 431, pp 15‒21, 2007, doi: 10.1016/j.tecto.2006.05.027.
  24.  A. Takeuchi and H. Nagahama, “Electric dipoles perpendicular to a stick-slip plane,” Phys. Earth Planet. Inter., vol.  155, pp. 208–218, 2006, doi: 10.1016/j.pepi.2005.12.010.
  25.  P. Koktavy and J. Sikula, “Physical model of electromagnetic emission in solids,” Proc. 26th Eur. Conf. Acous. Emission Testing EWGAE 2004, Berlin, Germany, 2004, pp. 899‒904.
  26.  S.K. Sharma, R. Kiran, A. Kumar, V.S. Chauhan, and R. Kumar, “A theoretical model for the electromagnetic radiation emission from hydrated cylindrical cement paste under impact,” J. Phys. Commun., vol. 2, no. 3, pp. 1‒12, 2018,
  27.  D. Miedzińska, T. Niezgoda, E. Małek, and D. Zasada, “Study on coal microstructure for porosity levels assessment,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 409‒505, 2013, doi: 10.2478/bpasts-2013-0049.
  28.  F. Zhao, Y. Li, Z. Ye, Y. Fan, S. Zhang, H. Wang, and Y. Liu, “Research on acoustic emission and electromagnetic emission characteristics of rock fragmentation at different loading rates,” Shock Vib., vol. 2018, p. 4680879, 2018, doi: 10.1155/2018/4680879.
  29.  Z. Loni, H. Espinosa, and D. Thiel, “Insulated wire fed floating monopole antenna for coastal monitoring,” Radioengineering, vol. 27, no. 1, pp. 127–133, 2018, doi: 10.13164/re.2018.0127.
  30.  V. Dyo, T. Ajmal, B. Allen, D. Jazani, and I. Ivanov, “Design of a ferrite rod antenna for harvesting energy from medium wave broadcast signals,” J. Eng., vol. 2013, no. 12, pp. 89–96, 2013, doi: 10.1049/joe.2013.0126.
  31.  T. Bolton and M.B. Cohen, “Optimal design of electrically-small loop receiving antenna,” Prog. Electromagn. Res. C, vol. 98, pp. 155–169, 2020, doi: 10.2528/PIERC19090911.
  32.  U. Tietze, Ch. Schenk, and E. Gamm, Electronic Circuits–Handbook for Design and Application, 2nd Edition. Springer, 2011, pp. 787‒841.
Go to article

Authors and Affiliations

Remigiusz Mydlikowski
1
ORCID: ORCID
Krzysztof Maniak
2
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
  2. National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, design, construction and switching parameters of a self-made optical shutter with scalable aperture were reported. The aim of the study was to obtain the shortest possible switching times, minimum shutter open time and comparable with commercial shutter, the switch-on and switch-off times. For this purpose, numerical simulations were performed using Comsol Multiphysics 5.4. The design of the shutter and the control system have been optimized accordingly to the obtained results of numerical simulations. The optimized design was fabricated in a professional mechanical workshop and operational parameters of the constructed device were investigated. The switching parameters of the shutter, such as opening time, closing time, minimum shutter open time and other parameters were measured. The values of the parameters were determined from a statistical analysis of a sample consisting of 10,000 measurement results. The performed characterization showed that the tested device has the opening time of 0.8 ms, while the closing time is approximately 1 ms. The designed device is characterized by the minimum shutter open time of 6.4 ms.
Go to article

Bibliography

  1.  H. Jo and D. Kim, “Observations of in vivo laser tissue ablation in animal models with different chromophores on the skin and modulating duration per laser exposure,” Lasers Med. Sci., vol. 34, no. 5, pp. 1031–1039, 2019.
  2.  T. Osuch, P. Gąsior, K. Markowski, and K. Jędrzejewski, “Development of fiber bragg gratings technology and their complex structures for sensing, telecommunications and microwave photonics applications,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 4, pp. 627–633, 2014.
  3.  W. Lamperska, J. Masajada, S. Drobczyński, and P. Gusin, “Two-laser optical tweezers with a blinking beam,” Opt. Lasers Eng., vol. 94, pp. 82–89, 2017.
  4.  H. Kim, W.-K. Lee, D.-H. Yu, M.-S. Heo, C. Park, S. Lee, and Y. Lee, “Atom shutter using bender piezoactuator,” Rev. Sci. Instrum., vol. 88, no. 2, 2017.
  5.  C. Colquhoun, A. Di Carli, S. Kuhr, and E. Haller, “Note: A simple laser shutter with protective shielding for beam powers up to 1 w,” Rev. Sci. Instrum., vol. 89, no. 12, 2018.
  6.  Thorlabs, “Optical shutters,” https://www.thorlabs.com/ newgrouppage9.cfm?objectgroup_id=927, (Accessed on 20/02/2021).
  7.  K. Singer, S. Jochim, M. Mudrich, A. Mosk, and M. Weidemüller, “Low-cost mechanical shutter for light beams,” Rev. Sci. Instrum., vol. 73, no. 12, pp. 4402–4404, 2002.
  8.  L.P. Maguire, S. Szilagyi, and R. E. Scholten, “High performance laser shutter using a hard disk drive voice-coil actuator,” Rev. Sci. Instrum., vol. 75, no. 9, pp. 3077–3079, 2004.
  9.  W. Bowden, I.R. Hill, P.E.G. Baird, and P. Gill, “Note: A highperformance, low-cost laser shutter using a piezoelectric cantilever actuator,” Rev. Sci. Instrum., vol. 88, no. 1, p. 016102, 2017.
  10.  P.-W. Huang, B. Tang, Z.-Y. Xiong, J.-Q. Zhong, J. Wang, and M.-S. Zhan, “Note: A compact low-vibration high-performance optical shutter for precision measurement experiments,” Rev. Sci. Instrum., vol. 89, no. 9, 2018.
  11.  G.H. Zhang, B. Braverman, A. Kawasaki, and V. Vuletić, “Note: Fast compact laser shutter using a direct current motor and threedimensional printing,” Rev. Sci. Instrum., vol. 86, no. 12, p. 126105, 2015.
  12.  S. Martínez, L. Hernández, D. Reyes, E. Gomez, M. Ivory, C Davison, and S. Aubin, “Note: Fast, small, and low vibration mechanical laser shutters,” Rev. Sci. Instrum., vol. 82, no. 4, p. 046102, 2011.
  13.  Newport, “Electronic fast shutters,” https://www.newport.com/f/electronic-fast-shutters, (Accessed on 20/02/2021).
Go to article

Authors and Affiliations

Piotr Pokryszka
1
ORCID: ORCID
Mateusz Wośko
1
ORCID: ORCID
Wojciech Kijaszek
1
ORCID: ORCID
Regina Paszkiewicz
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, wybrzeze Stanislawa Wyspianskiego 27, 50-370 Wroclaw, Poland

This page uses 'cookies'. Learn more