Details

Title

Characterization of morphology and optical properties of SnO₂ nanowires prepared by electrospinning

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

5

Affiliation

Tański, Tomasz : Department of Engineering Material and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland ; Smok, Weronika : Department of Engineering Material and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland ; Matysiak, Wiktor : Department of Engineering Material and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland

Authors

Keywords

nanowires ; nanofibers ; electrospinning ; tin oxide ; optical properties

Divisions of PAS

Nauki Techniczne

Coverage

e137507

Bibliography

  1.  W. Matysiak and T. Tański, “Novel bimodal ZnO (amorphous)/ZnO NPs (crystalline) electrospun 1D nanostructure and their optical characteristic,” Appl. Surf. Sci., vol. 474, pp. 232–242, Apr. 2019.
  2.  P. Jarka, T. Tański, W. Matysiak, Ł. Krzemiński, B. Hajduk, and M. Bilewicz, “Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles,” Appl. Surf. Sci., vol. 424, pp. 206–212, Dec. 2017.
  3.  V.R. Bandi et al., “Synthesis, structural and optical properties of pure and rare-earth ion doped TiO2 nanowire arrays by a facile hydrothermal technique,” Thin Solid Films, vol. 547, pp. 207–211, 2013.
  4.  V.M.D.S. Rocha, M.D.G. Pereira, L.R. Teles, and M.O.D.G. Souza, “Effect of copper on the photocatalytic activity of semiconductor- based titanium dioxide (anatase) and hematite (α-Fe2O3),” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 185, no. 1, pp. 13–20, Jul. 2014.
  5.  Z. Tao, Y. Li, B. Zhang, G. Sun, J. Cao, and Y. Wang, “Bi-doped urchin-like In2O3 hollow spheres: Synthesis and improved gas sensing and visible-light photocatalytic properties,” Sensors Actuators B Chem., vol. 321, p. 128623, Oct. 2020.
  6.  M. Parthibavarman, M. Karthik, and S. Prabhakaran, “Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material,” Vacuum, vol. 155, pp. 224–232, Sep. 2018.
  7.  Y. Chen et al., “SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress,” J. Energy Chem., vol. 35, pp. 144–167, Aug. 2019.
  8.  M. Dou and C. Persson, “Comparative study of rutile and anatase SnO2 and TiO2: Band-edge structures, dielectric functions, and polaron effects,” J. Appl. Phys., vol. 113, no. 8, p. 083703, Feb. 2013.
  9.  X. Zhang et al., “SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells,” J. Power Sources, vol. 402, pp. 460–467, Oct. 2018.
  10.  V.S. Jahnavi, S.K. Tripathy, and A.V.N. Ramalingeswara Rao, “Structural, optical, magnetic and dielectric studies of SnO2 nano particles in real time applications,” Phys. B Condens. Matter, vol. 565, pp. 61–72, Jul. 2019.
  11.  M.A. Yildirim, S.T. Yildirim, E.F. Sakar, and A. Ateş, “Synthesis, characterization and dielectric properties of SnO2 thin films,” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., vol. 133, pp. 60–65, Dec. 2014.
  12.  K. Bhuvaneswari et al., “Enhanced photocatalytic activity of ethylenediamine-assisted tin oxide (SnO2) nanorods for methylene blue dye degradation,” Mater. Lett., vol. 276, p. 128173, Oct. 2020.
  13.  L.R. Hou, L. Lian, L. Zhou, L.H. Zhang, and C.Z. Yuan, “Interfacial hydrothermal synthesis of SnO2 nanorods towards photocatalytic degradation of methyl orange,” Mater. Res. Bull., vol. 60, pp. 1–4, Dec. 2014.
  14.  D. Narsimulu, E.S. Srinadhu, and N. Satyanarayana, “Surfactant-free microwave-hydrothermal synthesis of SnO2 flower-like structures as an anode material for lithium-ion batteries,” Materialia, vol. 4, pp. 276–281, Dec. 2018.
  15.  S. Sharma and S. Chhoker, “CVD grown doped and Co-doped SnO2 nanowires and its optical and electrical studies,” Mater. Today Proc., vol. 28, pp. 375–378, Jan. 2020.
  16.  C. Gao, S. Yuan, B. Cao, and J. Yu, “SnO2 nanotube arrays grown via an in situ template-etching strategy for effective and stable perovskite solar cells,” Chem. Eng. J., vol. 325, pp. 378–385, Oct. 2017.
  17.  W. Matysiak, T. Tanski, and W. Smok, “Electrospinning as a versatile method of composite thin films fabrication for selected applications,” Solid State Phenom., vol. 293, pp. 35–49, 2019.
  18.  T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, and S.S. Ramkumar, “Electrospinning of nanofibers,” J. Appl. Polym. Sci., vol. 96, no. 2, pp. 557–569, Apr. 2005.
  19.  T. Tański, W. Matysiak, and P. Jarka, “Introductory Chapter: Electrospinning-smart Nanofiber Mats,” in Electrospinning Method Used to Create Functional Nanocomposites Films, InTech, 2018.
  20.  W. Matysiak, T. Tański, and W. Smok, “Study of optical and dielectric constants of hybrid SnO2 electrospun nanostructures,” Appl. Phys. A Mater. Sci. Process., vol. 126, no. 2, p. 115, Feb. 2020.
  21.  Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 132, no. 1, pp. 67–73, May 2008.
  22.  S.S. Mali et al., “Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells,” Nanoscale, vol. 10, no. 17, pp. 8275–8284, May 2018.
  23.  K. Zhang et al., “An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction,” J. Electroanal. Chem., vol. 781, pp. 198–203, Nov. 2016.
  24.  F. Li, T. Zhang, X. Gao, R. Wang, and B. Li, “Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor,” Sensors Actuators, B Chem., vol. 252, pp. 822–830, 2017.
  25.  Z. Jiang et al., “Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers,” Ceram. Int., vol. 42, no. 14, pp. 15881– 15888, Nov. 2016.
  26.  J.Y. Cheong, C. Kim, J. W. Jung, K.R. Yoon, and I.D. Kim, “Porous SnO2-CuO nanotubes for highly reversible lithium storage,” J. Power Sources, vol. 373, pp. 11–19, Jan. 2018.
  27.  Y.Y. Li, J.G. Wang, H.H. Sun, W. Hua, and X.R. Liu, “Heterostructured SnS2/SnO2 nanotubes with enhanced charge separation and excellent photocatalytic hydrogen production,” Int. J. Hydrogen Energy, vol. 43, no. 31, pp. 14121–14129, Aug. 2018.
  28.  Z. Huang, Z. Chen, S. Ding, C. Chen, and M. Zhang, “Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification,” Mater. Lett., vol. 219, pp. 19–22, May 2018.
  29.  K. Wang and J. Huang, “Natural cellulose derived nanofibrous Ag-nanoparticle/SnO2/carbon ternary composite as an anodic material for lithium-ion batteries,” J. Phys. Chem. Solids, vol. 126, pp. 155–163, Mar. 2019.
  30.  S. Javanmardi, S. Nasresfahani, and M.H. Sheikhi, “Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature,” Mater. Res. Bull., vol. 118, Oct. 2019.
  31.  Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 132, no. 1, pp. 67–73, May 2008.
  32.  W.Q. Li et al., “Synthesis of hollow SnO2 nanobelts and their application in acetone sensor,” Mater. Lett., vol. 132, pp. 338–341, Oct. 2014.
  33.  L. Cheng et al., “Synthesis and characterization of SnO2 hollow nanofibers by electrospinning for ethanol sensing properties,” Mater. Lett., vol. 131, pp. 23–26, Sep. 2014.
  34.  L. Liu et al., “High toluene sensing properties of NiO-SnO2 composite nanofiber sensors operating at 330°C,” Sensors Actuators, B Chem., vol. 160, no. 1, pp. 448–454, Dec. 2011.
  35.  S.H. Yan et al., “Synthesis of SnO2-ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sensors Actuators, B Chem., vol. 221, pp. 88–95, Jul. 2015.
  36.  F. Li, X. Gao, R. Wang, T. Zhang, and G. Lu, “Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor,” Sensors Actuators, B Chem., vol. 248, pp. 812–819, 2017.
  37.  S.W. Choi, J. Zhang, K. Akash, and S.S. Kim, “H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 169, pp. 54–60, Jul. 2012.
  38.  X. Xu et al., “Effects of Al doping on SnO2 nanofibers in hydrogen sensor,” Sensors Actuators, B Chem., vol. 160, no. 1, pp. 858–863, Dec. 2011.
  39.  S.M. Hwang et al., “A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries,” Nano Energy, vol. 10, pp. 53–62, Nov. 2014.
  40.  W. Wang et al., “Carbon-coated SnO2@carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries,” Mater. Chem. Phys., vol. 223, pp. 762–770, Feb. 2019.
  41.  J. Zhu, G. Zhang, X. Yu, Q. Li, B. Lu, and Z. Xu, “Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries,” Nano Energy, vol. 3, pp. 80–87, Jan. 2014.
  42.  Q. Wali, A. Fakharuddin, I. Ahmed, M.H. Ab Rahim, J. Ismail, and R. Jose, “Multiporous nanofibers of SnO2 by electrospinning for high efficiency dye-sensitized solar cells,” J. Mater. Chem. A, vol. 2, no. 41, pp. 17427–17434, Nov. 2014.
  43.  T. Tański, W. Matysiak, and Ł. Krzemiński, “Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers,” Mater. Manuf. Process., vol. 32, no. 11, pp. 1218–1224, Aug. 2017.
  44.  W. Matysiak, T. Tański, P. Jarka, M. Nowak, M. Kępińska, and P. Szperlich, “Comparison of optical properties of PAN/TiO2, PAN/ Bi2O3, and PAN/SbSI nanofibers,” Opt. Mater. (Amst)., vol. 83, pp. 145–151, Sep. 2018.
  45.  T. Tański, W. Matysiak, D. Kosmalska, and A. Lubos, “Influence of calcination temperature on optical and structural properties of TiO2 thin films prepared by means of sol-gel and spin coating,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 2, pp. 151–156, Apr. 2018.
  46.  W. Matysiak, T. Tański, and M. Zaborowska, “Manufacturing process and characterization of electrospun PVP/ZnO NPs nanofibers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 193–200, 2019.
  47.  W. Matysiak, T. Tański, and M. Zaborowska, “Manufacturing process, characterization and optical investigation of amorphous 1D zinc oxide nanostructures,” Appl. Surf. Sci., vol. 442, pp. 382–389, Jun. 2018.
  48.  J. Muangban and P. Jaroenapibal, “Effects of precursor concentration on crystalline morphologies and particle sizes of electrospun WO3 nanofibers,” Ceram. Int., vol. 40, no. 5, pp. 6759–6764, Jun. 2014.
  49.  W. Matysiak and T. Tański, “Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with sol-gel and electrospinning methods,” Appl. Surf. Sci., vol. 489, pp. 34–43, Sep. 2019.
  50.  O.V. Otieno et al., “Synthesis of TiO2 nanofibers by electrospinning using water-soluble Ti-precursor,” J. Therm. Anal. Calorim., vol. 139, no. 1, pp. 57–66, Jan. 2020.
  51.  N. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, and E.K. Suh, “Spectral studies of SnO2 nanofibres prepared by electrospinning method,” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., vol. 64, no. 1, pp. 136–140, May 2006.
  52.  S.R. Ch, L. Zhang, T. Kang, Y. Lin, Y. Qiu, and S.R. A, “Annealing impact on the structural and optical properties of electrospun SnO2 nanofibers for TCOs,” Ceram. Int., vol. 44, no. 5, pp. 4586–4591, Apr. 2018.
  53.  S. Das, S. Kar, and S. Chaudhuri, “Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process,” J. Appl. Phys., vol. 99, no. 11, p. 114303, Jun. 2006.
  54.  N.S. Mohammad, “Understanding quantum confinement in nanowires: Basics, applications and possible laws,” J. Phys.-Condens. Matter, vol. 26, no. 42. Institute of Physics Publishing, 22-Oct-2014.

Date

08.06.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.137507

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; e137507
×