Nauki Techniczne

Chemical and Process Engineering: New Frontiers

Zawartość

Chemical and Process Engineering | 2021 | vol. 42 | No 4

Abstrakt

The work concerns numerical simulations of a cone mill used for emulsion preparation. Hydrodynamics, power consumption and population balance are investigated for various operating conditions at high phase volume emulsions and for different rheologies. Cone mills are usually simplified as a simple gap between rotor and stator but by increasing the complexity of the geometry till it represents the commercial device identifies a wealth of additional features such as recirculation zones above (which enhance breakage) and below (which allow for coalescence) the rotor-stator gap. Two separate sets of population balance modelling constants are required to capture all the experiment results – even with the most complex geometries. Some suggestions are made for improvements and further studies will consider other rotor-stator devices.
Przejdź do artykułu

Autorzy i Afiliacje

Guido Lupieri
1
Ioannis Bagkeris
1
Jo J.M. Janssen
2
Adam J. Kowalski
1

  1. Unilever R&D, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral CH63 3JW, UK
  2. Unilever Foods Innovation Centre, Bronland 14, 6708WH Wageningen, The Nederlands

Abstrakt

This perspective paper focuses on the changes in teaching chemical engineering in Europe triggered by new challenges and megatrends observed in the chemical and related industries. Among the new teaching areas to address those challenges and megatrends, process intensification, digitalization and advanced materials are expected to play the most important role and are discussed in more detail. The discussion on incorporation of those new areas in the university curricula is illustrated with a comparison of educational approaches to the chemical engineering teaching at two universities – Delft University of Technology and Warsaw University of Technology. The aim of this paper is to focus the attention of university teachers and potential decision makers on the most important challenges for contemporary teaching of chemical engineering.
Przejdź do artykułu

Autorzy i Afiliacje

Andrzej I. Stankiewicz
1
Marek Henczka
2
Eugeniusz Molga
2
ORCID: ORCID

  1. Delft University of Technology, Process and Energy Department, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
  2. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland

Abstrakt

The paper presents a research work on the process of emulsion separation by filtration-coalescence method in the presence of solid particles. A polyester PBT coalescence medium was used in experiments of water removal from diesel fuel. Apart from parameters representing the geometry and inherent properties of coalescence filters, the additional emulsion constituents such as surfactants and solid particles also affect the process. These constituent can cover fibres and they can also influence emulsion properties. It has been experimentally confirmed that contrary to surface active compounds, which stabilise the emulsion, the presence of specific solid particles decreased the system stability. If surface active compounds are present in the system, the influence of solid particles is different at the same concentration level depending on their type. The destabilization of emulsion due to the presence of Arizona dust was more pronounced. Although the presence of particles mitigated the effect of surfactants, their deposition in the filter media oppositely affected the coalescence process depending on solid type. Oleophilic iron oxide particles improved the separation efficiency of water from diesel fuel, while Arizona test dust had a negative impact on the separation process performance.
Przejdź do artykułu

Autorzy i Afiliacje

Andrzej Krasiński
1
Łukasz Sołtan
1
Jakub Kozyrski
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland

Abstrakt

The role of capillary pumping on the course of cleaning porous materials containing liquid contaminants using supercritical fluids was investigated numerically. As a specific process to be modelled, cleaning of porous membranes, contaminated with soybean oil, using supercritical carbon dioxide as the cleaning fluid (solvent) was considered. A 3D pore-network model, developed as an extension of a 2D drying model, was used for performing pore scale simulations. The influence of various process parameters, including the coordination number of the pore network, the computational domain size, and the external flow mass transfer resistance, on the strength of the capillary pumping effect was investigated. The capillary pumping effect increases with increasing domain size and decreasing external flow mass transfer resistance. For low coordination numbers of the pore network, the capillary pumping effect is not noticeable at macro scale, while for high coordination numbers, the opposite trend is observed – capillary pumping may influence the process at macro scale. In the investigated system, the coordination number of the pore network seems to be low, as no capillary pumping effects were observed at macro scale during experimental investigation and macro-scale modelling of the membrane cleaning process.
Przejdź do artykułu

Autorzy i Afiliacje

Jan Krzysztoforski
1
ORCID: ORCID
Karim Khayrat
2
Marek Henczka
3
Patrick Jenny
2

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
  2. ETH Zurich, Institute of Fluid Dynamics, Sonneggstrasse 3, 8092 Zurich, Switzerland
  3. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland

Abstrakt

In this paper aggregation of small solid particles in the perikinetic and orthokinetic regimes is considered. An aggregation kernel for colloidal particles is determined by solving the convection-diffusion equation for the pair probability function of the solid particles subject to simple shear and extensional flow patterns and DLVO potential field. Using the solution of the full model the applicability regions of simplified collision kernels from the literature are recognized and verified for a wide range of Péclet numbers. In the stable colloidal systems the assumption which considers only the flow pattern in a certain boundary layer around central particle results in a reasonable accuracy of the particle collision rate. However, when the influence of convective motion becomes more significant one should take into account the full flow field in a more rigorous manner and solve the convection-diffusion equation directly. Finally, the influence of flow pattern and process parameters on aggregation rate is discussed.
Przejdź do artykułu

Autorzy i Afiliacje

Grzegorz Tyl
1
Juliusz Kondracki
2
Magdalena Jasińska
1

  1. Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warsaw, Poland
  2. Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstrakt

The energetic efficiency of mixing is studied numerically in a continuous flow mixer constructed from a sequence of alternately twisted pipe bends. Counter-rotating vortices present in the curved channels and known as Dean vortices narrow the distribution of the residence time of fluid elements and accelerate the generation of a new material surface without obstructing the main flow and increasing the risk of fouling or flow stoppage. Cyclic twisting of the pipe curvature allows for quick reorientation of Dean vortices. The reorientation induces chaotic advection in a stable three-dimensional flow and speeds up mixing. The effect of computational domain discretisation for the low and medium Reynolds numbers (20 < Re < 2000º on the head loss, primary and secondary flow, residence time distribution, and the energetic efficiency of generation of the inter material surface is determined. The energetic efficiency is calculated in the time space, a standard approach in modelling reactive micromixing, and at the reactor exit. The maximum energetic efficiency is determined for Re ≈ 600 ÷ 700. It is also found that the initial orientation of the material surface to the pipe curvature has a significant impact on the energetic efficiency of mixing.
Przejdź do artykułu

Autorzy i Afiliacje

Antoni Rożeń
1
Janusz Kopytowski
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warszawa, Poland

Abstrakt

The use of CaO-based adsorbents has a high potential to capture CO2 from various systems due to its high reactivity with CO2, high capacity, and low cost of naturally derived CaO. The application of CaO-based sorbents to remove carbon dioxide is based on a reversible reaction between CaO and CO2. However, multiple carbonation/calcination cycles lead to a rapid reduction in the sorption capacity of natural CaO, and therefore efforts are made to reduce this disadvantage by doping, regenerating, or producing synthetic CaO with stable sorption properties. In this review, the synthesis methods used to obtain CaO-based sorbents were collected, and the latest research on improving their sorption properties was presented. The most commonly used models to describe the CO2 sorption kinetics on CaO-based sorbents were also introduced. The methods of sorbent regeneration and their effectiveness were summarized. In the last part of this review, the current state of advancement of work on the larger scale, possible problems, and opportunities during scale-up of the calcium looping process were presented. Concluding (i) the presented methods of adsorbent synthesis allow for the production of doped CaO adsorbents on a laboratory scale, characterized by high CO2 capture efficiency and good cyclic stability, (ii) the most commonly used in practice models describing CO2 chemisorption are empirical models and the shrinking core model, (iii) the use of sorbent regeneration allows for a significant improvement in sorption capacity, (iv) the scale-up of both the production of new CaO adsorbents and the CO2 capture technology with their use requires further development.
Przejdź do artykułu

Autorzy i Afiliacje

Donata Konopacka-Łyskawa
1
ORCID: ORCID
Natalia Czaplicka
1
Andrzej Szefer
2

  1. Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
  2. FLUOR S.A., ul. Prymasa Stefana Wyszynskiego 11, 44-100 Gliwice, Poland

Abstrakt

In the work, the antioxidant activity of astaxanthin (AST) and the influence of the base formulation on the kinetics of AST release were studied. Three stable O/W AST-loaded emulsions, differing in droplet size (12.7 μm(E1), 3.8 μm(E2), 3.2 μm(E3)) and a nanoemulsion (0.13 μm, NE) were prepared. The results confirmed very strong antioxidant activity of AST. The emulsion internal phase droplet size did not significantly affect the AST release. The amount of released AST was respectively: 13.60% (E1), 11.42% (E2), 9.45% (E3), 9.71% (NE). The best fit to experimental data was obtained using the Higuchi model for emulsions and the Korsmeyer-Peppas model for NE. The results show that the AST release process is limited by the diffusion through carriers and the prepared O/W emulsions can be applied as vehicles for delivery of astaxanthin to the skin, ensuring effective anti-aging action of the cosmetics.
Przejdź do artykułu

Autorzy i Afiliacje

Michał Dymek
1
Elżbieta Sikora
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Kraków, Poland

Instrukcja dla autorów

All manuscripts submitted for publication in Chemical and Process Engineering: New Frontiers must comprise a description of original research that has neither been published nor submitted for publication elsewhere.

The content, aim and scope of the proposals have to comply with the main topics of the journal, i.e. discuss at least one of the four main areas, namely:
• New Advanced (Nano) Materials
• Environment & Water Processing (including circular economy)
• Biochemical & Biomedical Engineering (including pharmaceuticals)
• Climate & Energy (including energy conversion & storage, electrification, decarbonization)

Chemical and Process Engineering: New Frontiers publishes: i) experimental and theoretical research papers, ii) short communications, iii) critical reviews, and iv) perspective articles. Each publication form is peer-reviewed by at least two independent referees.

New Submissions

Manuscripts are submitted for publication via Editorial System. When writing a manuscript, you may choose to submit it as a single Word file to be used in the refereeing process. The manuscript needs to be written in a clear way. The minimum requirements are:
• Please use clear fonts, at least 12 points large, with at least 1.5-line spacing.
• Figures should be placed in relevant places within the manuscript. All figures and tables should be numbered and provided with appropriate caption and legend, if necessary.


Language requirements

• Use Simple Past to talk about your experiment and your results as they were finished before you wrote the paper. Use Simple Past to describe what you did.
Example: Two samples were taken. Temperature increased to 200K at the end of the process.
• Use Simple Present to refer to figures and tables.
Example: Table 2 shows nitrogen concentration changes in the process.
• Use Simple Present to talk about your conclusions. You move here from describing your results to stating what is generally true.
Example: The process is caused by changes of nitrogen concentration.
• Capitalise words like ‘Table 2’, ‘Equation 11’.
• If a sentence is longer than three lines, break down your writing into logically divided parts (paragraphs). Start a new paragraph to discuss a new concept.
• Check noun/verb agreement (singular/plural).
• It is fine to choose either British or American English but you should avoid mixing the two.
• Avoid empty language (it is worth pointing out that, etc.).



Revised Submission

After the first revision, authors will be requested to put their paper in the correct format, using the below guidelines and template for articles.


Manuscript outline

1. Header details
a. Title,
b. Names (first name and further initials) and surnames of authors,
c. Institution(s) (affiliation),
d. Address(es) of authors,
e. ORCID number of all authors.
f. Information about the corresponding author: name and surname, email address.

2. Abstract – should contain a short summary of the proposed paper. In the maximum of 200 words the authors should present the main assumptions, results and conclusions drawn from the presented study.

3. Keywords – up to 5 characteristic keyword items should be provided.

4. Text
a. Introduction. In this part, the rationale for research and formulation of the scientific problem should be included and supported by a concise review of recent literature.
b. Main text. It should contain all important elements of the scientific investigations, such as presentation of experimental setup, mathematical models, results and their discussion. This part may be divided into the following sections: Methods, Results, Discussion.
c. Conclusions. The major conclusions can be put forward in a concise style in a separate chapter. A presentation of conclusions from the reported research work accompanied by a short commentary is also acceptable.
d. Figures: drawings, diagrams and photographs can be in colour and should be located in appropriate places in the manuscript. Their form should be of a vector or raster type with the minimum resolution of 900 dpi. In addition, all figures, including drawings, graphs and photos should be uploaded in a separate file via Editorial System in one of the following formats: bmp, tiff, jpg or eps. For editorial reasons, graphic elements created with MS Word or Excel will not be accepted. They should be saved as image files in the source program. Screen shots will not be accepted. The basic font size of letters used in figures should be at least 10 pts after adjusting graphs to the final size.
e. Tables should be made according to the format shown in the template.
f. All figures and tables should be numbered and provided with an appropriate caption and legend, if necessary. They have to be properly referenced to and commented in the text of the manuscript.

5. List of symbols should be accompanied by their units

6. Acknowledgements may be included before the list of literature references

7. Literature citations
The method of quoting literature source in the manuscript depends on the number of its authors:
single author – their surname and year of publication should be given, e.g. Marquardt (1996) or (Marquardt, 1996),
two authors – the two surnames separated by the conjunction “and” with the publication year should be given, e.g. Charpentier and McKenna (2004) or (Charpentier and McKenna, 2004),
three and more authors – the surname of the first author followed by the abbreviation “et al.” and year of publication should be given, e.g. Bird et al. (1960) or (Bird et al., 1960).

In the case of citing more sources in one bracket, they should be listed in alphabetical order using semicolon for separation, e.g. (Bird et al., 1960; Charpentier and McKenna, 2004; Marquardt, 1996). Should more citations of the same author(s) and year appear in the manuscript then letters “a, b, c, ...” should be successively applied after the publication year.

Bibliographic data of the quoted literature should be arranged at the end of the manuscript in alphabetical order of surnames of the first author. It is obligatory to indicate the DOI number of those literature items, whose numbers have already been assigned. Journal titles should be specified by typing their right abbreviations or, when in doubts, according to the Science and Engineering Journal Abbreviations.

Examples of citation for:

Articles
Charpentier J. C., McKenna T. F., 2004. Managing complex systems: some trends for the future of chemical and process engineering. Chem. Eng. Sci., 59, 1617-1640. DOI: 10.1016/j.ces.2004.01.044.
Information from books (we suggest adding the page numbers where the quoted information can be found)
Bird R. B., Stewart W.E., Lightfood E.N., 2002. Transport Phenomena. 2nd edition, Wiley, New York, 415-421.
Chapters in books
Hanjalić K., Jakirlić S., 2002. Second-moment turbulence closure modelling, In: Launder B.E., Sandham N.D. (Eds.), Closure strategies for turbulent and transitional flows. Cambridge University Press, Cambridge, 47-101.
Conferences
ten Cate A., Bermingham S.K., Derksen J.J., Kramer H.M.J., 2000. Compartmental modeling of an 1100L DTB crystallizer based on Large Eddy flow simulation. 10th European Conference on Mixing. Delft, the Netherlands, 2-5 July 2000, 255-264.



Cover letter


Authors are kindly asked to provide a cover letter which signifies the novelty and most important findings of the manuscript as well as the significance to the field.


Author contributions

During submission, authors will be asked to provide the individual contributions to the paper using the relevant CRediT roles: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing.


Suggested Reviewers

Authors are kindly requested to include a list of 4 potential reviewers for their manuscript, with complete contact information. Suggested reviewers may not reside in the same country as the corresponding author and remain subject to the Editors' discretion in appointing manuscripts for review.


Payments

Starting from 2014 a principle of publishing articles against payment is introduced, assuming non-profit making editorial office. According to the principle, authors or institutions will have to cover the expenses amounting to 1500 PLN netto (excl. VAT) per published article. The above amount will be used to supplement the limited financial means received from the Polish Academy of Sciences for the editorial and publishing expenses. The method of payment will be indicated in an invoice sent to the authors or institutions after acceptance of their manuscripts to be published.

Zasady etyki publikacyjnej

ETHICAL PRINCIPLES

Editors of the "Chemical and Process Engineering: New Frontiers" pay attention to maintain ethical standards in scientific publications and undertake any possible measure to counteract neglecting the standards. Papers submitted for publication are evaluated with respect to reliability, conforming to ethical standards and the advancement of science. Principles given below are based on COPE's Best Practice Guidelines for Journal Editors, which may be found at:
http://publicationethics.org/files/u2/Best_Practice.pdf

Authors’ duties

Authorship
Authorship should be limited to persons, who markedly contributed to the idea, project, realization and interpretation of results. All of them have to be listed as co-authors. Other persons, who affected some important parts of the study should be listed or mentioned as co-workers. Author should be certain that all co-authors were enlisted, saw and accepted final version of the paper and agreed upon its publication.

Disclosure and conflict of interests
Author should disclose all sources of financing of his/her study, the input of scientific institutions, associations and other subjects and all important conflicts of interests that might affect results and interpretation of the study.

Standards in reporting
Authors of papers based on original studies should present precise description of performed work and objective discussion on its importance. Source data should be accurately presented in the paper. The paper should contain detailed information and references that would enable others to use it. False or intentionally not true declarations are not ethical and are not accepted by the editors.

Access to and storage of data
Authors may be asked for providing raw data used in the paper for editorial assessment and should be prepared to store them within the reasonable time period after publication.

Multiple, unnecessary and competitive publications
As a rule author should not publish papers describing the same studies in more than one journal or primary publication. Submission of the same paper to more than one journal at the same time is not ethical and prohibited.

Confirmation of sources
Author should cite papers that affected the creation of submitted manuscript and every time he/she should confirm the use of other authors’ work.

Important errors in published papers
When author finds an important error or inaccuracy in his/her paper, he/she is obliged to inform Editorial Office about this as soon as possible.

Originality and plagiarism
Author may submit only original papers. He/she should be certain that the names of authors referred to in the paper and/or fragments of their texts are properly cited or mentioned.

Ghostwriting
Ghost writing/guest authorship are manifestation of scientific unreliability and all such cases will be revealed including notification of appropriate subjects. Signs of scientific unreliability, especially violation of ethical principles in science will be documented by the Editorial Office.


Duties of the Editorial Office


Editors’ duties
Editors know the rules of journal editing including the procedures applied in case of uncovering non-ethical practices.

Decisions on publication
Editor-in Chief is obliged to apply present legal status as to defamation, violation of author’s rights and plagiarism and bears the responsibility for decisions. He/she may consult thematic editors and/or referees in that matter.

Selection of referees
Editorial Office provides appropriate selection of referees and takes care about appropriate course of peer –reviewing (the review has to be substantive).

Confidentiality
Every member of editorial team is not allowed to disclose information about submitted paper to any person except its author, referees, other advisors and editors.

Discrimination
To counteract discrimination the Editorial Office obeys the legally binding rules.

Disclosure and conflict of interests
Not published papers or their fragments cannot be used in the studies of editorial team or ref-erees without written consent of the author.


Referees' duties

Editorial decisions

Referee supports Editor-in-Chief in taking editorial decisions and may also support author in improving the paper.

Back information
In case a selected referee is not able to review the paper or cannot do it in due time period, he/she should inform secretary of the Editorial Office about this fact.

Objectivity standards
Reviews should be objective. Personal criticism is inappropriate. Referees should clearly ex-press their opinions and support them with proper arguments.

Confidentiality
All reviewed papers should be dealt with as confidential. They should not be discussed or revealed to persons other than the secretary of the Editorial Office.

Anonymity
All reviews should be made anonymously and the Editorial Office does not disclose names of the authors to referees.

Disclosure and conflict of interests
Confidential information or ideas resulting from reviewing procedure should be kept secret and should not be used to gain personal benefits. Referees should not review papers, which might generate conflict of interests resulting from relationships with the author, firm or institution involved in the study.

Confirmation of sources
Referees should indicate publications which are not referred to in the paper. Any statement that the observation, source or argument was described previously should be supported by appropriate citation. Referee should also inform the secretary of the Editorial Office about significant similarity to or partial overlapping of the reviewed paper with any other published paper and about suspected plagiarism.



Ta strona wykorzystuje pliki 'cookies'. Więcej informacji