Applied sciences

Chemical and Process Engineering

Content

Chemical and Process Engineering | 2016 | vol. 37 | No 4 December |

Download PDF Download RIS Download Bibtex

Abstract

Straw-fired batch boilers, due to their relatively simple structure and low operating costs, are an excellent source of heat for a wide range of applications. A concept prototype of a cogeneration system with a straw-fired batch boiler was developed. The basic assumptions were based on the principles of the Rankine Cycle and the Organic Rankine Cycle systems with certain design modifications. Using the prototype design of a system that collects high-temperature heat from the boiler, studies were performed. The studies involved an analysis of the flue gas temperature distribution in the area of the oil exchanger, a comparison of the instantaneous power of the boiler’s water and oil circuits for different modes of operation, as well as an analysis of the flue gas. In the proposed system configuration where the electricity production supplements heat generation, the power in the oil circuit may be maintained at a constant level of approx. 20-30 kW. This is possible provided that an automatic fuel supply system is applied. Assuming that the efficiency of the electricity generation system is not less than 10%, it will be possible to generate 2-3 kW of electricity. This value will be sufficient, for an on-site operation of the boiler.

Go to article

Authors and Affiliations

Krzysztof Sornek
Mariusz Filipowicz
Download PDF Download RIS Download Bibtex

Abstract

The work concerns the dynamic behaviour of a porous, isothermal catalyst pellet in which a simultaneous chemical reaction, diffusion and adsorption take place. The impact of the reactant adsorption onto the pellet dynamics was evaluated. A linear isotherm and a non-linear Freundlich isotherm were considered. Responses of the pellet to sinusoidal variations of the reactant concentration in a bulk gas were examined. It was demonstrated that the dynamics of the pellet is significantly affected both by accounting for the adsorption and by the frequency of the bulk concentration variations. The sorption phenomenon causes damping of the concentration oscillations inside the pellet and damping of its effectiveness factor oscillations. Depending on the frequency of the concentration oscillations in the bulk, the remarkable oscillations can involve an entire volume of the pellet or its portion in the vicinity of the external surface.

Go to article

Authors and Affiliations

Katarzyna Bizon
Bolesław Tabiś
Download PDF Download RIS Download Bibtex

Abstract

Experiments on a confined fluidized bed system with various shapes of particles have been presented in the paper. Its influence on hydrodynamic properties in the whole range of gas velocity has been analysed. Relations allowing calculation of the Richardson-Zaki-type equation coefficients, including description of inter-particle void and gas pressure drop in such systems have been determined. Necessary condition for confined fluidization of non-spherical coarse particles has also been determined.

Go to article

Authors and Affiliations

Bronisław Buczek
Piotr Zabierowski
Download PDF Download RIS Download Bibtex

Abstract

One of the important parameters describing pneumatic liquid atomisation is the air to liquid mass ratio (ALR). Along with the atomiser design and properties of the liquid it has extremely important influence on parameters of atomised liquid such as: mean droplet diameter, jet range and angle. Knowledge about real characteristics of an atomiser in this respect is necessary to correctly choose its operating parameters in industrial applications.

The paper presents results of experimental research of two-fluid atomisers with internal mixing built according to custom design. Investigated atomizers were designed for spraying a urea aqueous solution inside the power boiler combustion chamber. They are an important element of SNCR (selective non-catalytic reduction) installation which is used to reduce nitrogen oxides in a flue gas boiler. Obtained results were used by authors in further research, among others to determine the boundary conditions in the SNCR installation modeling.

The research included determining mean droplet diameter as a function of ALR. It has been based on the immersion liquid method and on the use of specialised instrumentation for determining distribution of droplet diameters in a spray – Spraytec by Malvern. Results obtained with both methods were later compared. The measurements were performed at a laboratory stand located at the Institute of Heat Engineering, Warsaw University of Technology. The stand enables extensive investigation of the water atomisation process.

Go to article

Authors and Affiliations

Piotr Krawczyk
Krzysztof Badyda
Szczepan Młynarz
Download PDF Download RIS Download Bibtex

Abstract

The objective of the work are in-depth experimental studies of Cu(II) and Zn(II) ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II) and Zn(II) ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II) and Zn(II) ions (1:1, 1:2, 2:1). Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.

Go to article

Authors and Affiliations

Józef Nastaj
Małgorzata Tuligłowicz
Konrad Witkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Rotary kiln installation forms a very complex system, as it consists of various components which affect cement production. However, some problems with particle settling are encountered during operation of tertiary air installation. This paper reports on the results of a study into gas-particle flow in a tertiary air duct installation. This flow was calculated using Euler method for air motion and Lagrange method for particle motion. The results in this paper demonstrate that study focus on the tertiary air installation is a practical measure without the analysis of other processes in the rotary kiln. A solution to this problem offers several alternatives of modifying the inlet to the tertiary air duct. As a result of numerical calculations, we demonstrate the influence of geometry of a rotary kiln modification on the number of large particles transported in the tertiary air duct. The results indicate that in order to reduce large particles, rotary kiln head geometry needs to be modified, and a particle settler should be installed at its outlet.

Go to article

Authors and Affiliations

Grzegorz Borsuk
Jacek Wydrych
Bolesław Dobrowolski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents studies carried out in a pilot-scale plant for recovery of waste heat from a flue gas which has been built in a lignite-fired power plant. The purpose of the studies was to check the operation of the heat recovery system in a pilot scale, while the purpose of the plant was recovery of waste heat from the flue gas in the form of hot water with a temperature of approx. 90 °C. The main part of the test rig was a condensing heat exchanger designed and built on the basis of laboratory tests conducted by the authors of this paper. Tests conducted on the pilot-scale plant concerned the thermal and flow parameters of the condensing heat exchanger as well as the impact of the volumetric flow rate of the flue gas and the cooling water on the heat flux recovered. Results show that the system with a condensing heat exchanger for recovery of low-temperature waste heat from the flue gas enables the recovery of much higher heat flux as compared with conventional systems without a condensing heat exchanger.

Go to article

Authors and Affiliations

Piotr Szulc
Kazimierz Wójs
Tomasz Tietze

Instructions for authors

All manuscripts submitted for publication in Chemical and Process Engineering must comprise a description of original research that has neither been published nor submitted for publication elsewhere.

The content, aim and scope of the proposals should comply with the main subject of the journal, i.e. they should deal with mathematical modelling and/or experimental investigations on momentum, heat and mass transfer, unit processes and operations, integrated processes, biochemical engineering, statics and kinetics of chemical reactions. The experiments and modelling may cover different scales and processes ranging from the molecular phenomena up to production systems. The journal language is grammatically correct British English.

Chemical and Process Engineering publishes: i) full text research articles, ii) invited reviews, iii) letters to the editor and iv) short communications, aiming at important new results and/or applications. Each of the publication form is peer-reviewed by at least two independent referees.  

Submission of materials for publication

The manuscripts are submitted for publication via e-mail address office.cpe@pw.edu.pl. When writing the manuscript, authors should preferably use the template for articles. 

Proposals of a paper should be uploaded using the Internet site of the journal and should contain:

  • a manuscript file in Word format (*.doc, *.docx),
  • the manuscript mirror in PDF format,
  • all graphical figuresin separate graphics files.

In the following paragraphthe general guidelines for the manuscript preparation are presented.

Manuscript outline

        1. Header details
          1. Title of paper
          2. Names (first name and further initials) and surnames of authors
          3. Institution(s) (affiliation)
          4. Address(es) of authors
          5. Information about the corresponding author; academic title, name and surname, email address, address for correspondence
        2. Abstract – should contain a short summary of the proposed paper. In the maximum of 200 words the authors should present the main assumptions, results and conclusions drawn from the presented study.
        3. Keywords– Up to 5 characteristic keyword items should be provided.
        4. Text
          1. Introduction. In this part, description of motivation for the study and formulation of the scientific problem should be included and supported by a concise review of recent literature.
          2. Main text. It should contain all important elements of the scientific investigations, such as presentation of experimental rigs, mathematical models, results and their discussion. This part may be divided into subchapters.
          3. Conclusions. The major conclusions can be put forward in concise style in a separate chapter. Presentation of conclusions from the reported research work accompanied by a short commentary is also acceptable.
          4. Figures: drawings, diagrams and photographs can be in colour and should be located in appropriate places in the manuscript text according. Their graphical form should be of vector or raster type with the minimum resolution of 900 dpi. In addition, separate files containing each of the drawings, graphs and photos should be uploaded onto the journal Web site in one of the following formats: bmp, gif, tiff, jpg, eps. Due to rigid editorial reasons, graphical elements created within MS Word and Excel are not acceptable. The final length of figures should be intended typically for 8 cm (single column) or 16 cm in special cases of rich-detail figures. The basic font size of letters in figures should be at least 10 pts after adjusting graphs to the final length.  

          Figures: drawings, diagrams and photographs should be in gray scale. In case of coloured graphs or photo an additional payment of 300 PLN (72 €) per 1 page containing coloured figures on both sides, or 150 PLN (36 €) per page containing coloured figures on one side will be required.

          Tables should be made according to the format shown in the template.

        5. All figures and tables should be numbered and provided with appropriate title and legend, if necessary. They have to be properly referenced to and commented in the text of the manuscript.

        6. List of symbols should be accompanied by their units
        7. Acknowledgements may be included before the list of literature references
        8. Literature citations

 

The method of quoting literature source in the manuscript depends on the number of its authors:

  • single author – their surname and year of publication should be given, e.g. Marquardt (1996) or (Marquardt, 1996),
  • two authors – the two surnames separated by the conjunction “and” with the publication year should be given, e.g. Charpentier and McKenna (2004) or (Charpentier and McKenna, 2004),
  • three and more authors – the surname of the first author followed by the abbreviation “et al.” and year of publication should be given, e.g. Bird et al. (1960) or (Bird et al., 1960).

In the case of citing more sources in one bracket, they should be listed in alphabetical order using semicolon for separation, e.g. (Bird et al., 1960; Charpentier and McKenna, 2004; Marquardt, 1996). Should more citations of the same author(s) and year appear in the manuscript then letters “a, b, c, ...” should be successively applied after the publication year.

Bibliographic data of the quoted literature should be arranged at the end of the manuscript text in alphabetic order of surnames of the first author. It is obligatory to indicate the DOI number of those literature items, which have the numbers already assigned. Journal titles should be specified by typingtheir right abbreviationsor, in case of doubts, according to the List of Title Word Abbreviations available at http://www.issn.org/2-22661-LTWA-online.php.

Examples of citation for:

Articles
Charpentier J. C., McKenna T. F., 2004.Managing complex systems: some trends for the future of chemical and process engineering. Chem. Eng. Sci., 59, 1617-1640. DOI: 10.1016/j.ces.2004.01.044.

Information from books (we suggest adding the page numbers where the quoted information can be found)
Bird R. B., Stewart W.E., Lightfood E.N., 2002. Transport Phenomena. 2nd edition, Wiley, New York, 415-421.

Chapters in books
Hanjalić K., Jakirlić S., 2002. Second-moment turbulence closure modelling, In: Launder B.E., Sandham N.D. (Eds.), Closure strategies for turbulent and transitional flows. Cambridge University Press, Cambridge, 47-101.

Conferences
ten Cate A., Bermingham S.K., Derksen J.J., Kramer H.M.J., 2000. Compartmental modeling of an 1100L DTB crystallizer based on Large Eddy flow simulation. 10th European Conference on Mixing. Delft, the Netherlands, 2-5 July 2000, 255-264.


Suggested Reviewers

Authors are kindly requested to include a list of 3 potential reviewers for their manuscript, with complete contact information. These reviewers must not be from the authors' institutions, or have co-authored with authors of the manuscript.

Payments

Starting from 2014 a principle of publishing articles against payment is introduced, assuming non-profit making editorial office. According to the principle authors or institutions employing them, will have to cover the expenses amounting to 40 PLN (or 10 €) per printed page. The above amount will be used to supplement the limited financial means received from the Polish Academy of Sciences for the editorial and publishing; and in particular to increase the capacity of the next CPE volumes and to proofread the linguistic correctness of the articles. The method of payment will be indicated in an invoice sent to the authors or institutions after acceptance of their manuscripts to be published. In justifiable cases presented in writing, the editorial staff may decide to relieve authors from basic payment, either partially or fully. All correspondence should be sent to Executive Editor: dr hab. inż. Paweł Sobieszuk, email address: office.cpe@pw.edu.pl


Publication Ethics Policy

ETHICAL PRINCIPLES

Editors of the "Chemical and Process Engineering" pay attention to maintain ethical standards in scientific publications and undertake any possible measure to counteract neglecting the standards. Papers submitted for publication are evaluated with respect to reliability, conforming to ethical standards and the advancement of science. Principles given below are based on COPE's Best Practice Guidelines for Journal Editors, which may be found at:
http://publicationethics.org/files/u2/Best_Practice.pdf

Authors’ duties

Authorship
Authorship should be limited to persons, who markedly contributed to the idea, project, realization and interpretation of results. All of them have to be listed as co-authors. Other persons, who affected some important parts of the study should be listed or mentioned as co-workers. Author should be certain that all co-authors were enlisted, saw and accepted final version of the paper and agreed upon its publication.

Disclosure and conflict of interests
Author should disclose all sources of financing of his/her study, the input of scientific institutions, associations and other subjects and all important conflicts of interests that might affect results and interpretation of the study.

Standards in reporting
Authors of papers based on original studies should present precise description of performed work and objective discussion on its importance. Source data should be accurately presented in the paper. The paper should contain detailed information and references that would enable others to use it. False or intentionally not true declarations are not ethical and are not accepted by the editors.

Access to and storage of data
Authors may be asked for providing raw data used in the paper for editorial assessment and should be prepared to store them within the reasonable time period after publication.

Multiple, unnecessary and competitive publications
As a rule author should not publish papers describing the same studies in more than one journal or primary publication. Submission of the same paper to more than one journal at the same time is not ethical and prohibited.

Confirmation of sources
Author should cite papers that affected the creation of submitted manuscript and every time he/she should confirm the use of other authors’ work.

Important errors in published papers
When author finds an important error or inaccuracy in his/her paper, he/she is obliged to inform Editorial Office about this as soon as possible.

Originality and plagiarism
Author may submit only original papers. He/she should be certain that the names of authors referred to in the paper and/or fragments of their texts are properly cited or mentioned.

Ghostwriting
Ghost writing/guest authorship are manifestation of scientific unreliability and all such cases will be revealed including notification of appropriate subjects. Signs of scientific unreliability, especially violation of ethical principles in science will be documented by the Editorial Office.


Duties of the Editorial Office


Editors’ duties
Editors know the rules of journal editing including the procedures applied in case of uncovering non-ethical practices.

Decisions on publication
Editor-in Chief is obliged to apply present legal status as to defamation, violation of author’s rights and plagiarism and bears the responsibility for decisions. He/she may consult thematic editors and/or referees in that matter.

Selection of referees
Editorial Office provides appropriate selection of referees and takes care about appropriate course of peer –reviewing (the review has to be substantive).

Confidentiality
Every member of editorial team is not allowed to disclose information about submitted paper to any person except its author, referees, other advisors and editors.

Discrimination
To counteract discrimination the Editorial Office obeys the legally binding rules.

Disclosure and conflict of interests
Not published papers or their fragments cannot be used in the studies of editorial team or ref-erees without written consent of the author.


Referees' duties

Editorial decisions

Referee supports Editor-in-Chief in taking editorial decisions and may also support author in improving the paper.

Back information
In case a selected referee is not able to review the paper or cannot do it in due time period, he/she should inform secretary of the Editorial Office about this fact.

Objectivity standards
Reviews should be objective. Personal criticism is inappropriate. Referees should clearly ex-press their opinions and support them with proper arguments.

Confidentiality
All reviewed papers should be dealt with as confidential. They should not be discussed or revealed to persons other than the secretary of the Editorial Office.

Anonymity
All reviews should be made anonymously and the Editorial Office does not disclose names of the authors to referees.

Disclosure and conflict of interests
Confidential information or ideas resulting from reviewing procedure should be kept secret and should not be used to gain personal benefits. Referees should not review papers, which might generate conflict of interests resulting from relationships with the author, firm or institution involved in the study.

Confirmation of sources
Referees should indicate publications which are not referred to in the paper. Any statement that the observation, source or argument was described previously should be supported by appropriate citation. Referee should also inform the secretary of the Editorial Office about significant similarity to or partial overlapping of the reviewed paper with any other published paper and about suspected plagiarism.

This page uses 'cookies'. Learn more