Details

Title

Recent advances in mode converters for a mode division multiplex transmission system

Journal title

Opto-Electronics Review

Yearbook

2021

Volume

29

Issue

1

Authors

Affiliation

Memon, Areez K. : School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China ; Chen, Kai X. : School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China

Keywords

integrated optical device ; mode converters ; mode division multiplex ; optical waveguide

Divisions of PAS

Nauki Techniczne

Coverage

13-32

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Essiambre, R. -J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010). https://doi.org/10.1109/JLT.2009.2039464
  2. CISCO: Cisco Visual Netwroking Index: Forecast and Trends, 2017–2022 White Paper.
  3. [Online]. Available at: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. (Accessed: 19th September 2020)
  4. Agrell, E. et al. Roadmap of optical communications. J. Opt. 18, 063002 (2016). http://dx.doi.org/10.1088/2040-8978/18/6/063002
  5. Tkach, R. W. Scaling optical communications for the next decade and beyond. Bell Labs Tech. J. 14, 3–10 (2010). https://doi.org/10.1002/bltj.20400
  6. Yu, J. & Zhang, J. Recent progress on high-speed optical transmission. Digit. Commun. Netw. 2, 65–76 (2016). http://doi.org/10.1016/j.dcan.2016.03.002
  7. Abbas, H. S. & Gregory, M. A. The next generation of passive optical networks: A review. J. Netw. Comput. Appl. 67, 53–74 (2016). http://dx.doi.org/10.1016/j.jnca.2016.02.015
  8. Sillard, P. Next-generation fibers for space-division-multiplexed transmissions. J. Lightwave Technol. 33, 1092–1099 (2015). https://doi.org/10.1109/JLT.2014.2371134
  9. Richardson, D., Fini, J. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013). https://doi.org/10.1038/nphoton.2013.94
  10. Klaus, W. et al. Advanced space division multiplexing technologies for optical networks. J. Opt. Commun. Netw. 9, C1–C11 (2017). https://doi.org/10.1364/JOCN.9.0000C1
  11. Nakazawa, M. Exabit optical communication explored using 3M scheme. Jap. J. Appl. Phys. 53, , 08MA01 (2014). http://dx.doi.org/10.7567/JJAP.53.08MA01
  12. Winzer, P. J. Optical networking beyond WDM. IEEE Photonics J. 4, 647–651 (2012). https://doi.org/10.1109/JPHOT.2012.2189379
  13. Chiang, K. S. Polymer optical waveguide devices for mode-division-multiplexing applications. Proc. SPIE 10242, Integrated Optics: Physics and Simulations III, 102420R (2017). https://doi.org/10.1117/12.2265275
  14. Sabitu, R., Khan, N. & Malekmohammadi, A. Recent progress in optical devices for mode division multiplex transmission system. Opto-Electron. Review 27, 252–267 (2019). https://doi.org/10.1016/j.opelre.2019.07.001
  15. Ryf, R., Fontaine, N. K., Guan, B., Huang, B. & Tkach, R. W. 305-km combined wavelength and mode-multiplexed transmission over conventional graded-index multimode fibre. in The European Conference on Optical Communication (ECOC), 1–3 (2014).
  16. Hayashi, T. et al. Six-mode 19-core fiber with 114 spatial modes for weakly-coupled mode-division-multiplexed transmission. J. Lightwave Technol. 35, 748–754 (2017). https://doi.org/10.1109/JLT.2016.2617894
  17. Soma, D. et al. 10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+ L band. J. Lightwave Technol. 36, 1362–1368 (2018). https://doi.org/10.1364/JLT.36.001362
  18. Van Uden, R. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photon. 8, 865–870 (2014). https://doi.org/10.1038/nphoton.2014.243
  19. Dai, D. X. & Bowers, J. E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics 3, 283–311 (2014). https://doi.org/10.1515/nanoph-2013-0021
  20. Luo, L. -W. et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 5, 1–7 (2014). https://doi.org/10.1038/ncomms4069
  21. Hsu, Y. et al. 2.6 Tbit/s on-chip optical interconnect supporting mode-division-multiplexing and PAM-4 signal. IEEE Photonics Technol. Lett. 30, 1052–1055 (2018). https://doi.org/10.1109/LPT.2018.2829508
  22. Zhang, W., Ghorbani, H., Shao, T. & Yao, J. On-Chip 4×10 GBaud/s Mode-Division Multiplexed PAM-4 Signal Transmission. IEEE J. Sel. Top. Quantum Electron. 26, 1–8 (2020). https://doi.org/10.1109/JSTQE.2020.2964388
  23. Huang, Y., Xu, G. & Ho, S. -T. An ultracompact optical mode order converter. IEEE Photonics Technol. Lett. 18, 2281–2283 (2006). https://doi.org/10.1109/LPT.2006.884886
  24. Oner, B., Üstün, K., Kurt, H., Okyay, A. K. & Turhan-Sayan, G. Large bandwidth mode order converter by differential waveguides. Opt. Express 23, 3186–3195 (2015). https://doi.org/10.1364/OE.23.003186
  25. Uematsu, T., Ishizaka, Y., Kawaguchi, Y., Saitoh, K. & Koshiba, M. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol. 30, 2421–2426 (2012). https://doi.org/10.1109/JLT.2012.2199961
  26. Han, L., Liang, S., Zhu, H., Qiao, L., Xu, J. & Wang, W. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt. Lett. 40, 518-521 (2015). http://dx.doi.org/10.1364/OL.40.000518
  27. Guo, F. et al. An MMI-based mode (DE) MUX by varying the waveguide thickness of the phase shifter. IEEE Photonics Technol. Lett. 28, 2443–2446 (2016). https://doi.org/10.1109/LPT.2016.2599934
  28. Chack, D., Hassan, S. & Qasim, M. Broadband and low crosstalk silicon on-chip mode converter and demultiplexer for mode division multiplexing. Appl. Opt. 59, 3652–3659 (2020). https://doi.org/10.1364/AO.390085
  29. Linh, H. D. T., Dung, T. C., Tanizawa, K., Thang, D. D. & Hung, N. T. Arbitrary TE0/TE1/TE2/TE3 Mode Converter Using 1× 4 Y-Junction and 4× 4 MMI Couplers. IEEE J. Sel. Top. Quantum Electron. 26, 1–8 (2019). https://doi.org/10.1109/JSTQE.2019.2937169
  30. González-Andrade, D. et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photonics J. 10, 1–10 (2018). https://doi.org/10.1109/JPHOT.2018.2819364
  31. Leuthold, J., Eckner, J., Gamper, E., Besse, P. A. & Melchior, H. Multimode interference couplers for the conversion and combining of Zero- and First-Order modes. J. Lightwave Technol. 16, 1228–1239 (1998). https://doi.org/10.1109/50.701401
  32. Guo, F. et al.Two-mode converters at 1.3 μm based on multimode interference couplers on InP substrates. Chin. Phys. Lett. 33, 024203 (2016). http://dx.doi.org/10.1088/0256-307X/33/2/024203
  33. Chen, H. -T. & Webb, K. J. Silicon-on-insulator irregular waveguide mode converters. Opt. Lett. 31, 2145–2147 (2006). https://doi.org/10.1364/OL.31.002145
  34. Chen, D. et al. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 23, 11152–11159 (2015). https://doi.org/10.1364/OE.23.011152
  35. Chen, Z. Y. Bridged coupler and oval mode converter based silicon mode division (de)multiplexer and Terabit WDM-MDM system demonstration. J. Lightwave Technol. 36, 2757–2766 (2018). https://dx.doi.org/10.1109/JLT.2018.2818793
  36. Zhu, D. et al. Design of compact TE-polarized mode-order converter in silicon waveguide with high refractive index material. IEEE Photonics J. 10, 1–7 (2018). https://doi.org/10.1109/JPHOT.2018.2883209
  37. Abu-Elmaaty, B. E., Sayed, M. S., Pokharel, R. K. & Shalaby, H. M. General silicon-on-insulator higher-order mode converter based on substrip dielectric waveguides. Appl. Opt. 58, 1763–1771 (2019). https://doi.org/10.1364/AO.58.001763
  38. Cheng, Z. et al. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt. Express 27, 34434–34441 (2019). https://doi.org/10.1364/OE.27.034434
  39. Ye, W., Yuan, X., Gao, Y. & Liu, J. Design of broadband silicon-waveguide mode-order converter and polarization rotator with small footprints. Opt. Express 25, 33176–33183 (2017). https://doi.org/10.1364/OE.25.033176
  40. Liu, L. et al. Design of a compact silicon-based TM-polarized mode-order converter based on shallowly etched structures. Appl. Opt. 58, 9075–9081 (2019). https://doi.org/10.1364/AO.58.009075
  41. Hao, L. et al. Efficient TE-polarized mode-order converter based on high-index-contrast polygonal slot in a silicon-on-insulator waveguide. IEEE Photonics J. 11, 1–10 (2019). https://doi.org/10.1109/JPHOT.2019.2907640
  42. Zhao, Y. et al. Ultra-compact silicon mode-order converters based on dielectric slots. Opt. Lett. 45, 3797–3800 (2020). https://doi.org/10.1364/OL.391748
  43. Jia, H. et al. Ultra-compact dual-polarization silicon mode-order converter. Opt. Lett. 44, 4179–4182 (2019). https://doi.org/10.1364/OL.44.004179
  44. Zhang, M. R., Chen, K. X., Jin, W. & Chiang, K. S. Electro-optic mode switch based on lithium-niobate Mach–Zehnder interferometer. Appl. Opt. 55, 4418–4422 (2016). https://doi.org/10.1364/AO.55.004418
  45. Hanzawa, N. et al. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission. Opt. Express 21, 25752–25760 (2013). https://doi.org/10.1364/OE.21.025752
  46. Saitoh, K. et al. PLC-based LP11 mode rotator for mode-division multiplexing transmission. Opt. Express 22, 19117–19130 (2014). https://doi.org/10.1364/OE.22.019117
  47. Hanzawa, N. et al. Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission. Opt. Express 22, 29321–29329 (2014). https://doi.org/10.1364/OE.22.029321
  48. Hanzawa, N. et al. PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip. J. Lightwave Technol. 33, 1161–1165 (2015). https://doi.org/10.1109/JLT.2014.2378281
  49. Saitoh, K. et al. PLC-based mode multi/demultiplexers for mode division multiplexing. Opt. Fiber Technol. 35, 80–92 (2017). https://doi.org/10.1016/j.yofte.2016.08.002
  50. Riesen, N., Gross, S., Love, J. D. & Withford, M. J. Femtosecond direct-written integrated mode couplers. Opt. Express 22, 29855–29861 (2014). https://doi.org/10.1364/OE.22.029855
  51. Dong, J. L., Chiang, K. S. & Jin, W. Compact three-dimensional polymer waveguide mode multiplexer. J. Lightwave Technol. 33, 4580–4588 (2015). https://doi.org/10.1109/JLT.2015.2478961
  52. Wei, F. K., Chen, K. X. & Chiang, K. S. Mode conversion with vertical polymer-waveguide directional coupler. in Asia Communication and Photonics Conference, AF1G.3 (2016). https://doi.org/10.1364/ACPC.2016.AF1G.3
  53. Huang, Q. D., Wu, Y. F., Jin, W. & Chiang, K. S. Mode multiplexer with cascaded vertical asymmetric waveguide directional couplers. J. Lightwave Technol. 36, 2903–2911 (2018). https://dx.doi.org/10.1109/JLT.2018.2829143
  54. Zhao, W. K., Chen, K. X., Wu, J. Y. & Chiang, K. S. Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing. IEEE Photonics J. 9, 1–9 (2017). https://doi.org/10.1109/JPHOT.2017.2731046
  55. Zhao, W. K., Chen, K. X. & Wu, J. Y. Broadband mode multiplexer formed with non-planar tapered directional couplers. IEEE Photonics Technol. Lett. 31, 169–172 (2018). https://doi.org/10.1109/LPT.2018.2887352
  56. Yin, M., Deng, Q., Li, Y., Wang, X. & Li, H. Compact and broadband mode multiplexer and demultiplexer based on asymmetric plasmonic–dielectric coupling. Appl. Opt. 53, 6175–6180 (2014). https://doi.org/10.1364/AO.53.006175
  57. Wang, J., Chen, P., Chen, S., Shi, Y. & Dai, D. X. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt. Express 22, 12799–12807 (2014). https://doi.org/10.1364/OE.22.012799
  58. Garcia-Rodriguez, D., Corral, J. L. Griol, A. & Llorente, R. Dimensional variation tolerant mode converter/multiplexer fabricated in SOI technology for two-mode transmission at 1550 nm. Opt. Lett. 42, 1221–1224 (2017). https://doi.org/10.1364/OL.42.001221
  59. Luo, L. -W., Gabrielli, L. H. & Lipson, M. On-chip mode-division multiplexer. in Conference on Lasers and Electro-Optics (CLEO 2013) CTh1C.6. (2013). https://doi.org/10.1364/CLEO_SI.2013. CTh1C.6
  60. Yu, Y., Ye, M. & Fu, S. On-chip polarization controlled mode converter with capability of WDM operation. IEEE Photonics Technol. Lett. 27, 1957–1960 (2015). https://doi.org/10.1109/LPT.2015.2448076
  61. Yang, Y., Chen, K. X., Jin, W. & Chiang, K. S. Widely wavelength-tunable mode converter based on polymer waveguide grating. IEEE Photonics Technol. Lett. 27, 1985–1988 (2015). https://doi.org/10.1109/LPT.2015.2448793
  62. Jin, W. & Chiang, K. S. Mode converter with sidewall-corrugated polymer waveguide grating. in Opto-Electronics Communication Conference (OECC2015), 1–3 (2015). https://doi.org/10.1109/OECC.2015.7340081
  63. Jin, W. & Chiang, K. S. Mode converters based on cascaded long-period waveguide gratings. Opt. Lett. 41, 3130–3133 (2016). https://doi.org/10.1364/OL.41.003130
  64. Wang, W., Wu, J. Y., Chen, K. X., Jin, W. & Chiang, K. S. Ultra-broadband mode converters based on length-apodized long-period waveguide gratings. Opt. Express 25, 14341–14350 (2017). https://doi.org/10.1364/OE.25.014341
  65. Zhao, W. K., Chen, K. X. & Wu, J. Y. Ultra-short embedded long-period waveguide grating for broadband mode conversion. App. Phys. B 125, 177 (2019). https://doi.org/10.1007/s00340-019-7290-0
  66. Jin, W. & Chiang, K. S. Three-dimensional long-period waveguide gratings for mode-division-multiplexing applications. Opt. Express 26, 15289–15299 (2018). https://doi.org/10.1364/OE.26.015289
  67. Castro, J. M. et al. Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings. Opt. Express 13, 4180–4184 (2005). https://doi.org/10.1364/OPEX.13.004180
  68. Xiao, R. et al. On-chip mode converter based on two cascaded Bragg gratings. Opt. Express 27, 1941–1957 (2019). https://doi.org/10.1364/OE.27.001941
  69. Wang, H. et al. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv. Opt. Mater. 7, 1801191 (2019). https://doi.org/10.1002/adom.201801191
  70. Ohana, D. & Levy, U. Mode conversion based on dielectric metamaterial in silicon. Opt. Express 22, 27617–27631 (2014). https://doi.org/10.1364/OE.22.027617
  71. Ohana, D., Desiatov, B., Mazurski, N. & Levy, U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956–7961 (2016). https://doi.org/10.1021/acs.nanolett.6b04264
  72. Qiu, H. et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt. Express 21, 17904–17911 (2013). https://doi.org/10.1364/OE.21.017904
  73. Zhao, W. K., Feng, J., Chen, K. X. & Chiang, K. S. Reconfigurable broadband mode (de) multiplexer based on an integrated thermally induced long-period grating and asymmetric Y-junction. Opt. Lett. 43, 2082–2085 (2018). https://doi.org/10.1364/OL.43.002082
  74. Zi, X. Z., Wang, L. F., Chen, K. X. & Chiang, K. S. Mode-selective switch based on thermo-optic asymmetric directional coupler. IEEE Photonics Technol. Lett. 30, 618–621 (2018). https://doi.org/10.1109/LPT.2018.2808466
  75. Jin, W. & Chiang, K. S. Mode switch based on electro-optic long-period waveguide grating in lithium niobate. Opt. Lett. 40, 237–240 (2015). https://doi.org/10.1364/OL.40.000237
  76. Jin, W. & Chiang, K. S. Reconfigurable three-mode converter based on cascaded electro-optic long-period gratings. IEEE J. Sel. Top. Quantum Electron. 26, 1–6 (2020). https://doi.org/10.1109/JSTQE.2020.2969568
  77. Zhang, M. R., Ai, W., Chen, K. X., Jin, W. & Chiang, K. S. A lithium-niobate waveguide directional coupler for switchable mode multiplexing. IEEE Photonics Technol. Lett. 30, 1764–1767 (2018). https://doi.org/10.1109/LPT.2018.2868834
  78. Lee, B. -T. & Shin, S. -Y. Mode-order converter in a multimode waveguide. Opt. Lett. 28, 1660–1662 (2003). https://doi.org/10.1364/OL.28.001660
  79. Low, A. L., Yong, Y. S., You, A. H., Chien, S. F. & Teo, C. F. A five-order mode converter for multimode waveguide. IEEE Photonics Technol. Lett. 16, 1673–1675 (2004). https://doi.org/10.1109/LPT.2004.828512
  80. Riesen, N. & Love, J. D. Design of mode-sorting asymmetric Y-junctions. App. Opt. 51, 2778–2783 (2012). https://doi.org/10.1364/AO.51.002778
  81. Driscoll, J. B. et al. .Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett. 38, 1854–1856 (2013). https://doi.org/10.1364/OL.38.001854
  82. Feng, J., Chen, K. X., Ren, K. Y. & Chiang, K. S. Mode (de) multiplexer based on polymer-waveguide asymmetric Y-junction. in Asia Communication and Photonics Conference AF1G.5 (2016). https://doi.org/10.1364/ACPC.2016.AF1G.5
  83. Chen, W. W. et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions. Opt. Lett. 41, 2851–2854 (2016). https://doi.org/10.1364/OL.41.002851
  84. Fujisawa, T. et al. Scrambling-type three-mode PLC multiplexer based on cascaded Y-branch waveguide with integrated mode rotator. J. Lightwave Technol. 36, 1985–1992 (2018). https://doi.org/10.1109/JLT.2018.2798619
  85. Gao, Y. et al. Compact six-mode (de) multiplexer based on cascaded asymmetric Y-junctions with mode rotators. Opt. Commun. 451, 41–45 (2019). https://dx.doi.org/10.1016/j.optcom.2019.06.010
  86. Watanabe, T. & Kokubun, Y. Demonstration of mode-evolutional multiplexer for few-mode fibers using stacked polymer waveguide. IEEE Photonics J. 7, 1–11 (2015). https://doi.org/10.1109/JPHOT.2015.2497234
  87. Dai, D. X., Tang, Y. B. & Bowers, J. E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express 20, 13425–13439 (2012). https://doi.org/10.1364/OE.20.013425
  88. Dai, D. X. & Mao, M. Mode converter based on an inverse taper for multimode silicon Nanophotonicsic integrated circuits Opt. Express 23, 28376–28388 (2015). https://doi.org/10.1364/OE.23.028376

Date

29.03.2021

Type

Reviews

Identifier

DOI: 10.24425/opelre.2021.135825

Source

Opto-Electronics Review; 2021; 29; 1; 13-32
×