Measurement of sensitivity of solar blind UV cameras to solar light

Journal title

Opto-Electronics Review








Chrzanowski, Krzysztof : Military University of Technology, Institute of Optoelectronics, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland ; Chrzanowski, Krzysztof : INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland ; Safiej, Bolesław : INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland



solar sensitivity ; SBUV cameras ; solar blind UV cameras ; UV cameras sensitivity ; corona discharge detection

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences and Association of Polish Electrical Engineers in cooperation with Military University of Technology


  1. UViRCO Technologies. (2020)
  2. OFIL Systems - Daytime Corona Cameras. (2020)
  3. Zhejiang ULIRVISION Technology Co., LTD. (2020)
  4. Olip Systems Inc. (2020)
  5. Sonel S.A. - Przyrządy pomiarowe, kamery termowizyjne. (2020)
  6. ICI Infrared Cameras Inc. (2020)
  7. Chrzanowski, K. & Chrzanowski, W. Analysis of a blackbody irradiance method of measurement of solar blind UV cameras’ sensitivity. Opto-Electron. Rev. 27, 378–384 (2019).
  8. Cheng, H. et al. Performance characteristics of solar blind UV image intensifier tube. in Proc. SPIE – International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Imaging Detectors and Applications 7384 (2009).
  9. Coetzer, C., West, N., Swart, A. & van Tonder, A. An investigation into an appropriate optical calibration source for a corona camera. in IEEE International SAUPEC/RobMech/PRASA Conference 1–5 (2020).
  10. Coetzer, C. et al. Status quo and aspects to consider with ultraviolet optical versus high voltage energy relation investigations. in Proc. SPIE – Fifth Conference on Sensors, MEMS, and Electro-Optic Systems 11043, 1104317 (2019).
  11. Du Toit, N. S. Calibration of UV-sensitive camera for corona detection. (Stellenbosch University, South Africa, 2007).
  12. Pissulla, D. et al. Comparison of atmospheric spectral radiance measurements from five independently calibrated systems. Photochem. Photobiol. Sci. 8, 516–527 (2009).
  13. Clack, C. T. M. Modeling solar irradiance and solar PV power output to create a resource assessment using linear multiple multivariate regression. J. Appl. Meteorol. Climatol. 56, 109–125 (2017).
  14. G03 Committee. Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface.
  15. Tohsing, K., Klomkliang, W., Masiri, I. & Janjai, S. An investigation of sky radiance from the measurement at a tropical site. in AIP Conference Proceedings 1810, 080006 (2017).
  16. Chen, H.-W. & Cheng, K.-S. A conceptual model of surface reflectance estimation for satellite remote sensing images using in situ reference data. Remote Sens. 4, 934–949 (2012).
  17. Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71, 325–346 (2001).
  18. Gueymard, C. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Professional Paper FSEC-PF-270-95. (Florida Solar Energy Center, 1995)
  19. Gueymard, C. A. Reference solar spectra: Their evolution, standard- ization issues, and comparison to recent measurements. Adv. Space Res. 37, 323–340 (2006).
  20. TOMS Meteor-3 Total Ozone UV-Reflectivity Daily L3 Global 1 deg x 1.25 deg V008, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), TOMS Science Team, (2021)
  21. SMARTS: Simple Model of the Atmospheric Radiative Transfer of Sunshine. National Renewable Energy Laboratory. (2020)
  22. Cooper, O. R. et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anth. 2, 000029 (2014).
  23. Riordan, C. & Hulstron, R. What is an air mass 1.5 spectrum? (solar cell performance calculations). in IEEE Conference on Photovoltaic Specialists (1990).
  24. Wikipedia contributors. Air mass (solar energy). Wikipedia. (2020)
  25. Ritter, M. E. The Physical Environment: an Introduction to Physical Geography. (2020)
  26. NOAA Research. NOAA Solar Position Calculator. (2020)
  27. Global Solar Atlas. (2020)
  28. Blanc, P. et al. Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy 110, 561–577 (2014).
  29. Class ABB Small Area Solar Simulators. Newport Corporation. (2020)
  30. Dai, C., Wu, Z., Qi, X., Ye, J. & Chen, B. Traceability of spectro- radiometric measurements of multiport UV solar simulators. in Proc. SPIE - International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Appli- cations 8910, 8910-2 (2013).
  31. Christiaens, F. & Uhlmann, B. Guidelines for Monitoring UV Radiation Sources. (COLIPA, 2007)
  32. Qualitätsmanagement-Handbuch, Abteilung 7, Physikalisch-Tech- nische Bundesanstalt (PTB), ng_7/QMH_Abt7_KAP3_1_A16_a.pdf (2020). [in German]






DOI: 10.24425/opelre.2021.135828


Opto-Electronics Review; 2021; 29; 2; 45-58