Details

Title

Analysis of steel industrial portal frame building subjected to loads resulting from land surface uplift following the closure of underground mines

Journal title

Archives of Civil Engineering

Yearbook

2021

Volume

vol. 67

Issue

No 3

Authors

Keywords

mine closure ; mine flooding ; uplift ; numerical modelling ; industrial portal frame hall ; mining damages

Divisions of PAS

Nauki Techniczne

Coverage

283-298

Publisher

WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCES

Bibliography


[1] M. Kawulok, "Mining damages in construction". Warszawa: Instytut Techniki Budowlanej, 2010. (in Polish)
[2] J. Kwiatek, "Civil structures in mining areas". Katowice: Główny Instytut Górnictwa, 2006. (in Polish)
[3] J. A. Ledwoń, "Civil engineering in mining areas". Warszawa: Arkady, 1983. (in Polish)
[4] K. Tajdus, “Numerical simulation of underground mining exploitation influence upon terrain surface,” Arch. Min. Sci., vol. 58, no. 3, 2013, https:/doi.org/10.2478/amsc-2013-0042
[5] K. Tajduś, R. Misa, and A. Sroka, “Analysis of the surface horizontal displacement changes due to longwall panel advance,” Int. J. Rock Mech. Min. Sci., vol. 104, 2018, https://doi.org/10.1016/j.ijrmms.2018.02.005
[6] A. Saeidi, O. Deck, M. Al heib, and T. Verdel, “Development of a damage simulator for the probabilistic assessment of building vulnerability in subsidence areas,” Int. J. Rock Mech. Min. Sci., vol. 73, pp. 42–53, Jan. 2015, doi: https://doi.org/10.1016/j.ijrmms.2014.10.007
[7] A. Sroka, S. Knothe, K. Tajduś, and R. Misa, “Point Movement Trace Vs. The Range Of Mining Exploitation Effects In The Rock Mass,” Arch. Min. Sci., vol. 60, no. 4, 2015, doi: https://doi.org/10.1515/amsc-2015-0060
[8] A. Misa Rafałand Sroka, K. Tajduś, and M. Dudek, “Analytical design of selected geotechnical solutions which protect civil structures from the effects of underground mining,” J. Sustain. Min., 2019, doi: https://doi.org/10.1016/j.jsm.2018.10.002
[9] L. Szojda and Ł. Kapusta, “Evaluation of the Elastic Model of a Building on a Curved Mining Ground Based on the Results of Geodetic Monitoring,” Arch. Min. Sci., vol. 65, no. No 2, pp. 213–224, 2020, doi: https://doi.org/10.24425/ams.2020.133188
[10] I. Djamaluddin, Y. Mitani, and T. Esaki, “Evaluation of ground movement and damage to structures from Chinese coal mining using a new GIS coupling model,” Int. J. Rock Mech. Min. Sci., vol. 48, no. 3, pp. 380–393, Apr. 2011, doi: https://doi.org/10.1016/j.ijrmms.2011.01.004
[11] C. Braitenberg, T. Pivetta, D. F. Barbolla, F. Gabrovšek, R. Devoti, and I. Nagy, “Terrain uplift due to natural hydrologic overpressure in karstic conduits,” Sci. Rep., vol. 9, no. 1, p. 3934, Dec. 2019, doi: https://doi.org/10.1038/s41598-019-38814-1
[12] N. Fowkes et al., “Models for the effect of rising water in abandoned mines on seismic activity,” Int. J. Rock Mech. Min. Sci., vol. 77, pp. 246–256, Jul. 2015, doi: https://doi.org/10.1016/j.ijrmms.2015.04.011
[13] G. Strozik, R. Jendruś, A. Manowska, and M. Popczyk, “Mine Subsidence as a Post-Mining Effect in the Upper Silesia Coal Basin,” Polish J. Environ. Stud., vol. 25, no. 2, pp. 777–785, 2016, doi: https://doi.org/10.15244/pjoes/61117
[14] K. Heitfeld, M. Heitfeld, P. Rosner, and H. Sahl, “The controlled rise in mine water in the Aachen and Sud Limburg coalfields” in 5. Aachener Bergschandemkundliches Kolloquium, 2003, pp. 71–85. (in German)
[15] A. Jakubick, U. Jenk, and R. Kahnt, “Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigstein mine, Germany,” Environ. Geol., vol. 42, no. 2–3, pp. 222–234, Jun. 2002, doi: https://doi.org/10.1007/s00254-001-0492-9
[16] A. Krzemień, A. Suárez Sánchez, P. Riesgo Fernández, K. Zimmermann, and F. González Coto, “Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management,” J. Clean. Prod., vol. 139, pp. 1044–1056, Dec. 2016, doi: https://doi.org/10.1016/j.jclepro.2016.08.149
[17] A. Sroka, K. Tajduś, and R. Misa, “Expert opinion on the impact of the rise in mine water in the eastern field of the Ibbenbüren mine on the land surface”, 2017. (in German)
[18] “Management of environmental risks during and after mine closure (acronym: MERIDA), Contract No. RFCR-CT-2015-00004,” 2020.
[19] P. Riesgo Fernández, G. Rodríguez Granda, A. Krzemień, S. García Cortés, and G. Fidalgo Valverde, “Subsidence versus natural landslides when dealing with property damage liabilities in underground coal mines,” Int. J. Rock Mech. Min. Sci., vol. 126, p. 104175, Feb. 2020, doi: https://doi.org/10.1016/j.ijrmms.2019.104175
[20] A. Vervoort, “Surface movement above an underground coal longwall mine after closure,” Nat. Hazards Earth Syst. Sci., vol. 16, no. 9, pp. 2107–2121, Sep. 2016, doi: https://doi.org/10.5194/nhess-16-2107-2016
[21] M. Dudek, K. Tajduś, R. Misa, and A. Sroka, “Predicting of land surface uplift caused by the flooding of underground coal mines – A case study,” Int. J. Rock Mech. Min. Sci., vol. 132, pp. 104–377, Aug. 2020, doi: https://doi.org/10.1016/j.ijrmms.2020.104377
[22] A. Preuβe, H. J. Kateloe, and A. Sroka, “Subsidence and uplift prediction in German and Polish hard coal mining,” Markscheidewesen, vol. 120, pp. 23–34, 2013.
[23] A. Vervoort and P.-Y. Declercq, “Surface movement above old coal longwalls after mine closure,” Int. J. Min. Sci. Technol., vol. 27, no. 3, pp. 481–490, May 2017, doi: https://doi.org/10.1016/j.ijmst.2017.03.007
[24] A. Vervoort and P.-Y. Declercq, “Upward surface movement above deep coal mines after closure and flooding of underground workings,” Int. J. Min. Sci. Technol., vol. 28, no. 1, pp. 53–59, Jan. 2018, doi: https://doi.org/10.1016/j.ijmst.2017.11.008
[25] M. Wesołowski, R. Mielimąka, R. Jendruś, and M. Popczyk, “Influence Analysis of Mine Flooding from the Environmental Standpoint: Surface Protection,” Polish J. Environ. Stud., vol. 27, no. 2, pp. 905–915, Jan. 2018, https://doi.org/doi: 10.15244/pjoes/76114
[26] V. Baglikow, “Damage-relevant effects of the rise in mine water in the Erkelenz hard coal district. Publication series Institute for Mining Surveying,” Rheinisch- Westfälischen Technischen Hochschule Aachen, 2010. (in German)
[27] K. Firek, J. Rusek, and A. Wodyński, “Decision Trees in the Analysis of the Intensity of Damage to Portal Frame Buildings in Mining Areas,” Arch. Min. Sci., vol. 60, no. 3, 2015, doi: https://doi.org/10.1515/amsc-2015-0055
[28] A. Cholewicki, M. Kawulok, Z. Lipski, and J. Szulc, Principles for determining loads and checking the limit states of civil structures located in mining areas with reference to the Eurocodes. Design according to Eurocodes. Warszawa: Instytut Techniki Budowlanej, 2012. (in Polish)
[29] EN 1990:2004 Eurocode - Basis of structural design
[30] Autodesk, “Robot Structural Analysis Professional.” 2020.
[31] EN 1991-1-3. Eurocode 1: Actions on structures - Part 1–3: General actions – Snow loads
[32] EN 1991-1-4. Eurocode 1: Actions on structures - Part 1–3: General actions – Wind loads

Date

2021.09.08

Type

Article

Identifier

DOI: 10.24425/ace.2021.138056
×