Details

Title

3D Finite element model of a blast load in a tunnel

Journal title

Archives of Civil Engineering

Yearbook

2021

Volume

vol. 67

Issue

No 4

Affiliation

Leonardi, Giovanni : Department of Civil, Energy, Environmental and Materials Engineering, University of Reggio Calabria, Via Graziella, Reggio Calabria, Italy ; Palamara, Rocco : Department of Civil, Energy, Environmental and Materials Engineering, University of Reggio Calabria, Via Graziella, Reggio Calabria, Italy ; Suraci, Federica : Department of Civil, Energy, Environmental and Materials Engineering, University of Reggio Calabria, Via Graziella, Reggio Calabria, Italy

Authors

Keywords

tunnel ; explosion ; blast ; finite element analysis

Divisions of PAS

Nauki Techniczne

Coverage

91-105

Publisher

WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCES

Bibliography

[1] F. Cirianni, G. Leonardi, and F. Scopelliti, “A methodology for assessing the seismic vulnerability of highway systems”, in: AIP Conference Proceedings, vol. 1020, no. 1, American Institute of Physics, pp. 864–871, 2008, DOI: 10.1063/1.2963925.
[2] J. Liu, Q. Yan, and J.Wu, “Analysis of blast wave propagation inside tunnel”, Transactions of Tianjin University, vol. 14, no. 5, pp. 358–362, 2008, DOI: 10.1007/s12209-008-0061-3.
[3] A. Van den Berg, and J. Weerheijm, “Blast phenomena in urban tunnel systems”, Journal of Loss Prevention in the Process Industries, vol. 19, no. 6, pp. 598–603, 2006, DOI: 10.1016/j.jlp.2006.03.001.
[4] D.B. Chang and C.S. Young, “Probabilistic estimates of vulnerability to explosive overpressures and impulses”, Journal of Physical Security, vol. 4, no. 2, pp. 10–29, 2010.
[5] M. Buonsanti, G. Leonardi, and F. Scopelliti, “3-D Simulation of shock waves generated by dense explosive in shell structures”, Procedia Engineering, vol. 10, pp. 1554–1559, 2011, DOI: 10.1016/j.proeng.2011.04.259.
[6] M. Buonsanti and G. Leonardi, “3-D simulation of tunnel structures under blast loading”, Archives of Civil and Mechanical Engineering, vol. 13, no. 1, pp. 128–134, 2013, DOI: 10.1016/j.acme.2012.09.002.
[7] ABAQUS Inc., ABAQUS Example Manual, 2014.
[8] ABAQUS Inc., ABAQUS Theory Manual, 2014.
[9] ABAQUS Inc., ABAQUS Analysis Manual, 2014.
[10] M.Nawar et al., “Numerical analysis of underground tunnels subjected to surface blast loads”, Frattura ed Integrità Strutturale, vol. 15, no. 55, pp. 159–173, 2020, DOI: 10.3221/IGF-ESIS.55.12.
[11] T. Lie and V. Kodur, “Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures”, Canadian Journal of Civil Engineering, vol. 23, no. 2, pp. 511–517, 1996, DOI: 10.1139/l96-055.
[12] M.G. Van Geem, J. Gajda, and K. Dombrowski, “Thermal properties of commercially available high-strength concretes”, Cement, Concrete and Aggregates, vol. 19, no. 1, pp. 38–54, 1997, DOI: 10.1520/cca10020j.
[13] V. Kodur and M. Sultan, “Effect of temperature on thermal properties of high-strength concrete”, Journal of Materials in Civil Engineering, vol. 15, no. 2, pp. 101–107, 2003, DOI: 10.1061/(ASCE)0899-1561(2003)15:2(101).
[14] V.K. Kodur, M. Dwaikat, and M. Dwaikat, “High-temperature properties of concrete for fire resistance modeling of structures”, ACI Materials Journal, vol. 105, no. 5, p. 517, 2008.
[15] L. Guo, L. Guo, L. Zhong, and Y. Zhu, “Thermal conductivity and heat transfer coefficient of concrete”, Journal of Wuhan University of Technology, Materials Science Edition, vol. 26, no. 4, pp. 791–796, 2011, DOI: 10.1007/s11595-011-0312-3.
[16] V. Kodur, “Properties of concrete at elevated temperatures”, International Scholarly Research Notices, vol. 2014, 2014, DOI: 10.1155/2014/468510.
[17] European Committee, “Eurocode2: Design of concrete structures-Part 1-2: General rules-Structural fire design”, ENV 1992-1-2, 1995.
[18] J. Zehfuß et al., “Evaluation of Eurocode 2 approaches for thermal conductivity of concrete in case of fire”, Civil Engineering Design, vol. 2, no. 3, pp. 58–71, 2020.
[19] UNI 9502:2001 – Analytical fire resistance assessment of reinforced concrete and prestressed concrete structural elements, UNI – Ente Nazionale Italiano di Unificazione, Milano, Italy, 2001.
[20] T. Jankowiak and T. Lodygowski, “Identification of parameters of concrete damage plasticity constitutive model”, Foundations of civil and environmental engineering, vol. 6, no. 1, pp. 53–69, 2005.
[21] J.S. Tyau, “Finite element modeling of reinforced concrete using 3-dimensional solid elements with discrete rebar”, (Master of Science), Brigham Young University, 2009.
[22] Y. Dere and M.A. Koroglu, “Nonlinear FE modeling of reinforced concrete”, International Journal of Structural and Civil Engineering Research, vol. 6, no. 1, pp. 71–74, 2017.
[23] F. Lo Monte, N. Kalaba, and P. Bamonte, “On the extension of a plastic-damage model to high temperature and fire”, in IFireSS 2017-2nd International Fire Safety Symposium, Doppiavoce, pp. 703–710, 2017.
[24] N. Wahid, T. Stratford, and L. Bisby, “Calibration of concrete damage plasticity model parameters for high temperature modelling of reinforced concrete flat slabs in fire”, Applications of Structural Fire Engineering, Singapore, 2019.
[25] A.S. Genikomsou and M.A. Polak, “Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS”, Engineering Structures, vol. 98, pp. 38–48, 2015, DOI: 10.1016/j.engstruct. 2015.04.016.
[26] Forschungsgesellschaft für Straßen – und Verkehrswesen, Richtlinien für Ausstattung und Betrieb von Tunneln (RABT). Ausgabe, 1985.
[27] M. Masellis, “Fire disaster in a motorway tunnel”, Annals of Burns and Fire Disasters, vol. 10, no. 4, pp. 233–240, 1997.
[28] R.J. Proctor, “The San Fernando Tunnel explosion, California”, Engineering Geology, vol. 67, no. 1–2, pp. 1–3, 2002.
[29] S. Brambilla and D. Manca, “The viareggio LPG railway accident: event reconstruction and modelling”, Journal of Hazardous Materials, vol. 182, no. 1–3, pp. 346–357, 2010, DOI: 10.1016/j.jhazmat.2010.06.039.
[30] H. Ingason, Y.Z. Li, and A. Lönnermark, “Runehamar tunnel fire tests”, Fire Safety Journal, vol. 71, pp. 134–149, 2015.
[31] Instituut TNO voor Bouwmaterialen en Bouwconstructies, Rapport betreffende de beproeving van het gedrag van twee isolatiematerialenter bescherming van tunnels tegen brand (Rapport B-80-33). Delft, The Netherlands, 1980.
[32] B. Hemmatian, E. Planas, and J. Casal, “Fire as a primary event of accident domino sequences: the case of BLEVE”, Reliability Engineering and System Safety, vol. 139, pp. 141–148, 2015, DOI: 10.1016/j.ress.2015. 03.021.
[33] K.J. Root, “Development and verification of a confined discretized solid flame model for calculating heat flux on concrete tunnel liners”, 2018.
[34] H.R.Weibull, “Pressures recorded in partially closed chambers at explosion of TNT charges”, NYASA, vol. 152, no. 1, pp. 357–361, 1968, DOI: 10.1111/j.1749-6632.1968.tb11987.x.
[35] D.R. Curran, “Underground storage of ammunition: experiments concerning accidental detonation in an underground chamber”, Norwegian Defence Construction Service, 1966.
[36] A.C. Smith and M.J. Sapko, “Detonation wave propagation in underground mine entries”, Journal of the Mine Ventilation Society of South Africa, vol. 58, pp. 20–25, 2005.
[37] M. Silvestrini, B. Genova, and F. Leon Trujillo, “Energy concentration factor. A simple concept for the prediction of blast propagation in partially confined geometries”, Journal of Loss Prevention in the Process Industries, vol. 22, no. 4, pp. 449–454, 2009, DOI: 10.1016/j.jlp.2009.02.018.
[38] Center for chemical process safety, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires and BLEVEs. American Institute of Chemical Engineers, 1994.
[39] J. Casal and J. M. Salla, “Using liquid superheating energy for a quick estimation of overpressure in BLEVEs and similar explosions”, Journal of Hazardous Materials, vol. 137, no. 3, pp. 1321–1327, 2006, DOI: 10.1016/ j.jhazmat.2006.05.001.
[40] B. Genova, M. Silvestrini, and F. L. Trujillo, “Evaluation of the blast-wave overpressure and fragments initial velocity for a BLEVE event via empirical correlations derived by a simplified model of released energy”, Journal of Loss Prevention in the Process Industries, vol. 21, no. 1, pp. 110–117, 2008, DOI: 10.1016/j.jlp.2007.11.004.
[41] S. Koneshwaran, “Blast response and sensitivity analysis of segmental tunnel”, PhD Thesis, Queensland University of Technology, 2014.
[42] R. Tiwari, T. Chakraborty, and V. Matsagar, “Dynamic analysis of underground tunnels subjected to internal blast loading”, World Congress of Computational Mechanics (WCCM XI), Barcelona. 2014.
[43] S. Koneshwaran, D. Thambiratnam, and C. Gallage, “Performance of buried tunnels subjected to surface blast incorporating fluid-structure interaction”, Journal of Performance of Constructed Facilities, 2015, DOI: 10.1061/ (ASCE)CF.1943-5509.0000585.
[44] M. Zaid and R. Sadique, “The response of rock tunnel when subjected to blast loading: finite element analysis”, Engineering Reports, 2021.
[45] D. Hyde, “CONWEP, Conventional Weapons Effects Program”, US Army Engineer Waterways Experiment Station, Vicksburg, MS, 1992.

Date

2021.12.30

Type

Article

Identifier

DOI: 10.24425/ace.2021.138488
×