Details
Title
Design and analytical calculations of the width and arrangement of quantum well and barrier layers in GaN/AlGaN LED to enhance the performanceJournal title
Opto-Electronics ReviewYearbook
2021Volume
29Issue
4Authors
Affiliation
Sharma, Lokesh : Department of Electronics and Communication Engineering, Malaviya, National Institute of Technology, Jaipur, Rajasthan 302017, India ; Sharma, Ritu : Department of Electronics and Communication Engineering, Malaviya, National Institute of Technology, Jaipur, Rajasthan 302017, IndiaKeywords
barrier ; multi-quantum well ; light emitting diode ; power efficiency ; quantum wellDivisions of PAS
Nauki TechniczneCoverage
141-147Publisher
Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of TechnologyBibliography
- Lenk, R. & Lenk, C. Practical Lighting Design with LEDs. (2nd. ed.) (John Wiley & Sons, Ltd., 2017).
- , S. M. & Kwok, K. Ng, Physics of Semiconductor Devices. (4th ed.) (Wiley-Interscience, 2006).
- Van Zeghbroeck, B. Principles Of Semiconductor Devices. (Prentice-Hall, 2006).
- Schulte-Römer, N., Meier, J., Söding, M. & Dannemann, E. The LED paradox: how light pollution challenges experts to reconsider sustainable lighting. Sustainability 11, 6160 (2019). https://doi.org/10.3390/su11216160
- Sharma, L, & Sharma, R. Optimized design of narrow spectral linewidth nonpolar m-plane InGaN/GaN micro-scale light-emitting diode. J. Opt. 49, 397–402 (2020). https://doi.org/10.1007/s12596-020-00632-4
- Rashidi, A. et al. High-speed nonpolar InGaN/GaN LEDs for visible-light communication. IEEE Photonics Technol. Lett. 29, 381–384 (2017). https://doi.org/10.1109/LPT.2017.2650681
- Shi, J. et al. III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communicatio. IEEE Electron. Device Lett. 37, 894–897 (2016). https://doi.org/10.1109/LED.2016.2573265
- Gong, M. et al. Semi-polar (20–21) InGaN/GaN multiple quantum wells grown on patterned sapphire substrate with internal quantum efficiency up to 52 percent. Appl. Phys. Express. 13, 091002 (2020). https://doi.org/10.35848/1882-0786/abac91
- Rouet-Leduc, B., Barros, K., Lookman, T. & Humphreys, C. J. Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning. Sci. Rep. 6, 24862 (2016). https://doi.org/10.1038/srep24862
- Piprek, J. Simulation-based machine learning for optoelectronic device design: perspectives, problems, and prospects. Opt. Quantum Electron. 53, 175 (2021). https://doi.org/10.1007/s11082-021-02837-8
- Usman, M., Munsif, M. & Abdur-Rehman, A., High internal quantum efficiency of green GaN-based light-emitting diodes by thickness-graded last well/last B and composition-graded electron blocking layer Opt. Quantum Electron. 52, 320 (2020). https://doi.org/10.1007/s11082-020-02436-z
- Song, K., Mohseni, M. & Taghipour, F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection. Water Res. 94, 341–349 (2016). https://doi.org/10.1016/j.watres.2016.03.003
- Liao, Ch.-L. et al. High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer. IEEE Electron. Device Lett. 34, 611–613 (2013). https://doi.org/10.1109/LED.2013.2252457
- Quan, Z. et al. High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes. IEEE Photon. J. 8, (2016). https://doi.org/10.1109/JPHOT.2016.2596245
- Shi, J.-W. et al. III-nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication. IEEE Electron. Device Lett. 37, 894–897 (2016). https://doi.org/10.1109/LED.2016.2573265