Science and earth science

Polish Polar Research


Polish Polar Research | 2021 | vol. 42 | No 4 |

Download PDF Download RIS Download Bibtex


Seasonal variations of the isotopic and chemical compositions of snowpits can provide useful tools for dating the age of the snowpit and examining the sources of aerosol. Based on the seasonal layers with D and 18O maxima and minima, it was determined that the snowpit, conducted in the vicinity of the Jang Bogo Station in Antarctica, contained snow deposited over a three-year period (2008–2010). Distinct seasonal variations of stable water isotopes were observed, with a slope of 8.2 from the linear isotopic relationship between oxygen and hydrogen, which indicates that the snow accumulated during three years without a significant post-depositional process. The positive correlations (r > 0.85) between Na+ and other ions in the winter period and the positive relationship the concentrations of the methanesulphonic acid (MSA) and non-sea salt sulfate (nssSO42–) in the warm period (r = 0.6, spring to summer) indicate the significant contributions of an oceanic source to the snowpit. Based on principal component analysis, the isotopic and chemical variables were classified into species representing input of sea-salt aerosol and suggesting potential seasonal markers. This study will support further investigations using ice cores in this region.
Go to article


ABRAM N.J., MULVANEY R., WOLFF E.W. and MUDELSEE M. 2007. Ice core records as sea ice proxies: an evaluation from the Weddell Sea region of Antarctica. Journal of Geophysical Research-Atmospheres 112: D15101.

ARNDT S. and PAUL S. 2018. Variability of winter snow properties on different spatial scales in the Weddell Sea. Journal of Geophysical Research-Oceans 123: 8862–8876.

AYLING B.F. and MCGOWAN H.A. 2006. Niveo-eolian sediment deposits in coastal South Victoria Land, Antarctica: Indicators of regional variability in weatherand climate. Arctic, Antarctic, and Alpine Research 38: 313–324.

BECAGLI S., SCARCHILLI C., TRAVERSI R., DAYAN U., SEVERI M., FROSINI D., VITALE V., MAZZOLA M., LUPI A., NAVA S. and UDISTI R. 2012. Study of present-day sources and transport processes affecting oxidized sulphur compounds in atmospheric aerosols at Dome C (Antarctica) from year-round sampling campaigns. Atmospheric Environment 52: 98–108.

BECAGLI S., LAZZARA L., MARCHESE C., DAYAN U., ASCANIUS S.E., CACCIANI M., CAIAZZO L., DI BIAGIO C., DI IORIO T., DI SARRA A., ERIKSEN P., FANI F., GIARDI F., MELONI D., MUSCARI G., PACE G., SEVERI M., TRAVERSI R. and UDISTI R. 2016. Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic. Atmospheric Environment 136: 1–15.

BENASSAI, S., BECAGLI, S., GRAGNANI, R., MAGAND, O., PROPOSITO, M., FATTORI, I. and UDISTI R. 2005. Sea-spray deposition in Antarctic coastal and plateau areas from ITASE traverses. Annals of Glaciology 41: 32–40.

CAIAZZO L., BACCOLO G., BARBANTE C., BECAGLI S., BERTO M., CIARDINI V., CROTTI V., DELMONTE B., DREOSSI G., FREZZOTTI M., GABRIELI J., GIARDI F., HAN Y., HONG S.B., HUR S.D., HWANG H., KANG J.H., NARCISI B., PROPOSITO M., SCARCHILLI C., SELMO E., SEVERI M., SPOLAOR A., STENNI B., TRAVERSI R. and UDISTI R. 2017. Prominent features in isotopic, chemical and dust stratigraphies from coastal East Antarctic ice sheet (Eastern Wilkes Land). Chemosphere 176: 273–287.

CASADO M., LANDAIS A., PICARD G., MÜNCH T., LAEPPLE T., STENNI B., DREOSSI, G., EKAYKIN A., ARNAUD L., GENTHON C., TOUZEAU A., MASSON-DELMOTTE V. and JOUZEL J. 2018. Archival processes of the water stable isotope signal in East Antarctic ice cores. The Cryosphere 12: 1745–1766.

COLE-DAI J., MOSLEY-THOMPSON E. and QIN D. 1999. Evidence of the 1991 Pinatubo volcanic eruption in South Polar snow. Chinese Science Bulletin 44:756–760.

DANSGAARD W. 1964. Stable isotopes in precipitation. Tellus 16: 436–468.

DELMAS R.J., KIRCHNER S., PALAIS J.M. and PETIT J.R. 1992. 1000 years of explosive volcanism recorded at the South Pole. Tellus B 44: 335–350.

DELMOTTE M., MASSON V., JOUZEL J. and MORGAN V.I. 2000. A seasonal deuterium excess signal at Law Dome, coastal eastern Antarctica: A Southern Ocean signature. Journal of Geophysical Research-Atmospheres 105: 7187–7197.

DIXON D., MAYEWSKI P., KASPARI S., SNEED S. and HANDLEY M. 2004. A 200 year sub-annual record of sulfate in West Antarctica, from 16 ice cores. Annals of Glaciology 39: 545–556.

DU Z., XIAO C., ZHANG Q., HANDLEY M.J., PAUL A., MAYEWSKI A. and LI C. 2019. Relationship between the 2014–2015 Holuhraun eruption and the iron record in the East GRIP snow pit. Arctic, Antarctic, and Alpine Research 51: 290–298.

FUJITA K. and ABE O. 2006. Stable isotopes in daily precipitation at Dome Fuji, East Antarctica, Geophysical Research Letters 33: L18503.

GOURSAUD S., MASSON-DELMOTTE V., FAVIER V., PREUNKERT S., LEGRAND M., MINSTER, B. and WERNER M. 2019. Challenges associated with the climatic interpretation of water stable isotope records from a highly resolved firn core from Adélie Land, coastal Antarctica. The Cryosphere 13: 1297–1324.

HAM J., HUR S., LEE W., HAN Y., JUNG H. and LEE, J. 2019. Isotopic variations of meltwater from ice by isotopic exchange between liquid water and ice. Journal of Glaciology 65: 1035–1043.

HANDLER P. 1989. The effect of volcanic aerosols on global climate. Journal Volcanology and Geothermal Research 37: 233–249.

JONSELL U., HANSSON M.E., MORTH C-M. and TORSSANDER P. 2005. Sulfur isotopic signals in two shallow ice cores from Dronning Maud Land, Antarctica. Tellus B: Chemical and Physical Meteorology 57: 341–350.


JOUZEL J. and MASSON-DELMOTTE V. 2010. Paleoclimates: what do we learn from deep ice cores? WIREs Climate Change 1: 654–669.

KAVAN J., NYVLT D., LASKA K., ENGEL Z. and KNAZKOVA M. 2020. High-latitude dust deposition in snow on the glaciers of James Ross Island, Antarctica. Earth Surface Processes and Landforms 45: 1569–1578.

KNUSEL S., BRUTSCH S., HENDERSON K.A., PALMER A.S. and SCHWIKOWSKI M. 2005. ENSO signals of the twentieth century in an ice core from Nevado Illimani, Bolivia. Journal of Geophysical Research 110: D01102.

KO K.S., LEE J. and LEE K.K. 2010. Multivariate statistical analysis for groundwater mixing ratios around underground storage caverns in Korea. Carbonates Evaporites 25: 35–42.

KLEIN N.F., ABRAM N.J., CURRAN M.A.J., GOOSSE H., GOURSAUD S., MASSON-DELMOTTE V., MOY A., NEUKOM R., ORSI A., SJOLTE J., STEIGER N., STENNI B. and WERNER M. 2019. Assessing the robustness of Antarctic temperature reconstructions over the past 2 millennia using pseudoproxy and data assimilation experiments. Climate of the Past 15: 661–684.

KREUTZ K.J. and MAYEWSKI P.A. 1999. Spatial variability of Antarctic surfaces snow glaciochemistry: Implications for paleoatmospheric circulation reconstructions. Antarctic Science 11: 105–118.

KURAMOTO T., GOTO-AZUMA K., HIRABAYASHI M., MIYAKE T., MOTOYAMA H., DAHL-JENSEN D. and STEFFENSEN J. 2011. Seasonal variations of snowchemistry at NEEM, Greenland. Annals of Glaciology 52: 193–200.

KWAK H., KANG J-H., HONG S-B., LEE J., CHANG C., HUR S-D. and HONG S. 2015. A Study on High-Resolution Seasonal Variations of Major Ionic Species in Recent Snow Near the Antarctic Jang Bogo Station. Ocean and Polar Research 37: 127–140.

LEE J., KO K., KIM J. and CHANG H. 2008. Multivariate statistical analysis of underground gas storage caverns on groundwater chemistry in Korea. Hydrological Processes 22: 3410–3417.

LEE J, FENG X., POSMENTIER E.S., FAIIA A.M. and TAYLOR S. 2009. Stable isotopic exchange rate constant between snow and liquid water. Chemical Geology 260: 57–62.

LEE J., FENG X., FAIIA A.M., POSMENTIER E.S., KIRCHNER J.W., OSTERHUBER R. and TAYLOR S. 2010. Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chemical Geology 270: 126–134.

LEE J. 2014. A numerical study of isotopic evolution of a seasonal snowpack and its meltwater by total rates. Geosciences Journal 18: 503–510.

LEE J., HUR S.D., LIM H.S. and JUNG H.J. 2020. Isotopic characteristics of snow and its meltwater over the Barton Peninsula, Antarctica. Cold Regions Science and Technology 173: 102997.

LEGRAND M. and MAYEWSKI P. 1997. Glaciochemistry of polar ice cores: A review. Review of Geophysics 35: 219–243.

MA T., LI L., LI Y., AA C., MA H., JIANG S. and SHI G. 2020. Stable isotopic composition in snowpack along the traverse from a coastal location to Dome A (East Antarctica): Results from observations and numerical modeling. Polar Science 24: 100510.

MARKLE B.R., BERTLER N.A.N., SINCLAIR K.E. and SNEED S.B. 2012. Synoptic variability in the Ross Sea region, Antarctica, as seen from back-trajectory modeling and ice core analysis. Journal of Geophysical Research 117: 1–17.

MASOON-DELMOTTE V., HOU S., EKAYKIN A., JOUZEL J., ARISTARAIN A., BERNARDO R.T., BROMWICH D., ATTANI O., DELMOTTE M., FALOURD S., FREZZOTTI M., GALLEE H., GENONI L., ISAKSSON E., LANDAIS A., HELSEN M.M., HOFFMANN G., LOPEZ J., MORGAN V., MOTOYAMA H., NOONE D., OERTER H., PETIT J.R., ROYER A., UEMURA R., SCHMIDT G.A., SCHLOSSER E., SIMOES J.C., STEIG E.J., STENNI B., STIEVENARD M., VAN DEN BROEKE M.R., VAN DE WAL R.S.W., VAN DE BERG W.J., VIMEUX F. and WHITE J.W.C. 2008. A review of Antarctic surface snow isotopic composition: Observations, atmospheric circulation, and isotopic modeling. Journal of Climate 21: 3359–3387.

MOORE J.C., GRINSTED A., KEKONEN T. and POHJOLA V. 2005. Separation of melting and environmental signals in an ice core with seasonal melt. Geophysical Research Letters 32: L10501.

NYAMGEREL Y., HAN Y., KIM S., HONG S., LEE J. and HUR S. 2020. Chronological characteristics for snow accumulation on Styx Glacier in northern Victoria Land, Antarctica. Journal of Glaciology 66: 916–926.

NYAMGEREL Y., HONG S., HAN Y., KIM S., LEE J. and HUR S. 2021. Snow-pit record from a coastal Antarctic site and its preservation of meteorological features. Earth Interactions 25: 108–118.

PARK Y., YOO H.J., LEE W.S., LEE J., KIM Y., LEE S-H., SHIN D. and PARK H. 2014. Deployment and Performance of a Broadband Seismic Network near the New Korean Jang Bogo Research Station, Terra Nova Bay, East Antarctica. Seismological Research Letters 85: 1341–1347.

PILSON M.E.Q. 2013. An Introduction to the Chemistry of the Sea, 2nd Edition. Cambridge University Press, Cambridge.

PREUKERT S., JOURDAIN B., LEGRAND M., UDISTI R., BECAGLI S. and CERRI O. 2008. Seasonality of sulfur species (dimethylsulfide, sulfate, and methanesulfonate) in Antarctica: inland versus coastal regions. Journal of Geophysical Research 113: D15302.

RANKIN A.M., AULD V. and WOLFF E.W. 2000. Frost flowers as a source of fractionated sea salt aerosol in the polar regions. Geophysical Research Letters 27: 3469–3472.

RANKIN A.M., WOLFF E.W. and MULVANEY R. 2005. A reinterpretation of sea salt records in Greenland and Antarctic ice cores. Annals of Glaciology 39: 276–282.

RHODES R.H., BERTLER N.A.N., BAKER J.A., STEEN-LARSEN H.C., SNEED S.B., MORGENSTERN U. and JOHNSEN S.J. 2012. Little Ice Age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Climate of the Past 8: 1223–1238.

SALTZMAN E.S., DIOUMAEVA I. and FINLEY B.D. 2006. Glacial/interglacial variations in methanesulfonate (MSA) in the Siple Dome ice core, West Antarctica. Geophysical Research Letters 33: L11811.

SERVETTAZ A.P.M., ORSI A.J., CURRAN M.A.J., MOY A.D., LANDAIS, A., AGOSTA C., WINTON V. H.L., TOUZEAU A., MCCONNELL J.R., WERNER M. and BARONI M. 2020. Snowfall and water stable isotope variability in East Antarctica controlled by warm synoptic events. Journal of Geophysical Research-Atmosphere 125: e2020JD032863.

SEVERI M., BECAGLI S., CAIAZZO L., CIARDINI V., COLIZZA E., GIARDI F., MEZGEC K., SCARCHILLI C., STENNI B., THOMAS E.R., TRAVERSI R. and UDISTI R. 2017. Sea salt sodium record from Talos Dome (East Antarctica) as a potential proxy of the Antarctic past sea ice extent. Chemosphere 177: 266–274.

SINCLAIR K.E., BERTLER N.A.N. and TROMPETTER W.J. 2010. Synoptic controls on precipitation pathways and snow delivery to high-accumulation ice core sites in the Ross Sea region, Antarctica. Journal of Geophysical Research 115: D22112.

STEEN-LARSEN H.C., MASSON-DELMOTTE V., HIRABAYASHI M., WINKLER R., SATOW K., PRIE F., BAYOU N., BRUN E., CUFFEY K.M., DAHL-JENSEN D., DUMONT, M., GUILLEVIC M., KIPFSTUHL S., LANDAIS A., POPP T., RISI C., STEFFEN, K., STENNI B. and SVEINBJORNS-DOTTIR A.E. 2014. What controls the isotopic composition of Greenland surface snow?. Climate of the Past 10: 377–392.

STENNI B., CAPRIOLI R., CIMINO L., CREMISINI C., FLORA O., GRAGNANI R. and TORCINI S. 1999. 200 years of isotope and chemical records in a firn core from Hercules Névé, Northern Victoria Land, Antarctica. Annals of Glaciology 29: 106–112.

STENNI B., SERRA F., FREZZOTTI M., MAGGI V., TTRAVERSI R., BECAGLI S. and UDISTI R. 2000. Snow accumulation rates in northern Victoria Land, Antarctica, by firn-core analysis. Journal of Glaciology 46: 541–552.

STENNI B., CURRAN M.A.J., ABRAM N.J., ORSI A., GOURSAUD S., MASSON-DELMOTTE V., NEUKOM R., GOOSSE H., DIVINE D., VAN OMMEN T., STEIG E.J., DIXON D A., THOMAS E.R., BERTLER N.A.N., ISAKSSON E., EKAYKIN A., WERNER M. and FREZZOTTI M. 2017. Antarctic climate variability on regional and continental scales over the last 2000 years. Climate of the Past 13: 1609–1634.

TRAVERSI R., BECAGLI S., CASTELLANO E., LARGIUNI O., MIGLIORI A., SEVERI M., FREZZOTTI M. and UDISTI R. 2004. Spatial and temporal distribution of environmental markers from coastal to plateau areas in Antarctica by firn core chemical analysis. International Journal of Environmental Analytical Chemistry 84: 457–470.

TUOHY A., BERTLER N., NEFF P., EDWARDS R., EMANUELSSON D., BEERS T. and MAYEWSKI P. 2015. Transport and deposition of heavy metals in the Ross Sea Region, Antarctica. Journal of Geophysical Research-Atmosphere 120: 10,996-11,011. UDISTI R. 1996. Multiparametric approach for chemical dating of snow layers from Antarctica. International Journal of Environmental Analytical Chemistry 63: 225–244.

UDISTI R., TRAVERSI R., BECAGLI G. and PICAARDI G. 1998. Spatial distribution and seasonal pattern of biogenic sulphur compounds in snow from northern Victoria Land, Antarctica R. Annals of Glaciology 27: 535–542.

UDISTI R., BARBANTE C., CASTELLANO E., VERMIGLI S., TRAVERSI R., CAPODAGLIO G. and PICCARDI G. 1999. Chemical characterisation of a volcanic event (about AD 1500) at Styx Glacier plateau, northern Victoria Land, Antarctica. Annals of Glaciology 29: 113–120.

UEMURA R., MARSUI Y., YOSHIMURA K., MOTOYAMA H. and YOSHIDA N. 2008. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. Journal of Geophysical Research 113: D19114.

UEMURA R., MASAKA K., FUKUI K., IIZUKA Y., HIRABAYASHI M. and MOTOYAMA H. 2016. Sulfur isotopic composition of surface snow along a latitudinal transect in East Antarctica. Geophysical Research Letters 43: 5878–5885.

VEGA C.P., ISAKSSON E., SCHLOSSER E., DIVINE D., MARTMA T., MULVANEY R., EICHLER A. and SCHWIKOWSKI-GIGAR M. 2018. Variability of sea salts in ice and firn cores from fimbul ice shelf, dronning maud land, antarctica. The Cryosphere 12: 1681–1697.

WAGENBACH D., LEGRAND M., FISCHER H., PICHLMAYER F. and WOLFF E.W. 1998. Atmospheric near-surface nitrate at coastal Antarctic sites. Journal of Geophysical Research-Atmospheres 103: 11007–11020.

WANG J., KIM J., CHOI W., MUN D., KANG J., KWON H., KIM J. and HAN K. 2017. Effects of wind fences on the wind environment around Jang Bogo Antarctic Research Station. Advances in Atmospheric Sciences 34: 1404–1414.
Go to article

Authors and Affiliations

Soon Do Hur
Jiwoong Chung
Yalalt Namgerel
1 2
Jeonghoon Lee

  1. Division of Glacial Environmental Research, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea
  2. Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
Download PDF Download RIS Download Bibtex


Atmospheric gases and chemical impurities can be stored and chemically transformed in the tropospheric ice. Impurities are rejected during freezing of the ice to the grain boundaries, free ice surfaces or inclusions. Surface snow and tropospheric ice, however, may be exposed to high temperatures and, eventually, the gases and chemical impurities can be released into the environment. It is important to study the surface structure and transport mechanisms at temperatures near the melting point because the location of impurities and their interactions with water molecules in the ice are not yet sufficiently explained. In this work, the evolution of a scratch on the bicrystalline ice surface was studied at −5 ℃. The surface transport mechanisms near the melting point were studied and, as a consequence, the surface structure could be determined. An ice sample was kept immersed in ultra-pure silicone oil to prevent evaporation and, thus, isolate the effect of surface diffusion. The ice sample was made with water with chemical conditions similar to the water of polar ice sheets. Photographs of the scratch were taken periodically, for approximately 50 hours, using a photographic camera coupled to an optical microscope. From these images, the evolution of the width of the scratch was studied and the surface diffusion was the dominant transport mechanism in the experiment. Finally, the ice surface self-diffusion coefficient at −5 ℃ was determined and it was very similar to the super-cooled water diffusion coefficient. A liquid-like behavior of ice surfaces near the melting point was found and it could have a strong influence on the reaction rates with atmospheric gases.
Go to article


ABRÀMOFF M.D., MAGALHÃES P.J. and RAM S.J. 2004. I processing with Image J. Biophotonics International 11: 36–42.

ASAKAWA H., SAZAKIG., NAGASHIMA K., NAKATSUBO S. and FURUKAWA Y. 2016. Two types of quasi-liquid layers on ice crystals are formed kinetically. Proceedings of the National Academy of Sciences 113: 1749–1753.

BARLETTA R.E., PRISCU J.C., MADER H.M., JONES W.L. and ROE C.H. 2012. Chemical analysis of ice vein microenvironments: II. Analysis of glacial samples from Greenland and Antarctica. Journal of Glaciology 58: 1109–1118.

BAR-NUN A., DROR J., KOCHAVI E. and LAUFER D. 1987. Amorphous water ice and its ability to trap gases. Physical Review B 35: 2427.

BARTELS-RAUSCH T., WREN S.N., SCHREIBER S., RICHE F., SCHNEEBELI M. and AMMANN M. 2013. Diffusion of volatile organics through porous now: impact of surface adsorption and grain boundaries. Atmospheric Chemistry and Physics 13: 6727–6739.

BARTELS-RAUSCH T., JACOBI H.W., KAHAN T.F., THOMAS J.L., THOMSON E.S., ABBATT J.P., AMMANN M., BLACKFORD J.R., BLUHM H., BOXE C. and DOMINÉ F. 2014. A review of air– ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmospheric Chemistry and Physics 14: 1587–633.

DASH J.G., REMPEL A.W. and WETTLAUFER J.S. 2006. The physics of premelted ice and its geophysical consequences. Reviews of Modern Physics 78: 695.

DI PRINZIO C.L. and NASELLO O.B. 1997. Study of grain boundary motion in ice bicrystals. The Journal of Physical Chemistry 39: 7687–7690.

DI PRINZIO C.L. and PEREYRA R.G. 2016. Molecular dynamics simulations of tilt grain boundaries in ice. Modelling and Simulation in Materials Science and Engineering 24: 045015.

DRUETTA E., NASELLO O.B. and DI PRINZIO C.L. 2013. Experimental Determination of<1010>/Ψ Tilt Grain Boundary Energies in Ice. Journal of Materials Science Research 3: 71–76.

DURAND G., WEISS J., LIPENKOV V., BARNOLA J.M., KRINNER G., PARRENIN F., DELMONTE B., RITZ C., DUVAL P., RÖTHLISBERGER R. and BIGLER M. 2006. Effect of impurities on grain growth in cold ice sheets. Journal of Geophysical Research: Earth Surface 111: F01015.

GRUBER E.E. and MULLINS W.W. 1966. Extended Analysis of Surface Scratch Smoothing. Acta Metallugica 14: 397–403.

GU Y. 2001. Experimental determination of the Hamaker constants for solid–water–oil systems. Journal of Adhesion Science and Technology 15: 1263–1283. GUEVARA-CARRION G., VRABEC J. and HASSE H. 2011. Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. The Journal of Chemicalphysics 134: 074508.

HALLET J. 1963. The temperature dependence of the viscosity of supercooledwater. Proceedings of the Physical Society 82: 1046.

HIGUCHI K. 1957. A new method for recording the grain-structure of ice. Journal of Glaciology 3: 131–132.

HOBBS P.V. 2010. Ice Physics. Oxford University Press, Oxford.

KING R.T. and MULLINS W.W. 1962. Theory of the decay of a surface scratch to flatness. Acta Metallurgica 10: 601–606.

KRAUSKO J., RUNSTUK J., NEDěLA V., KLáN P. and HEGER D. 2014. Observation of a brine layer on an ice surface with an environmental scanning electron microscope at higher pressures and temperatures. Langmuir 30: 5441–5447.

MULLINS W.W. 1957. Theory of Thermal Grooving. Journal of Applied Physics 28: 333–339.

MULLINS W.W. 1959. Flattening of a nearly plane solid surface due to capillarity. Journal of Applied Physics 30: 77–83.

MULLINS W.W. 1960. Grain boundary grooving by volume diffusion. Transactions of the American Institute of Mining and Metallurgical Engineers 218: 354–361.

NASELLO O.B. 1982. Estudio de las primeras etapas del proceso de acreción, PhD Thesis, Universidad Nacional de Córdoba, Córdoba (unpublished).

NASELLO O.B. and DI PRINZIO C.L. 2011. Anomalous effects of hydrostatic pressure on ice surface self-diffusion. Surface Science 605: 1103–1105.

NASELLO O.B., DI PRINZIO C.L. and LEVI L. 1992. Grain boundary Migration in Bicrystals of Ice. In: Maeno N. and Hondoh T. (eds) Physics and Chemistry of Ice, Hokkaido University Press, Sapporo, Japan.

NASELLO O.B., DI PRINZIO C.L. and GUZMÁN P.G. 2007. Grain boundary properties of ice doped with small concentrations of potassium chloride (KCl). Journal of Physics: Condensed Matter 19: 246218.

PALAIS J.M. and LEGRAND M. 1985. Soluble impurities in the Byrd Station ice core, Antarctica: their origin and sources. Journal of Geophysical Research: Oceans 90: 1143–1154.

PRUPPACHER H.R. and KLETT J.D. 2010. Microstructure of atmospheric clouds and precipitation. In Microphysics of Clouds and Precipitation. Springer, Dordrecht.

RAYNAUD D., JOUZEL J., BARNOLA J.M., CHAPPELLAZ J., DELMAS R.J. and LORIUS C. 1993. The ice record of greenhouse gases. Science 259: 926–934.

STYLE W. and GRAE WORSTER M. 2005. Surface Transport in Premelted Films with Application to Grain-Boundary Grooving. Physical Review Letters 95: 176102.

WETTLAUFER J.S. 1999. Impurity effects in the premelting of ice. Physical Review Letters 82: 2516.

WETTLAUFER J.S. and GRAE WORSTER M. 2006. Premelting dynamics. Annual Review of Fluid Mechanics 38: 427–452.

Go to article

Authors and Affiliations

Guillermo Aguirre Varela
1 2
Carlos L. Di Prinzio
1 2
Damián Stoler

  1. FAMAF, Universidad Nacional de Córdoba, Medina Allende and Haya de la Torre, 5000 Ciudad Universitaria, Córdoba, Argentina
  2. IFEG-CONICET, Universidad Nacional de Córdoba, Medina Allende and Haya de la Torre, 5000 Ciudad Universitaria, Córdoba, Argentina
Download PDF Download RIS Download Bibtex


In this article we investigate diatom assemblages in surface sediments of the subarctic Lake Imandra. We examine taxonomic composition and ecological structure and describe spatial variations of diatoms over the lake area. The diatom flora described here are characterized by abundance of planktonic centric species. The habitats of diatoms in the different stretches of Lake Imandra reflect local environmental conditions and are determined by the type and intensity of the anthropogenic impact. Stephanodiscus minutulus, S. alpinus, Aulacoseira islandica are the most abundant species in the area of the lake affected by industrial effluents and eutrophication, while Pantocsekiella comensis is most typical in the background sites of the lake. Diatoms’ taxonomic diversity is high in shallow bays where aquatic vegetation is common. Abundance of diatoms in areas affected by anthropogenic eutrophication reflects the high intensity of plankton primary production. Differences in the ecological structure of the diatom assemblages in different parts of Lake Imandra are caused by significant hydrochemical heterogeneity of the water quality.
Go to article


AGUSTÍ S., KRAUSE J.W., MARQUEZ I.A., WASSMANN P., KRISTIANSEN S. and DUARTE C.M. 2020. Arctic (Svalbard islands) active and exported diatom stocks and cell health status. Biogeosciences 17: 35–45.

BARINOVA S.S., MEDVEDEVA L.A. and ANISIMOVA O.V. 2006. Diversity of Algal indicators in Environmental Assessment. Pilies Studio, Tel Aviv (in Russian).

BATTARBEE R.W. 1986. Diatom analysis. In: B.E. Berglund (ed.) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester: 527–570.

BATTARBEE R.W., JONES V., FLOWER R., CAMERON N., BENNION H., CARVALHO L. and JUGGINS S. 2001. Diatoms. In: J. Smol, H.J.B. Birks and M. Last (eds) Tracking environmental change using lake sediments. Vol. 3: Terrestrial, Algal, and Siliceous Indicators. Dordrecht, Kluwer: 155–202.

BERGER W.H. and PARKER F.L. 1970. Diversity of planktonic Foraminifera in deep-sea sediments. Science 168: 1345–1347.

BOROVICHOV YE.A., DENISOV D.B., KORNEYKOVA M.V., ISAEVA L.G., RAZUMOVSKAYA A.V., KHIMICH YU.R., MELEKHIN A.V. and KOSOVA A.L. 2018. Herbarium of INEP KSC RAS. Trudy Kolskogo Nauchnogo Tsentra RAN 9: 179–186 (in Russian).

CZEKANOWSKI J. 1909. Zur differential Diagnose der Neandertalgruppe. Korrespondenzblatt der deutschen Gesellschaft für Anthropologie, Ethnologie und Urgeschichte 40: 44–47.

DAUVALTER V.A., MOISEENKO T.I. and RODYUSHKIN I.V. 1999. Geochemistry of Rare Earth Elements in Imandra Lake, Murmansk Area. Geochemistry International 37: 325–331.

DAUVALTER V.A., MOISEENKO T.I., KUDRYAVTSEVA L.P. and SANDIMIROV S.S. 2000. Accumula-tion of heavy metals in Lake Imandra because of its pollution with industrial waste. Water Resources 27: 279–287.

DAUVALTER V.A. and DENISOV D.B. 2015. Sediments and Paleolimnology. Chapter 4: Evaluation and development of the lake monitoring network. In: J. Ylikörkkö, G.N. Christensen, N. Kashulin, D. Denisov, H.J. Andersen and E. Jelkänen (eds) Environmental Challenges in the Joint Border Area of Norway, Finland and Russia. Reports 41/2015. Centre for Economic Development, Transport and the Environment for Lapland, Finland: 116–131.

DAUVALTER V.A. and KASHULIN N.A. 2018. Mercury pollution of Lake Imandra Sediments, the Murmansk region, Russia. International Journal of Environmental Research 12: 939–953.

DAVYDOVA N.N. 1985. Diatoms-indicators of ecological conditions of reservoirs in the Holocene. Nauka, Leningrad (in Russian).

DENISOV D.B. 2007. Changes in the hydrochemical composition and diatomic flora of bottom sediments in the zone of influence of metal mining production (Kola Peninsula). Water Resources 34: 682–692.

DENISOV D.B. and KOSOVA A.L. 2017. Diversity of diatoms (Bacillariophyta) of Lake Imandra (Kola Peninsula). Proceedings of the scientific session, GI KSC RAS: 448–450 (in Russian).

DENISOV D.B. and GENKAL S.I. 2018. Centric diatom of Lake Imandra (Kola Peninsula, Russia). International Journal on Algae 20: 27–36.

DENISOV D.B., TERENTJEV P.M., VALKOVA S.A. and KUDRYAVTZEVA L.P. 2020. Small Lakes Ecosystems under the Impact of Non-Ferrous Metallurgy (Russia, Murmansk Region). Environments 7: 42–55.

DOLGONOSOV B.M. and MOISEENKO T.I. 2007. Modeling the succession of diatomic complex under growing industrial load on an aquatic ecosystem. Water Resources 34: 301–313.

GUIRY M.D. and GUIRY G.M. 2020. AlgaeBase, World-wide electronic publication. National University of Ireland, Galway.

JUSE A.P., PROSHKINA-LAVRENKO A.I. and SHESHUKOVA V.S. 1949. Diatomic analysis. 1. State publishing house of geological, Moscow – Leningrad (in Russian).

KAGAN L.YA. 2001. Human-induced changes in the diatom communities of Lake Imandra. Water Resources 28: 297–306.

KASHULIN N.A., DENISOV D.B., VALKOVA S.A., VANDYSH O.I. and TERENTIEV P.M. 2012. Current trends in freshwater ecosystems of the Euro-Arctic region. Proceedings of Kola Science Center RAS 1: 6–53 (in Russian).

KASHULIN N.A., DAUVALTER V.A., DENISOV D.B., VALKOVA S.A., VANDYSH O.I., TERENTJEV P.M. and KASHULIN A.N. 2017. Selected aspects of the current state of freshwater resources in the Murmansk region, Russia. Journal of Environmental Science and Health. Part A: Toxic/ Hazardous Substances and Environmental Engineering 52: 921–929.

KRAMMER T. and LANGE-BERTALOT H. 1986. Bacillariophyceae (Naviculaceae). 2(1). Süsswas-serflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart.

KRAMMER T. and LANGE-BERTALOT H. 1988. Bacillariophyceae (Bacillariaceae, Epithemiaceae, Surirellaceae). 2(2). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart.

KRAMMER T. and LANGE-BERTALOT H. 1991a. Bacillariophyceae (Centrales, Fragilariaceae, Eunotiaceae). 2(3). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart.

KRAMMER T. and LANGE-BERTALOT H. 1991b. Bacillariophyceae (Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolate) und Gomphonema Gesamtliteraturverzeichnis). 2(4). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart.

KRAMMER K. 2000. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 1. The genus Pinnularia. A.R.G. Gantner Verlag K.G, Ruggell.

KRAMMER K. 2002. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 3. Cymbella. A.R.G. Gantner Verlag K.G, Ruggell.

KRAMMER K. 2003. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 4. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. A.R.G. Gantner Verlag K.G, Ruggell.

LANGE-BERTALOT H. 2001. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 2. Navicula sensu stricto. 10 Genera Separated from Navicula sensu lato. Frustulia. A.R.G. Gantner Verlag K.G, Ruggell.

LUDIKOVA A.V. 2021. Long-term studies of surface-sediment diatom assemblages in assessing the ecological state of Lake Ladoga, the largest European Lake. Geography, Environment, Sustainability 14: 251–262.

MOISEENKO T.I., DAUVALTER V.A., LUKIN A.A., KUDRYAVTSEVA L.P., ILYASHCHUK B.P., ILYASHCHUK L.I., SANDIMIROV S.S., KAGAN L.YA., VANDYSH O.M., SHAROVA YU.N., KOROLEVA I.N. and SHAROV A.N. 2002. Anthropogenic changes in the ecosystem of the Lake Imandra. Nauka, Moscow (in Russian).

MOISEENKO T.I., GASHKINA N.A., SHAROV A.N., VANDYSH O.I. and KUDRYAVTSEVA L.P. 2009a. Anthropogenic transformations of the Arctic ecosystem of Lake Imandra: tendencies for recovery after a long period of pollution. Water Resources 36: 290–303.

MOISEENKO T.I., SHAROV A.N., VANDYSH O.I., KUDRYAVTSEVA L.P., GASHKINA N.A. and ROSE C. 2009b. Long-term modification of Arctic Lake ecosystems: Reference condition, degradation under toxic impacts and recovery (case study Imandra Lakes, Russia). Limno-logica 39: 1–13.

MOISEENKO T.I. and SHAROV A.N. 2010. The retrospective analysis of aquatic ecosystem modification of Russian large lakes under antropogenic impacts. Ecotoxicology around the Globe 12: 1–17.

MOISEENKO T.I. and SHAROV A.N. 2019. Large Russian Lakes Ladoga, Onega, and Imandra under strong pollution and in the period of revitalization: a review. Geosciences 9: 1–16.

NOVAKOVSKIY A.B. 2014. Presentation of the Module “Graphs” for Analyzing Geobotanical Data. Journal of Earth Science and Engineering 4: 88–93.

RAND M.C., GREENBERG A.E. and TARAS M. J. 1975. Standard method for examination of water and wastewater. American Water Works Association, Denver, CO, USA.

SANDIMIROV S.S., KUDRYAVCEVA L.P., DAUVALTER V.A., DENISOV D.B. and KOSOVA A.L. 2019. Methods of ecological research of Arctic water bodies. Izd. MSTU, Murmansk (in Russian).

SHAROV A.N. 2008. Phytoplankton as an indicator in estimating long-term changes in the water quality of large lakes. Water Resources 35: 668–663.

SHAROV A.N. and DENISOV D.B. 2021. Algae of Lakes in the European North of Russia. Chapter 7. In: O.S. Pokrovsky, Y. Bespalaya, L.S. Shirokova and T.Y. Vorobyeva (eds) Lake water: properties and uses (Case studies of Hydrochemistry and Hydrobiology of Lakes in Northwest Russia). Nova Science Publishers, New York: 153–191.

SHAV CHRAÏBI V.L., KIRETA A.R., REAVIE E.D., CAI M. and BROWN T.N. 2014. A paleolimno-logical assessment of human impacts on Lake Superior. Journal of Great Lakes Research 40: 886–897.

SKOGHEIM O.K. 1979. Rapport fra Arungenprosjectet. No 2. As-NLN, Oslo.

SÖRENSEN T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Kongelige Danske Videnskabernes Selskab. Biologiske Skrifter. 5: 1–34.

STOOF-LEICHSENRING K.R., PESTRYAKOVA L.A., EPP L.S. and HERZSCHUH U. 2020. Phylogenetic diversity and environment form assembly rules for Arctic diatom genera – a study on recent and ancient sedimentary DNA. Journal of Biogeography 47: 1166–1179.

VAN DAM H., MERTENS A. and SINKELDAM J. 1994. A coded checklist and ecological indicators values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.

WASHINGTON H.G. 1984. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Research 18: 653–694.
Go to article

Authors and Affiliations

Sofia Vokueva
Dmitrii Denisov

  1. Institute of the North Industrial Ecology Problems, Federal Research Center “Kola Science Center of RAS”, 8a Akademgorodok Street, 184209, Apatity, Murmansk region, Russia
Download PDF Download RIS Download Bibtex


In this work we summarize the current knowledge on the spatial distribution, host specificity and genetic diversity of Onchobothrium antarcticum, an endemic Antarctic cestode. We recorded it in seven fish species, elasmobranchs Amblyraja georgiana, Bathyraja eatonii, and B. maccaini and teleosts Antimora rostrata, Chionobathyscus dewitti, Dissostichus mawsoni, and Muraenolepis marmorata, caught in the Ross Sea, the D’Urville Sea, the Mawson Sea, and the Weddell Sea. The infection of A. rostrata from the part of its distribution to the south of the Falkland Islands is reported for the first time. We obtained partial 28S rDNA and cox1 sequences of plerocercoids and adults of O. antarcticum and analyzed them together with a few previously published sequences. Based on the results of the phylogenetic analysis, we cannot rule out that O. antarcticum is in fact a complex of cryptic species.
Go to article


BUSH A.O., LAFFERTY K.D., LOTZ J.M. and SHOSTAK A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 83: 575–583.

BYHOVSKAJA-PAVLOVSKAJA I.E. 1985. Parazity ryb. (Parasites of fishes.) Nauka, Leningrad (in Russian).

CAIRA J.N. and JENSEN K. 2017. Planetary biodiversity inventory (2008–2017): Tapeworms from vertebrate bowels of the earth. Natural History Museum, University of Kansas, Lawrence.

CAIRA J.N., JENSEN K., WAESCHENBACH A., OLSON P.D. and LITTLEWOOD D.T.J. 2014. Orders out of chaos – molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. International Journal for Parasitology 44: 55–73.

CCAMLR (Commission for the Conservation of Marine Living Recourses). 2011. Scientific Observers Manual (observation guidelines and reference materials).

CCAMLR, Hobart. Tasmania. DUHAMEL G., HULLEY P.-A., CAUSSE R., KOUBBI P., VACCHI M., PRUVOST P.,VIGETTA S., IRISSON J.-O., MORMEDE S., BELCHIER M., DETTAI A., DETRICH H.W., GUTT J., JONES C.D., KOCK K.-H., LOPEZ ABELLAN L.J. and VAN DE PUTTE A. 2014. Chapter 7. Biogeographic patterns of fish. In: C. De Broyer, P. Koubbi and H.J. Griffiths, B. Raymond, C. d’ Udekem d’Acoz et al. (eds). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge: 328–362.

EASTMAN J.T. 1993. Antarctic Fish Biology: Evolution in a Unique Environment. Academic Press, San Diego.

FELSENSTEIN J. 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783–791.

FISCHER W. and HUREAU J.C. (eds). 1985. FAO Species Identification Sheets for Fishery Purposes. Southern Ocean (CCAMLR Convention Area Fishing Areas 48, 58 and 88), Vols. I and II. Prepared and published with the support of the Commission for the Conservation of Antarctic Marine Living Resources. FAO, Rome.

FROESE R. and PAULY D. 2021. FishBase. World Wide Web electronic publication. www.fishbase. org, version (02/2021).

FYLER C.A., CAIRA J.N. and JENSEN K. 2009. Five new species of Acanthobothrium (Cestoda: Tetraphyllidea) from an unusual species of Himantura (Rajiformes: Dasyatidae) from northern Australia. Folia Parasitologica 56: 107.

GAEVSKAYA A.V. and RODJUK G.N. 1988. New and rare Trematoda species from deep-sea fishes of the South-West Atlantic. Vestnik Zoologii 5: 11–15 (in Russian).

GON O. and HEEMSTRA P.C. 1990. Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown.

GORDEEV I.I. 2015. Prevalence, geographical distribution and host specificity of parasitic copepode Lophoura szidati Stadler, 1978 (Copepoda: Sphyriidae) on grenadiers (Macrourus spp.) in the Antarctic. Invertebrate Zoology 12: 207–212.

GORDEEV I.I. and POLYAKOVA T.A. 2020. Helminths and the stomach contentment of Bathyraja sp. (Rajiformes: Arhynchobatidae) in the Simushir Island area (Pacific Ocean). Journal of Asia- Pacific Biodiversity 13: 306–309.

GORDEEV I.I. and SOKOLOV S.G. 2016. Parasites of the Antarctic toothfish Dissostichus mawsoni Norman, 1937 (Perciformes, Nototheniidae) in the Pacific sector of the Antarctic. Polar Research 35: 29364.

GORDEEV I.I. and SOKOLOV S.G. 2017. Helminths and the feeding habits of the marbled moray cod Muraenolepis marmorata Günther, 1880 (Gadiformes, Muraenolepididae) in the Ross Sea (Southern Ocean). Polar Biology 40: 1311–1318.

GORDEEV I.I., SOKOLOV S.G. and ORLOV A.M. 2017. Macroparasites of blue hake Antimora rostrata and Pacific flatnose Antimora microlepis (Gadiformes, Moridae): Current State of Exploration. Proceedings of Kazan University. Natural Sciences Series 159: 468–479 (in Russian).

GORDEEV I.I., SOKOLOV S.G., DIAZ R., MORALES X. and ORLOV A.M. 2019. Parasites of the blue hake Antimora rostrata and slender codling Halargyreus johnsonii (Gadiformes: Moridae) in the northwestern Atlantic. Acta Parasitologica 64: 489–500.

HANCHET S., DUNN A., PARKER S., HORN P., STEVENS D. and MORMEDE S. 2015.The Antarctic toothfish (Dissostichus mawsoni): biology, ecology, and life history in the Ross Sea region. Hydrobiologia 761: 397–414.

IVANOV V.A. and CAMPBELL R.A. 2002. Notomegarhynchus navonae n. gen. and n. sp. (Eucestoda: Teteraphyllidea), from skates (Rajidae: Arhynchobatinae) in the southern hemisphere. Journal of Parasitology 88: 340–349.

JENSEN K., NIKOLOV P. and CAIRA J.N. 2011. A new genus and two new species of Anteroporidae (Cestoda: Lecanicephalidea) from the darkspotted numbfish, Narcine maculata (Torpedini-formes: Narcinidae), off Malaysian Borneo. Folia Parasitologica 58: 95–107.

KLIMPEL S., KUHN T., MÜNSTER J., DÖRGE D.D., KLAPPER R. and KOCHMANN J. 2019. Parasites of marine fish and cephalopods. Springer International Publishing, New York.

KUHN T., ZIZKA V.M., MÜNSTER J., KLAPPER R., MATTIUCCI S., KOCHMANN J. and KLIMPEL S. 2018. Lighten up the dark: metazoan parasites as indicators for the ecology of Antarctic crocodile icefish (Channichthyidae) from the north-west Antarctic Peninsula. PeerJ 6: e4638.

KUMAR S., STECHER G., LI M., KNYAZ C. and TAMURA K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.

LASKOWSKI Z. and ROCKA A. 2014. Molecular identification of larvae of Onchobothrium antarcticum (Cestoda: Tetraphyllidea) from marbled rockcod, Notothenia rossii, in Admiralty Bay (King George Island, Antarctica). Acta Parasitologica 59: 767–772.

LAST P., NAYLOR G., SÉRET B., WHITE W., DE CARVALHO M. and STEHMANN M. 2016. Rays of the World. CSIRO Publishing, Clayton. LAVIKAINEN A., IWAKI T., HAUKISALMI V., KONYAEV S., CASIRAGHI M., DOKUCHAEV N., GALIMBERTI A., HALAJIAN A., HENTTONEN H., ICHIKAWA-SEKI M., ITAGAKI T., KRIVOPALOV A., MERI S., MORAND S., NÄREAHO A., OLSSON G., RIBAS A., TEREFE Y. and NAKAO M. 2016. Reappraisal of Hydatigera taeniaeformis (Batsch, 1786) (Cestoda: Taeniidae) sensu lato with description of Hydatigera kamiyai n. sp. International Journal for Parasitology 46: 361–374.

MARCOGLIESE D.J. 1995. The role of zooplankton in the transmission of helminth parasites to fish. Reviews in Fish Biology and Fisheries 5: 336–371.

MISAWA R., ORLOV A.M., ORLOVA S.YU., GORDEEV I.I., ISHIHARA H., HAMATSU T., UEDA Y., FUJIWARA K., ENDO H. and KAI Y. 2020. Bathyraja (Arctoraja) sexoculata, a new softnose skate (Rajiformes: Arhynchobatidae) from Simushir Island, Kuril Islands (western North Pacific), with comments on geographical variation within Bathyraja (Arctoraja) smirnovi. Zootaxa 4861: 515–543.

MUGUE N.S., PETROV A.F., ZELENINA D.A., GORDEEV I.I. and SERGEEV A.A. 2014. Low genetic diversity and temporal stability in the Antarctic toothfish (Dissostichus mawsoni) from near- continental seas of Antarctica. CCAMLR Science 21: 1–10.

MUÑOZ G. and CARTES F.D. 2020. Endoparasitic diversity from the Southern Ocean: is it really low in Antarctic fish? Journal of Helminthology 94: E180.

OĞUZ M.C., TEPE Y., BELK M.C., HECKMANN R.A., ASLAN B., GÜRGEN M., BRAY R.A. and AKGÜL Ü. 2015. Metazoan parasites of Antarctic fishes. Türkiye Parazitoloji Derneği 39: 174–178.

PETROV A.F., SHUST K.V., PIYANOVA S.V., URYUPOVA E.F., GORDEEV I.I., SYTOV A.M. and DEMINA N.S. 2014. Guidelines for collection and processing of fishery and biological data on aquatic bioresources of the Antarctica to the Russian scientific observers in the CCAMLR area. VNIRO, Moscow (in Russian).

PETROV A.F. and GORDEEV I.I. 2015. Distribution and biological characteristics of Antarctic toothfish Dissostichus mawsoni in the Weddell Sea. Journal of Ichthyology 55: 210–216.

POLYAKOVA T.A. and GORDEEV I.I. 2020. Cestodes of Antarctic and Subantarctic fish: History and prospects of research. Marine Biological Journal 5: 79–93.

POSADA D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. ROCKA A. 2003. Cestodes of the Antarctic fishes. Polish Polar Research 24: 261–276.

ROCKA A. 2017. Cestodes and Nematodes of Antarctic Fishes and Birds. In: S. Klimpel, T. Kuhn, H. Mehlhorn (eds) Biodiversity and Evolution of Parasitic Life in the Southern Ocean. Parasitology Research Monographs, vol 9. Springer, Cham: 77–107.

ROCKA A. and ZDZITOWIECKI K. 1998. Cestodes in fishes of the Weddell Sea. Acta Parasitologica 43: 64–70.

RONQUIST F. and HUELSENBECK J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatic 19: 1572–1574.

SCHOLZ T., CHOUDHURY A., UHROVÁ L. and BRABEC J. 2019. The Proteocephalus species- aggregate in freshwater centrarchid and percid fishes of the Nearctic region (North America). Journal of Parasitology 105: 798–812.

SMITH P.J., STEINKE D., MCVEAGH S.M., STEWART A.L., STRUTHERS C.D. and ROBERTS C.D. 2008. Molecular analysis of Southern Ocean skates (Bathyraja) reveals a new species of Antarctic skate. Journal of Fish Biology 73: 1170–1182.

SOKOLOV S.G. and GORDEEV I.I. 2013. New data on trematodes (Plathelminthes, Trematoda) of fishes in the Ross Sea (Antarctic). Invertebrate Zoology 10: 255–267.

STEHMANN M.F., WEIGMANN S. and NAYLOR G.J. 2021. First complete description of the dark- mouth skate Raja arctowskii Dollo, 1904 from Antarctic waters, assigned to the genus Bathyraja (Elasmobranchii, Rajiformes, Arhynchobatidae). Marine Biodiversity 51: 1–27.

TEREFE Y., HAILEMARIAM Z., MENKIR S., NAKAO M., LAVIKAINEN A., HAUKISALMI V., IWAKI T., OKAMOTO M. and ITO A. 2014. Phylogenetic characterisation of Taenia tapeworms in spotted hyenas and reconsideration of the “Out of Africa” hypothesis of Taenia in humans. International Journal for Parasitology 44: 533–541.

WAESCHENBACH A., WEBSTER B.L., BRAY R.A. and LITTLEWOOD D.T.J. 2007. Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Molecular Phylogenetics and Evolution 45: 311–325.

WAESCHENBACH A. and LITTLEWOOD D.T.J. 2017. A molecular framework for the Cestoda. In: J.N. Caira and K. Jensen (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from the vertebrate bowels of the Earth. Natural History Museum: Lawrence: 431–451.

WOJCIECHOWSKA A. 1990a. Onchobothrium antarcticum sp. n. (Tetraphyllidea) from Bathyraja eatonii (Günther, 1876) and a plerocercoid from Notothenioidea (South Shetlands, Antarctic). Acta Parasitologica Polonica 35: 113–117.

WOJCIECHOWSKA A. 1990b. Pseudanthobothrium shetlandicum sp. n. and P. notogeorgianum sp. n. (Tetraphyllidea) from rays in the regions of the South Shetlands and South Georgia (Antarctic). Acta Parasitologica Polonica 35: 181–186.

WOJCIECHOWSKA A. 1991a. New species of the genus Phyllobothrium (Cestoda, Tetraphyllidea) from Antarctic batoid fishes. Acta Parasitologica Polonica 36: 63–68.

WOJCIECHOWSKA A. 1991b. Some tetraphyllidean and diphyllidean cestodes from Antarctic batoid fishes. Acta Parasitologica Polonica 36: 69–74.

WOJCIECHOWSKA A., PISANO E. and ZDZITOWIECKI K. 1995. Cestodes in fishes at the Heard Island (Subantarctic). Polish Polar Research 16: 205–212.

YUKHOV V.L. 1982. Antarctic toothfish. Nauka, Moscow (in Russian).

ZDZITOWIECKI K., WHITE M.G. and ROCKA A. 1997. Digenean, monogenean and cestode infection of inshore fish at the South Orkney Islands. Acta Parasitologica 42: 18–22.
Go to article

Authors and Affiliations

Ilya I. Gordeev
1 2
Tatyana A. Polyakova
Alexander A. Volkov

  1. Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234, Moscow, Russia
  2. Department of Pacific Salmons, Russian Federal Research Institute of Fisheries and Oceanography, V. Krasnoselskaya Str. 17, 107140, Moscow, Russia
  3. Moscow representative office of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Pr. 38/3, 119991, Moscow, Russia
  4. Department of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, V. Krasnoselskaya Str. 17, 107140, Moscow, Russia
Download PDF Download RIS Download Bibtex


The coexistence of two congeneric amphipods, boreal Gammarus oceanicus, and arctic G. setosus, was studied during the summer seasons of 2017-2019 in the region of Isfjorden, Forlandsundet, and Prins Karl Forland island in the west-central part of the Svalbard archipelago (Arctic). Across the study area species distribution often overlapped, but the domination patterns mirrored environmental conditions preferred by each species. Both species, however, were able to survive in suboptimal conditions. On a small spatial scale (in one sample) the species were separated, which may suggest an antagonistic relationship between them. The ongoing changes in the environment of Svalbard will likely affect these two species differently. The increasing intrusion of Atlantic waters will probably favor the further expansion of G. oceanicus along the Svalbard coasts. This will be due to the gradual advance of the existing population, as an influx of individuals from the Nordic seas seems unlikely. G. setosus will remain the dominant species in cold-water areas such as the inner fjords and the northeastern coast of Svalbard and may find new suitable habitats in lagoons or estuaries fed by melting glaciers. Despite predicted changes in the distribution range of both species, their future coexistence should still be possible due to the wide range of environmental tolerance and the heterogeneity of the Svalbard coastal habitats.
Go to article


ACIA. 2005. Impacts of a warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, New York.

BEERMANN J. and FRANKE H.D. 2012. Differences in resource utilization and behaviour between coexisting Jassa species (Crustacea, Amphipoda). Marine Biology 159: 951–957.

BERGE J., HEGGLAND K., LØNNE O.J., COTTIER F., HOP H., GABRIELSEN G.W., NØTTESTAD L. and MISUND O.A. 2015. First records of Atlantic Mackerel (Scomber scombrus) from the Svalbard Archipelago, Norway, with possible explanations for the extension of its distribution. Arctic 68: 54–61.

BERGE J., JOHNSEN G., NILSEN F., GULLIKSEN B. and SLAGSTAD D. 2005. Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Marine Ecology Progress Series 303: 167–175.

BOER den P.J. 1980. Exclusion or coexistence and the taxonomic or ecological relationship between species. Netherlands Journal of Zoology 30: 278–306.

BURROWS M.T., BATES A.E., COSTELLO M.J., EDWARDS M., EDGAR G.J., FOX C.J., HALPERN B. S., HIDDINK J.G., PINSKY M.L., BATT R.D., MOLINOS J.G., PAYNE B.L., SCHOEMAN D.S., STUART-SMITH R.D. and POLOCZANSKA E.S. 2019. Ocean community warming responses explained by thermal affinities and temperature gradients. Nature Climate Change 9: 959– 963.

COTTIER F., SKOGSETH R., DAVID D. and BERGE J. 2019. Temperature time-series in Svalbard fjords. A contribution from the integrated marine observatory partnership (iMOP). In: E. Orr, G. Hansen, H. Lappalainen, C. Hübner and H. Lihavainen (eds) Svalbard Integrated Arctic Earth Observing System. SESS report 2018, Longyearbyen: 108–118.

CROKER R.A. 1967. Niche diversity in five sympatric species of intertidal amphipods (Crustacea; Haustroiddae). Ecological Monograph 37: 174–200.

CSAPÓ H.K., GRABOWSKI M. and WĘSŁAWSKI J.M. 2021. Coming home — boreal ecosystem claims Atlantic sector of the Arctic. Science of the Total Environment 771: 144817.

GERHARDT A., BLOOR M. and MILLS C.L. 2011. Gammarus: important taxon in freshwater and marine changing environments. International Journal of Zoology 2011: 524276.

GERLAND S., PAVLOVA O., DIVINE D., NEGREL J., DAHLKE S., JOHANSSON A.M., MATURILLI M. and SEMMLING M. 2020. Long-term monitoring of landfast sea ice extent and thickness in Kongsfjorden, and related applications (FastIce). In: F. Van den Heuvel, C. Hübner, M. Błaszczyk, M. Heimann and H. Lihavainen (eds) Svalbard Integrated Arctic Earth Observing System. SESS report 2019, Longyearbyen: 160–167.

GRABOWSKI M., JABŁOŃSKA A., WEYDMANN-ZWOLICKA A., GANTSEVICH M., STRELKOV P., SKAZINA M. and WĘSŁAWSKI J.M. 2019. Contrasting molecular diversity and demography patterns in two intertidal amphipod crustaceans reflect Atlantification of High Arctic. Marine Biology 166: 155.

GRABOWSKI M., KONOPACKA A., JAŻDŻEWSKI, K. and JANOWSKA E. 2006. Invasions of alien gammarid species and retreat of natives in the Vistula Lagoon (Baltic Sea, Poland). Helgoland Marine Research 60: 90–97.

GUERRA-GARCIA J.M., BAEZA-ROJANO E., CABEZAS M.P. and GARCIA-GOMEZ J.C. 2011. Vertical distribution and seasonality of peracarid crustaceans associated with intertidal macroalgae. Journal Sea Research 65: 256–264. HERVÉ M. 2021. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. https://cran.r-

HILL C. and ELMGREN R. 1987. Vertical distribution in the sediment in the co-occurring benthic amphipods Pontoporeia affinis and P. femorata. Oikos 49: 221–229.

IKKO N.V. and LYUBINA O.S. 2010. Distribution of the genus Gammarus (Crustacea, Amphipoda) along the coast of Arctic fjords as an indicator of prevailing environmental conditions. Doklady Biological Sciences 431: 149–15.

INGÓLFSSON A. 1977. Distribution and habitat of some intertidal amphipods in Iceland. Acta Naturalia Islandica 25: 1–28.

INGÓLFSSON A. 1995. Dynamics of macrofaunal communities of floating seaweed clumps off western Iceland: a study of patches on the surface of the sea. Journal of Experimental Marine Biology and Ecology 231: 119–137.

JERMACZ Ł., ANDRZEJCZAK J., ARCZYŃSKA E., ZIELSKA J. and KOBAK J. 2017. An enemy of your enemy is your friend: Impact of predators on aggregation behavior of gammarids. Ethology 123: 627–639.

KIESSLING T., GUTOW L. and THIEL M. 2015. Marine litter as habitat and dispersal vector. In: M. Bergmann, L. Gutow and M. Klages (eds) Marine anthropogenic litter. Springer, Cham.

KOLDING S. and FENCHEL T.M. 1979. Coexistence and life cycle characteristics of five species of amphipod genus Gammarus. Oikos 33: 323–327.

KORPINEN S. and WESWTERBOM M. 2010. Microhabitat segregation of the amphipod genus Gammarus (Crustacea, Amphipoda) in the Northern Baltic Sea. Marine Biology 157: 361–370.


KOTWICKI L., WĘSŁAWSKI J.M., WŁODARSKA-KOWALCZUK M., MAZURKIEWICZ M., WENNE R., ZBAWICKA M., MINCHIN D. and OLENIN S. 2021. The re-appearance of the Mytilus spp. complex in Svalbard, Arctic, during the Holocene: The case for an arrival by anthropogenic flotsam. Global and Planetary Change 202: 103502.

KRAFT A., NÖTHIG E.M., BAUERFEIND E., WILDISH D.J., POHLE G.W., BATHMANN U.V., BESZCZYŃSKA-MÖLLER A. and KLAGES M. 2013. First evidence of reproductive success in a southern invader indicates possible community shifts among Arctic zooplankton. Marine Ecology Progress Series 493: 291–296.

LANCELOTTI D.A. and TRUCCO R.G. 1993. Distribution patterns and coexistence of six species of the amphipod genus Hyale. Marine Ecology Progress Series 93: 131–141.

LYDERSEN C., GJERTZ I. and WĘSŁAWSKI J.M. 1989. Stomach contents of autumn feeding marine invertebrates from Hornsund, Svalbard. Polar Records 25: 107–114.

MACNEIL C., DICK J.T.A. and ELWOOD R.W. 1999. The dynamics of predation on Gammarus spp. (Crustacea: Amphipoda). Biological Reviews 74: 375–395.

NILSEN F., COTTIER F., SKOGSETH R. and MATTSSON S. 2008. Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Continental Shelf Research 28: 1838–1853.

PIECHURA J. and WALCZOWSKI W. 2009. Warming of the West Spitsbergen Current and sea ice north of Svalbard. Oceanologia 51: 147–164.

POLYAKOV I.V., ALKIRE M.B., BLUHM B.A., BROWN K.A., CARMACK E.C., CHIERICI M., DANIELSON S.L., ELLINGSEN I., ERSHOVA E.A., GÅRDFELDT K., INGVALDSEN R. B., PNYUSHKOV A.V., SLAGSTAD D. and WASSMANN P. 2020. Borealization of the Arctic Ocean in response to anomalous advection from Sub-Arctic Seas. Frontiers in Marine Science 7: 491.

R CORE TEAM. 2021. R: A language and environment for statistical computing. https://www.r-

SIMBERLOFF D. 1982. The status of competition theory in ecology. Annales Zoologici Fennici 19: 241–253.

SKADSHEIM A. 1983. The ecology of intertidal amphipods in the Oslofjord. Distribution and responses to physical factors. Crustaceana 44: 225–244.

SKOGSETH J., OLIVIER L.L.A., NILSEN F., FALCK E., RASER N., TVERBERG V., LEDANG A.B., VADER A., JONASSEN M.O., SØREIDE J., COTTIER F., BERGE J., IVANOV B.V. and FALK- PETERSEN S. 2020. Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation – An indicator for climate change in the European Arctic. Progress in Oceanography 187: 102394.

SØREIDE J.E., PITUSI V., VADER A., DAMSGÅRD B., NILSEN F., SKOGSETH R., POSTE A., BAILEY A., KOVACS K. M., LYDERSEN C., GERLAND S., DESCAMPS S., STRØM H.; RENAUD P. E., CHRISTENSEN G., ARVNES M.P., MOISEEV D., SINGH R. K., BÉLANGER S., ELSTER J., URBAŃSKI J., MOSKALIK M., WIKTOR J. and WĘSŁAWSKI J.M. 2020. Environmental status of Svalbard coastal waters: coastscapes and focal ecosystem components (SvalCoast). In: M. Moreno-Ibáñez, J.O. Hagen, C. Hübner, H. Lihavainen and A. Zaborska (eds) Svalbard Integrated Arctic Earth Observing System. SESS report 2020, Longyearbyen: 142–175.

STEELE D.H. and STEELE V.J. 1974. The biology of Gammarus (Crustacea, Amphipoda) in the north-western Atlantic. VIII. Geographic distribution of the northern species. Canadian Journal of Zoology 52: 1115–1120.

STEELE V.J. and STEELE D.H. 1970. The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. II. Gammarus setosus Dementieva. Canadian Journal of Zoology 48: 659–671.

STEELE V.J. and STEELE D.H. 1972. The biology of Gammarus (Crustacea, Amphipoda) in the north-western Atlantic. V. Gammarus oceanicus Segerstråle. Canadian Journal of Zoology 50: 801–813.

THYRRING J., BLICHER M.E., SØRENSEN J.G., WEGEBERG S. and SEJR M.K. 2017. Rising air temperatures will increase intertidal mussel abundance in the Arctic. Marine Ecology Progress Series 584: 91–104.

TZVETKOVA N.L. 1975. Pribrejnye gammaridy severnyh i dal’nevostochnyh morei SSSR i sopredel’nyh vod. Leningrad University, Leningrad.

URBAŃSKI J.A. and LITWICKA D. 2021. Accelerated decline of Svalbard coasts fast ice as a result of climate change. Cryosphere Discuss: 1–15.

VADER W. and TANDBERG A.H. 2019. Gammarid amphipods (Crustacea) in Norway, with a key to the species. Fauna norvegica 39: 12–25.

WALCZOWSKI W., PIECHURA J., GOSZCZKO I. and WIECZOREK P. 2012. Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES Journal of Marine Science 69: 864–869.

WĘSŁAWSKI J.M. 1994. Gammarus (Crustacea, Amphipoda) from Svalbard and Franz Josef Land. Distribution and density. Sarsia 79: 145–150.

WĘSŁAWSKI J.M. and KOTWICKI L. 2018. Macro-plastic litter, a new vector for boreal species dispersal on Svalbard. Polish Polar Research 39: 165–174.

WĘSŁAWSKI J.M. and KULIŃSKI W. 1989. Notes on fishes in Hornsund fjord area (Spitsbergen). Polish Polar Research 10: 241–250.

WĘSŁAWSKI J.M. and LEGEŻYŃSKA J. 2002. Life cycles of some Arctic amphipods. Polish Polar Research 23: 253–264.

WĘSŁAWSKI J.M., DRAGAŃSKA-DEJA K., LEGEŻYŃSKA J. and WALCZOWSKI W. 2018. Range extension of a boreal amphipod Gammarus oceanicus in the warming Arctic. Ecology and Evolution 8: 7634–7632.

WĘSŁAWSKI J.M., KENDALL M.A., WŁODARSKA-KOLWALCZUK M., IKEN K., KĘDRA M., LEGEŻYŃSKA J. and SEJR M.K. 2011. Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Marine Biodiversity 41: 71–85.

WĘSŁAWSKI J.M., LEGEŻYŃSKA J. and WŁODARSKA-KOWALCZUK M. 2020. Will shrinking body size and increasing species diversity of crustaceans follow the warming of the Arctic littoral? Ecology and Evolution 10: 10305–10313.

WĘSŁAWSKI J.M., WIKTOR J., ZAJĄCZKOWSKI M. and SWERPEL S. 1993. Intertidal zone of Svalbard. Macroorganism distribution and biomass. Polar Biology 13: 73–79.

WĘSŁAWSKI J.M., ZAJĄCZKOWSKI M., WIKTOR J. and SZYMELFENIG M. 1997. Intertidal zone of Svalbard 3. Littoral of a subarctic oceanic island, Bjornøya. Polar Biology 18: 45–52.

WILLIS K., COTTIER F., KWASNIEWSKI S., WOLD A. and FALK PETERSEN S. 2006. The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems 61: 39–54.

Go to article

Authors and Affiliations

Jan Marcin Węsławski
Joanna Legeżyńska
Lech Kotwicki
Mikołaj Mazurkiewicz
Sergej Olenin

  1. Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland
  2. Marine Research Institute, Klaipėda University, Universiteto al. 17, 92294, Klaipėda, Lithuania

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers dealing with all aspects of polar research. The journal aims to provide a forum for publication of high-quality research papers, which are of international interest.

We warmly welcome review papers and proposals for thematic Special Issues.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should not be longer than 30 typescript pages, including tables, figures and references. However, upon request, longer manuscripts may be considered for publication. All papers are peer-reviewed. With a submitted manuscript, authors should provide e-mail addresses of at least three suggested reviewers.

Submission of the manuscript should be supported with a declaration that the work described has not been published previously nor is under consideration by another journal.

For text submission, Word file format is preferred. Please use the PPRes style template when preparing the final version of your paper. Pay special attention to writing correctly the list of references with doi. Manuscripts which are not prepared in line with the template will be returned to the authors. Please submit your manuscripts using our online submission system.

The journal does not have article processing charges (APCs) nor article submission charges. No honorarium will be paid to authors for publishing papers.

This page uses 'cookies'. Learn more