Nauki Techniczne

Archives of Environmental Protection

Zawartość

Archives of Environmental Protection | 2020 | vol. 46 | No 4

Abstrakt

Due to the increased environmental awareness, green chemistry becomes an important element of environmental protection. Unfortunately, it generate specific environmental costs, which are related to the use of toxic chemical reagents and waste generation. The most frequently determined analytes include inorganic and organic anions and cations. The methods used so far for their analysis in water, sewage and various other types of samples are increasingly being replaced by ion chromatography methods. This paper presents the most important advantages and limitations of ion chromatography in the context of “green analytical chemistry.” The progress of ion chromatography in gradient and isocratic elution, capillary and multidimensional ion chromatography, as well as miniaturization and methods of sample preparation for analysis, which allow to classify this technique as green analytical chemistry, are described
Przejdź do artykułu

Autorzy i Afiliacje

Rajmund Michalski
1
ORCID: ORCID
Paulina Pecyna-Utylska
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland

Abstrakt

In environmental matrices there are mixtures of parent drug and its metabolites. The majority of research is focused on the biological activity and toxic effect of diclofenac (DCF), there is little research on the biological activity of DCF metabolites and their mixtures. The study focused on the assessment of the biological impact of DCF, its metabolites 4’-hydroxydiclofenac (4’-OHDCF) and 5-hydroxydiclofenac (5-OHDCF) and their mixtures on E. coli strains. The biological effects of tested chemicals were evaluated using the following: E. coli K-12 cells viability assay, the inhibition of bacteria culture growth, ROS (reactive oxygene species) generation and glutathione (GSH) content estimation. Moreover, we examined the influence of the mixture of DCF with caffeic acid (CA) on E. coli cells viability. Our results showed the strongest impact of the mixtures of DCF with 4’-OHDCF and 5-OHDCF on E. coli SM biosensor strains in comparison to parent chemicals. Similar results were obtained in viability test, where we noticed the highest reduction in E. coli cell viability after bacteria incubation with the mixtures of DCF with 4’-OHDCF and 5-OHDCF. Similarly, these mixtures strongly inhibited the growth of E. coli culture. We also found synergistic effect of caffeic acid in combination with DCF on E. coli cells viability. After bacteria treatment with the mixture of DCF and its metabolites we also noted the strongest amount of ROS generation and GSH depletion in E. coli culture. It suggests that oxidative stress is the most important mechanism underlying the activity of DCF and its metabolites.

Przejdź do artykułu

Autorzy i Afiliacje

Marzena Matejczyk
1
Piotr Ofman
2
Katarzyna Dąbrowska
3
Renata Świsłocka
1
Włodzimierz Lewandowski
1

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Division of Chemistry, Biology and Biotechnology, Bialystok, Poland
  2. Bialystok University of Technology, Faculty of Environmental Engineering Technology and Systems, Bialystok University of Technology, Bialystok, Poland
  3. Department of Microbiology, Institute of Agricultural and Food Biotechnology, Warsaw, Poland

Abstrakt

This study aimed to determine the influence of the electric current density on the rate of nitrogen compounds removal (rN) and the specific rate of denitrification (rD) in a rotating electrochemical disk contractor (RECDC) and a rotating electro-biological disk contactor (REBDC). In REBDC and RECDC, the cathode consisted of disks with immobilized biomass and disk, from which biofilm was periodically removed, respectively. An aluminum anode was mounted in contactor chambers. The study was conducted using synthetic wastewater with characteristics similar to wastewater from soilless cultivation of tomatoes. The first stage of the study determined rN and rD in the RECDC. The second stage determined rN and rD in the REBDC. Four hydraulic retention times (HRT) were tested: 4 h, 8 h, 12 h, and 24 h, with electric current densities of 0.63 A/m2, 1.25 A/m2, 2.50 A/m2, 5.00 A/m2, and 10.00 A/m2. In RECDC, a linear dependency was observed between rN and current density in the examined HRTs, whereas in REBDC, a logarithmic dependency was confirmed between rN and current density. In both contactors, an exponential dependency was observed between rD and current density. The specific rate of denitrification decreased when the current density and HRT were increased. The study showed that, in both contactors, the rate of total nitrogen removal increased when the current density was increased and the HRT was decreased.

Przejdź do artykułu

Autorzy i Afiliacje

Joanna Rodziewicz
1
Wojciech Janczukowicz
1
Artur Mielcarek
1
Kamil Bryszewski
1

  1. University of Warmia and Mazury in Olsztyn, Poland

Abstrakt

Operations conducted by petroleum industry generate an entire range of drilling waste. The chemical composition of drilling waste and its toxicity depend primarily on the geological and technological conditions of drilling, the type of drilled rock deposits and on the type and composition of the drilling mud used. In the course of drilling operations, drilling fluids are in constant contact with bacteria, fungi and other organisms infecting the mud. Pioneer species, capable of surviving and using the resources of this specific environment, are selected. For this reason, the effectiveness of microbiota survival on different types of spent drilling muds and in different dilutions with brown soil was measured. Spent drilling muds samples came from drilling operations in various regions of Poland, e.g. Subcarpathia, the Polish Lowland and Pomerania regions. Oxygen consumption after 96 h was around 20 μg·g‒1 dry mass in soil or soil/drilling water-based mud mixture. Soil mixes contained 10 wt% synthetic base, mud had a higher oxygen consumption – 38 μg · g‒1 dry mass. Oxygen consumption decreases sharply as the content of the spent synthetic base mud fraction increases. A higher concentration of spent SBM (35 wt%) reduced the aerobic metabolism by slightly more than 50%. A high concentration of reduced carbon decreased the respiratory quotient (RQ) value to 0.7. All the researched drilling waste shows microbiological activity. At the full concentration of drilling fluids and non-dilution options, the chemical composition (salinity, inhibitors, etc.) strongly inhibits microbiota development and consequently, respiration

Przejdź do artykułu

Autorzy i Afiliacje

Aleksandra Jamrozik
1
Roman Żurek
2
Andrzej Gonet
1
ORCID: ORCID
Rafał Wiśniowski
1

  1. AGH University of Science and Technology, Poland
  2. Polish Academy of Sciences, Institute of Nature Conservation, Poland

Abstrakt

The article presents the research into hygienizing process of chicken manure using calcium peroxide (CaO2) as an environmentally friendly biological deactivation agent. The influence of the addition of CaO2 to chicken manure on the bioavailability of phosphorus was also analyzed. The process of biological deactivation using CaO2, CaO and Ca(OH)2 agents was analyzed applying the disk diffusion method. To optimize the effect of the hygienizing parameters, (CaO2 concentration, pH, temperature and time) on the reduction of Enterobacteriaceae count the Taguchi method was applied. The content of bioavailable phosphorus was measured with the Egner-Riehm method and determined with spectrophotometry. The reduction in bacterial count followed an increase in the concentration of CaO2 in a sample. The optimal experimental conditions (CaO2=10.5 wt.%, pH=9.5, T=40°C, t=180 h) enabled a significant decrease in the Enterobacteriaceae count, from 107 cfu/g to 102 cfu/g. Analysis of the samples with Egner-Riehm method showed that the phosphorus content decreased with the addition of biocide CaO2: from 26.6 mg/l (for 3.5 wt.%) to 3.5 mg/l (for 10.5 wt.%). These values were slightly higher than the content of phosphorus deactivated with Ca(OH)2 i.e., from 11.25 mg/l (for 3.5 wt.%) to 4.49 mg/l (for 10.5 wt.%). The application of CaO2 for hygienizing chicken manure enables effective reduction of Enterobacteriaceae count to an acceptable level (below 1000 cfu/g). In comparison with the traditional techniques of hygienization, the application of CaO2 has a positive effect on the recovery of bioavailable phosphorus.

Przejdź do artykułu

Autorzy i Afiliacje

Angelika Więckol-Ryk
1
Barbara Białecka
2
Maciej Thomas
3

  1. Central Mining Institute, Department of Risk Assessment and Industrial Safety, Poland
  2. Central Mining Institute, Department of Water Protection, Poland
  3. Chemiqua Water & Wastewater Company, Poland

Abstrakt

The anammox (anaerobic ammonia oxidation) process is one of the most efficient processes of nitrogen removal from wastewater. Although there are some applications of anammox-based technologies, it is still difficult to apply this process widely because of the high optimal temperature around 30–40°C. Thus, the main objective of this study was to evaluate the short-term effects of MnO 2 on the anammox and nitrification process activity at a wide range of temperatures between 10 and 30°C, using statistical methods based on the central composite design (CCD). The influence of MnO 2 on anammox and nitrification activity, suspended biomass from the laboratory-scale sequencing batch reactor (SBR), and activated sludge from WWTP, respectively, was used. MnO 2 concentration range was set between 15 and 85 mg/L, and the temperature range was set between 10 and 30°C. Anammox and nitrification process activity was measured based on the batch test and oxygen uptake rate (OUR), respectively. The results were statistically analyzed. Results revealed that nanoparticles can slightly improve anammox activity by several percent, by up to 10%, but in most cases MnO 2 influence was insignificant. The optimal concentration for the anammox stimulation at temperatures below 20°C was evaluated between 40 and 60 mg/L, corresponding to 36 and 56 mg/g VSS. Manganese oxides contribution in the nitrogen removal processes was proved and they should be considered in the field of the anammox process. Thus, further studies are suggested to investigate the long-term effects of MnO 2 on the low-temperature anammox process, overcoming possibility of inhibition
Przejdź do artykułu

Autorzy i Afiliacje

Mariusz Tomaszewski
1
Filip Gamoń
1
Grzegorz Cema
1
Aleksandra Ziembińska-Buczyńska
1

  1. Silesian University of Technology, Gliwice, Poland

Abstrakt

In Mexico, one of the principal natural resources is oil, however, the activity related to it has generated hydrocarbon spills on agricultural soils. The aim of this study was to evaluate the biodegradability of diesel by means of indigenous bacteria isolated from agricultural soil contaminated with 68 900 mg kg -1 diesel. We examined indigenous bacterial strains in agricultural soils contaminated with diesel from Acatzingo, Puebla, Mexico. We performed a physicochemical soil characterization, and a bacterial population quantification favoring sporulated bacteria of the genera Bacillus and Paenibacillus taken from the study site. Six bacterial strains were isolated. The identification was made based on the 16S rRNA gene and API systems. The tolerance and biodegradation capacity in diesel were determined at 4 000 to 24 000 mg L -1 of diesel. Residual concentrations of diesel were determined by GC-FID. Soil contaminated with diesel alters the concentrations of organic matter, phosphorus and nitrogen. Analysis of soil samples showed heat resistant bacterial populations of 106 cfu g -1 dry soil. Six strains from soil pollution were identified – Pseudomonas stutzeri M1CH1, Bacillus pumilus M1CH1b, Bacillus cereus M1CH10, Bacillus subtilis M1CH15a, and Paenibacillus lautus strains M1CH19 and M1CH27. These bacteria showed different degradation behavior. Bacillus pumilus M1HC1b and Paenibacillus lautus M1CH27 use diesel oil as the sole carbon source. Bacillus pumilus degraded high concentrations of diesel (24 000 mg L -1), while for Paenibacillus lautus it became toxic and the degradation was less.
Przejdź do artykułu

Autorzy i Afiliacje

Amparo Mauricio-Gutiérrez
1
Rocío Machorro-Velázquez
2
Teresita Jiménez-Salgado
3
Candelario Vázquez-Crúz
3
María Patricia Sánchez-Alonso
3
Armando Tapia-Hernández
3

  1. CONACYT – Instituto de Ciencias, Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, Mexico
  2. Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Mexico
  3. Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico

Abstrakt

The main objective of presented research work was the assessment of the impact of reduced straw content, as organic carbon source, on the course of sewage sludge composting process. During the research work performed in industrial conditions, the composting process going in periodically overturned windrows differing in proportion of dehydrated sludge, straw and structural material being 4:1:1 and 8:1:2 respectively, was observed. The consequence of increase of sludge concentration with relation to straw was decrease of C:N ratio in the input material from 11.5 to 8.5. The following parameters were analyzed as indicators for the assessment of the composting process: contents of fulvic acids (FA), humic acids (HA), lignin, cellulose and hemicellulose as well as absorbance in UV/VIS (λ=280, 465 and 665 nm) range. The results obtained have indicated that the increase of sludge content extends the elevated temperature (T>50°C) period from 42 days to approximately 65 days. Our tests did not confirm that limitation of straw content added to sewage sludge had any adverse effect on the course of composting. PI index (HA/FA), which qualifies the compost as mature in the first case – No 1, exceeds limit value of 3.6 on the 83rd day whereas, in the second case No 2, on the 48th day.
Przejdź do artykułu

Autorzy i Afiliacje

Robert Sidełko
1
Bartosz Walendzik
1
Małgorzata Smuga-Kogut
1
Beata Janowska
1
Kazimierz Szymański
1
Anna Głowacka
2
Aleksandra Leśniańska
1

  1. Koszalin University of Technology, Poland
  2. West Pomeranian University of Technology Szczecin, Poland

Abstrakt

Hydropower use of watercourses has tangible consequences for the environment, society and economy. Based on a literature review and their own research, the authors present current data on changes in the ecological status of waters within run-of-river and reservoir hydropower plants, i.e. changes in biological elements (benthic macroinvertebrates, plankton, ichthyofauna, macrophytes), as well as hydromorphological and physicochemical changes. Previous researchers have noted that the impact of hydropower use of rivers on ecological status of those rivers is extensive, consisting of, among others, changes in species structure and populations of macrophytes, benthic macroinvertebrates, plankton and ichthyofauna (positive as well as negative changes), algal blooms due to increased turbidity, constrained migration of water organisms, changes in temperature within hydroelectric power plants, the phenomenon of supersaturation, eutrophication, changes in hydrological conditions (e.g., increased amplitudes of diurnal water levels and their consequent annual reduction), and increased erosion below the damming and deposition of bottom sediments on the damming barriers. In addition to such changes in ecological status, hydropower use also has a visible impact on socio-economic conditions (e.g., living standards of the population) and the environment (e.g., quality of bottom sediments and biodiversity). The article offers an assessment of the impact of hydropower use of rivers on ecological status (biological, hydromorphological, physicochemical elements and hydrological conditions of such rivers), society, economy and environment; it also proposes a research scheme to assess the impact of hydropower structures.
Przejdź do artykułu

Autorzy i Afiliacje

Paweł Tomczyk
1
Mirosław Wiatkowski
1

  1. Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Poland

Abstrakt

In water systems, both biologically and chemically synthesized molecules may reduce environmental quality and influence essential ecosystems structure and function. These substances include aldehydes from various sources, also those relates to the activities of primary producers. The focus of the study was vertical distribution of several aliphatic aldehydes and phytoplankton biomass in an urban lake in Poznań (Wielkopolska Lakeland, Poland) under human pressure. Water samples were collected from surface lake to bottom, every 2 m. Plankton was analyzed under inverted and epifluorescence microscopes. The biomass was estimated from microscopic measurements and cell volume of each species. Thirteen aldehydes and acetone were analyzed using gas chromatography with an electron capture detector after derivatization and extraction processes. Aldehydes concentrations varied between 32.7 and 346.2 μg L-1. Formaldehyde, acetaldehyde and propanal were characterized by the highest concentration both at low and high phytoplankton biomass. Phytoplankton biomass included prokaryotic and eukaryotic cells, and ranged between 0.25 and 2.94 mg L-1. Cryptophytes and diatoms were often the most important components of phytoplankton communities, although in some cases the haptophytes and dinophytes comprised a much higher proportion. Total aldehyde concentration was significantly correlated with total phytoplankton biomass (r=0.705, p <0.05), and even higher correlation was observed between acetone and phytoplankton biomass (r=0.917). This indicates phytoplankton as an important source of carbonyl compounds in surface waters. Thus, the knowledge of different aspects of their origin and distribution in the lake is important both in ecological research and in water management.

Przejdź do artykułu

Autorzy i Afiliacje

Elżbieta Szeląg-Wasielewska
1
Agata Dąbrowska
2

  1. Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
  2. Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poland

Abstrakt

The research determined the concentrations of selected polycyclic aromatic hydrocarbons (PAHs) in water and sediments of Kłodnica River reservoirs and distribution depending on number of rings, ecotoxicological impact on studied ecosystems and possible sources of origin. Samples were subjected to qualitative and quantitative analysis by gas chromatography coupled with a GC-MS mass detector, using a ZB-5MS column and electron ionization. The sum of 16 PAHs in water ranged 0.111–0.301 μg/L (mean 0.200 μg/L) in Dzierżno Duże, 0.0410–0.784 μg/L (mean 0.303 μg/L) in Dzierżno Małe and 0.0920–1.52 μg/L (mean 0.596 μg/L) in Pławniowice. While in sediments respectively: 17.5–37.2 μg/g (mean 26.8 μg/g), 4.33–8.81 μg/g (6.43 μg/g) and 2.27–9.50 μg/g (5.30 μg/g). The concentration of PAHs in sediments of reservoirs, which spatial management of the catchment area accounts for over 90% of agricultural and forest land, was up to eight times lower than in sediments of the reservoir which is 69%, while built-up and transport areas are 24%. In sediments of Dzierżno Małe and Pławniowice PAHs with 5 and 6 rings dominate, while in Dzierżno Duże – 2 and 3 rings. Higher concentrations of PAHs with higher molecular weight, found in the bottom water layers, confirm the role of the sedimentation process in the transport of these compounds in reservoirs. Assessment of sediment quality, based on ecotoxicological criteria, showed that PAHs may cause toxic effects in Dzierżno Duże, while in Dzierżno Małe and Pławniowice can cause sporadic adverse effects. The likely source of PAHs in reservoirs is low emissions.
Przejdź do artykułu

Autorzy i Afiliacje

Alina Pohl
Maciej Kostecki
ORCID: ORCID

Abstrakt

The aim of this study was an assessment of feasibility of conversion of sewage holding (SH) tanks to rainwater harvesting (RWH) tanks in Poland. Such a conversion may partly solve the problem of water scarcity for irrigation of plants in individual small gardens and reduce tap water consumption. Seven methods of RWH tanks sizing were applied to an example of a small harvesting system of the roof area equal to the garden irrigation area of 100 m2 for three different irrigation doses. A new criterion was introduced to optimize the tank capacity. Economic optimization was provided for new RWH tanks and for the tanks adapted from abandoned SH tanks. Results obtained for a system sited in west-central Poland in an average year have shown that design capacity of RWH tanks varied markedly between sizing methods. The conversion of SH tanks to RWH tanks is profitable, especially for irrigation due to scarcity of water in relatively dry west-central regions. Conversion of individual SH tanks in a good technical state to RWH tanks is relatively simple and cheap. The potential increase in storage volume due to the conversion of individual SH tanks to RWH tanks could reach all over Poland 215–350 dam3 per year, and individually can save up to 18–25% of total annual water use.

Przejdź do artykułu

Autorzy i Afiliacje

Sadżide Murat-Błażejewska
1
Ryszard Błażejewski
1

  1. Poznań University of Life Sciences, Poland

Instrukcja dla autorów

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Procedura recenzowania

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Recenzenci

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Polityka antyplagiatowa

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji