Nauki Techniczne

Archives of Environmental Protection

Zawartość

Archives of Environmental Protection | 2023 | vol. 49 | No 3

Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In the context of China’s new infrastructure construction developing rapidly, this paper explores the sustainable new infrastructure green development pattern. We establish qualitative and quantitative indicators for green technology innovation (GTI) at both the societal macro level and enterprise micro level, capturing the multidimensional nature of China’s green innovation dynamic. Additionally, we create an indicator system for China’s new infrastructure investment intensity (NTI) across three areas: information infrastructure, integration infrastructure, and innovation infra-structure. Using provincial panel data from 2010 to 2020, we construct a coupling coordination degree model (CCDM) to examine the level of coordination between NTI and GTI. Our findings reveal that: the degree of coordination between NTI and GTI follows a U-shaped curve, with both subsystems remaining far from highly coordinated during rapid development; the coupling level of NTI and GTI in China is currently at a near dissonance level overall; the degree of coupling and coordination between NTI and GTI is mainly influenced by policies, and the coupling level is higher on the enterprise side than on the societal side; the two parameters (α-NTI and β-GTI) widely used in prior studies have less of an effect on the coordinated coupling system than other factors considered herein.
Przejdź do artykułu

Bibliografia

  1. Aguilera-Caracuel, J. & Ortiz-de-Mandojana, N. (2013). Green innovation and financial performance: An institutional approach. Organization & Environment. 26(4), 365-385. DOI:10.1177/1086026613507931
  2. Allenby, B. & Chester, M. (2018). Reconceptualizing infrastructure in the Anthropocene. Issues in Science and Technology. 34(3), 58-63. Retrieved from http://issues.org/34-3/reconceptualizing-infrastructure-in-the-anthropocene/
  3. Arenhardt, D. L., Battistella, L. F. & Grohmann, M. Z. (2016). The influence of the green innovation in the search of competitive advantage of enterprises of the electrical and electronic Brazilian sectors. International Journal of innovation management. 20(01), 1650004. DOI:10.1142/S1363919616500043
  4. Bartlett, M. S. (1950). Tests of significance in factor analysis. British journal of psychology. DOI:10.1111/j.2044-8317.1950.tb00285.x
  5. Bougheas, S., Demetriades, P. O. & Morgenroth, E. L. (1999). Infrastructure, transport costs and trade. Journal of international Economics. 47(1), 169-189. DOI:10.1016/S0022-1996(98)00008-7
  6. Chao, X. (2020). The Path of New Digital Infrastructure to Promote High-Quality Development in China. Journal of Xi'an University of Finance and Economics. 33(02):15-19. DOI:10.19331j.cnki.jxufe.2020.02.003
  7. Chen, Y. S. (2008). The driver of green innovation and green image–green core competence. Journal of business ethics. 81, 531-543. DOI:10.1007/s10551-007-9522-1
  8. Chen, Y. S., Chang, C. H. & Wu, F. S. (2012). Origins of green innovations: the differences between proactive and reactive green innovations. Management Decision. 50(3), 368-398. DOI:10.1108/00251741211216197
  9. Chester, M. V. Markolf, S. & Allenby, B. (2019). Infrastructure and the environment in the Anthropocene. Journal of Industrial Ecology. 23(5), 1006-1015. DOI:10.1111/jiec.12848
  10. Doyle, M. W. & Havlick, D. G. (2009). Infrastructure and the environment. Annual Review of Environment and Resources. 34(1), 349-373. DOI:10.1146/annurev.environ.022108.180216
  11. Du, X., Zhang, H. & Han, Y. (2022). How Does New Infrastructure Investment Affect Economic Growth Quality? Empirical Evidence from China. Sustainability. 14(6), 3511. DOI:10.3390/su14063511
  12. Fan, H. & Wu, T. (2022). New Digital Infrastructure, Digital Capacity and Total Factor Productivity. Research on Economics and Management. 43(01): 3-22. DOI:10.13502/j.cnki.issn1000-7636.2022.01.001
  13. Gong, X., Li, D. & Zhao, X. (2022). New infrastructure investment, industrial integration capacity and high-quality economic development. Price: Theory & Practice. (04), 9-13. DOI: 10.19851/j.cnki.cn11-1010/f.2022.04.156.
  14. Gu, B. & Liao, L. (2022). Measurement and Spatial-temporal Pattern Evolution of the Coupling and Coordination Level between New Infrastructure Investment and Technological Innovation Capability. Science & Technology Progress and Policy. DOI:10.6049/kjjbydc.2022030636 (in Chinese)
  15. Guo, K., Pan, S. & Yan, S. (2020). New Infrastructure Investment and Structural Transformation. Chin Ind Econ. (03),63-80. DOI:10.19581/j.cnki.ciejournal.2020.03.014
  16. He, Y. & Zhao, X. (2021). Does the New Digital Infrastructure Contribute to the Upgrading of Industrial Structure: Evidence from 272 Cities in China. Science & Technology Progress and Policy. (17), 79-86. DOI:10.6049/kjjbydc.2020120317
  17. Hou, Y., Zhang, K., Zhu, Y. & Liu, W. (2021). Spatial and temporal differentiation and influencing factors of environmental governance performance in the Yangtze River Delta, China. Science of The Total Environment. 801, 149699. DOI:10.1016/j.scitotenv.2021.149699
  18. Jiang, W., Fan, J. & Zhang, X. (2020). New Infrastructure” in China: Research on Investment Multiplier and Its Effect. Nanjing Journal of Social Sciences. (04), 20-31. DOI:10.15937/j.cnki.issn1001-8263.2020.04.004.
  19. Kaiser, H. F. & Rice, J. (1974). Little jiffy, mark IV. Educational and psychological measurement. 34(1), 111-117. DOI:10.1177/001316447403400115
  20. Kuang, A., Jiang, X. & Chang, Q. (2021). New Infrastructure", Innovation Quality and Digital Economy: Based on the Empirical Study of Chinese Provincial Data. Modern Management Science. (05):99-108. DOI:10.3969/j.issn.1007-368X.2021.05.011 (in Chinese).
  21. Li, H. (2022). Digital New Infrastructure, Spatial Spillover and High-quality Economic Development. Inquiry into Economic Issues. (06): 28-39. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=JJWS202206003&DbName=DKFX2022
  22. Liu, F. & Su, C. (2021). Theoretical analysis and empirical research on the role of "new infrastructure" in China's high-quality economic development. Shandong Soc. Sci. 35 (04), 121–127. DOI:10.14112/j.cnki.37-1053/c.2021.05.020. (in Chinese).
  23. Liu, H. & Li, Q. (2020). New Infrastructure Accelerates the Transformation and Upgrading of Manufacturing Industry. Contemporary Economic Management. (09),26-31. DOI:10.13253/j.cnki.ddjjgl.2020.09.004.
  24. Luo, S.; Yimamu, N.; Li, Y.; Wu, H.; Irfan, M. & Hao, Y. (2022). Digitalization and sustainable development: How could digital economy development improve green innovation in China?. Business Strategy and the Environment. DOI:10.1002/bse.3223
  25. Lyu, S. & Bi, Y. (2022). New Infrastructure Investment and China's High-quality Economic Development: A Study Based on the Theory of American Social Structures of Accumulation. Shanghai Journal of Economics. (10): 57-67. DOI:10.19626/j.cnki.cn31-1163/f.2022.10.004
  26. Namlu, A. G. & Odabasi, H. F. (2007). Unethical computer using behavior scale: A study of reliability and validity on Turkish university students. Computers & Education. 48(2), 205-215. DOI:10.1016/j.compedu.2004.12.006
  27. Oduro, S., Maccario, G. & De Nisco, A. (2022). Green innovation: a multidomain systematic review. European Journal of Innovation Management. 25(2), 567-591. DOI:10.1108/EJIM-10-2020-0425
  28. Pan, Y. & Gu, H. (2022). The Impact of New Infrastructure Investment on the Transformation and Upgrading of the Service Industry. Reform. (07): 94-105. http://www.reform.net.cn/qkdd/news/2022-7/292_6466.shtml
  29. Rasheed, F. A. & Abadi, M. F. (2014). Impact of service quality, trust and perceived value on customer loyalty in Malaysia services industries. Procedia-Social and Behavioral Sciences. 164, 298-304. DOI:10.1016/j.sbspro.2014.11.080
  30. Rehman, S. U., Kraus, S., Shah, S. A., Khanin, D. & Mahto, R. V. (2021). Analyzing the relationship between green innovation and environmental performance in large manufacturing firms. Technological Forecasting and Social Change. 163, 120481. DOI:10.1016/j.techfore.2020.120481
  31. Shang, W. (2020). Effects of New Infrastructure Investment on Labor Productivity: Based on Producer Services Perspective. Nankai Economic Studies. (06),181-200. DOI:10.14116/j.nkes.2020.06.011.
  32. Sheng, K. & Shi, M. (2021). Promoting Industrial Transformation and Upgrading with New Infrastructure Construction. Journal of Jiangsu Administration Institute. (02),42-49. DOI:10.3969/j.issn.1009-8860.2021.02.006
  33. Song, D., Li, C. & Li, X. (2021). Does the construction of new infrastructure promote the 'quantity' and 'quality' of green technological innovation-evidence from the national smart city pilot). China population, resources and environment. 31(11):155-164. DOI:10.12062/cpre.20210411 (in Chinese
  34. Takalo, S. K. & Tooranloo, H. S. (2021). Green innovation: A systematic literature review. Journal of Cleaner Production. 279, 122474. DOI:10.1016/j.jclepro.2020.122474
  35. Wan, G. & Zhang, Y. (2018). The direct and indirect effects of infrastructure on firm productivity: Evidence from Chinese manufacturing. China Economic Review. 49, 143-153. DOI:10.1016/j.chieco.2017.04.010
  36. Wan, S. & Tang, K. (2020). Research on the Mechanism and Path of New Infrastructure to Promote the High-Quality Development of County Economy. Regional Economic Review. (05): 69-75. DOI:10.14017/j.cnki.2095-5766.2020.0090.
  37. Wang, Q. J., Wang, H. J. & Chang, C. P. (2022). Environmental performance, green finance and green innovation: What's the long-run relationships among variables?. Energy Economics. 110, 106004. DOI:10.1016/j.eneco.2022.106004
  38. Wang, W. & Liao, H. (2022). How Will the New Infrastructure Affect the Economic Integration of the Guangdong-Hong Kong-Macao Greater Bay Area-From the Perspective of Spatial Spillover Effect. Finance & Economics. (08): 93-105. DOI:10.3969/j.issn.1000-8306.2022.08.008
  39. Wang, Z. & Li, E. (2022). How Does Government Spending on Infrastructure Balance Stabilizing Growth and Adjusting Structure—From the Perspective of Production Network. Economic Perspectives. (08), 25-44. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=JJXD202208003&DbName=CJFQ2022
  40. Wen, C., Tan, J., Hu, Y., Zhao, B. & Li, Y. (2022). Research on Impact of New Infrastructure Construction on Urban Green Transformation in Upper Reaches of Yangtze River: Based on Perspective of Production-Living-Ecological Space. Resources and Environment in the Yangtze Basin. (08),1736-1752. DOI:10.11870/cjlyzyyhj202208009 (in Chinese).
  41. Wen, C., Tan, J., Li, Y. & Zhao, B. (2021). Research on the Emission Reduction Effect and Its Mechanism of New Infrastructure Construction. Journal of Industrial Technological Economics. (12),122-130. DOI:10.3969/j.issn.1004-910X.2021.12.014
  42. Wu, X., Huang, X. & Zhong, P. (2021). Measurement and coupling mechanism of the coupling and coordinated development of new infrastructure construction and strategic emerging industries. Scientia Geographica Sinica. 41(11):1969-1979. DOI:10.13249/j.cnki.sgs.2021.11.010
  43. Xu, W., Chen, X., Zhou, J., Liu, C. & Zheng, J. (2022). Coupling and Coordination of New and Traditional Infrastructure Construction: Temporal and Spatial Patterns, Regional Differences and Driving Factors. Journal of Industrial Technological Economics. (01),94-103. DOI:10.3969/j.issn.1004-910X.2022.01.012
  44. Yu, P. & Xu, Z. (2023). The Impact of Digital New Infrastructure on the Green Technology Innovation Efficiency of Strategic Emerging Industries. Journal of Industrial Technological Economics. (01),62-70. DOI:10.3969/j.issn.1004-910X.2023.01.008. (in Chinese).
  45. Zhang, H., Geng, C. & Wei, J. (2022). Coordinated development between green finance and environmental performance in China: The spatial-temporal difference and driving factors. Journal of Cleaner Production. 346, 131150. DOI:10.1016/j.jclepro.2022.131150
  46. Zhang, Q. & Ru, S. (2021). Research on the Path of New Digital Infrastructure to Promote Virtual Agglomeration of Modern Service Industry. Inquiry into Economic Issues. (07): 123-135. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=JJWS202107013&DbName=DKFX2021
  47. Zhao, X. (2022). Research on the Technology Innovation Effect of New Digital Infrastructure. Statistical Research. (04),80-92. DOI:10.19343/j.cnki.11-1302/c.2022.04.006
  48. Zhu, K., Xiang, G. & Yang, S. (2023). Will Mismatched New Infrastructure Investment Cause Air Pollution Crisis? Environmental Impact Analysis Based on the Coupling Degree of Digital Economy and new Infrastructure Investment. In Polish Journal of Environmental Studies. HARD Publishing Company. DOI:10.15244/pjoes/165910
  49. Zhu, S. He, C. & Liu, Y. (2014). Going green or going away: Environmental regulation, economic geography and firms' strategies in China's pollution-intensive industries. Geoforum. 55, 53-65. DOI:10.1016/j.geoforum.2014.05.004
Przejdź do artykułu

Autorzy i Afiliacje

Kunjie Zhu
1
Simin Yang
1

  1. Department of Economics and Trade, Hunan University of Technology and Business, Hunan, China.
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Plastics are one of the most widely used materials, and, in most cases, they are designed to have long life spans. Since plastic and packaging waste pollute the environment for many years, their disposal is of great importance for the environment and human health. In this paper, a system was developed to store liquid fuel from plastic and organic waste mixes without solidification, which then can be used as fuel in motor vehicles and construction machinery. For this purpose, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and organic wastes and clay, zeolite, and MCS23-code materials (50% magnetite- %25 calcium oxide- %25 sodium chloride) were heated in a closed medium at temperatures ranging from 300 to400 oC and subsequently re-condensed. The study conducted twenty tests, involving various types and rates of plastic and organic materials, as well as different rates of catalysts. Among these tests, the highest liquid fuel yield (67.47%) was achieved in Test 9, where 50% PVC-50% PET waste, 75 g of clinoptilolite, and 500 g of MCS23 waste were collectively used. Notably, Test 12 exhibited the highest density value (79.8 kg/m3), while the best viscosity value (2.794 mm2/s) was observed in Test 2. Across all samples, flash point values were found to be below 40oC. The most favorable yield point value was recorded in Test 2 (-6oC). The samples displayed ash content within the range of 0 to0.01% (m/m)] and combustion heat values of 35.000> J/g which fall within the standard range. The incorporation of MCS23 with clinoptilolite additives is believed to have a significant impact on obtaining high-yield products with improved fuel properties.
Przejdź do artykułu

Bibliografia

  1. Allende S., Brodie G. & Jacob M.V. (2022) Energy recovery from sugarcane bagasse under varying microwave-assisted pyrolysis conditions, Bioresource Technology Reports, 20, 101283, ISSN 2589-014X, DOI: 10.1016/j.biteb.2022.101283
  2. Damodharan D., Kumar B.R., Gopal K., De Poures M.V. & Sethuramasamyraja B., (2019). Utilization of waste plastic oil in diesel engines: a review. Reviews in Environmental Science and Bio/Technology. 18, pp. 681-697. DOI: 10.1007/s11157-019-09516-x
  3. DIN, DIN 51900-2, 2003. Petroleum products – Petroleum products – Determination of Heat of Combustion – Bomb Calorimetry Method, Berlin. DOI: 10.31030/9447973
  4. Dorado C., Mullen C.A. & Boateng A.A., (2014). Origin of carbon in aromatic and olefin products derived from HZSM-5catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling. Applied CatalysisB: Environmental. 162, pp. 338-345. DOI: 10.1016/j.apcatb.2014.07.006
  5. Erşen T, & Pehlivan D, 2011. High density polyethylene – Co-pyrolysis of wood blends. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 26, pp. 607-612.
  6. Kalargaris I., Tian G. & Gu S., (2017). The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy. 131, pp. 179-185. DOI: 10.1016/j.energy.2017.05.024
  7. Kaminsky W. & Kim J.S., (1999). Pyrolysis of mixed plastics into aromatics. Journal of Analytical and Applied Pyrolysis. 51, pp. 127-134. DOI: 10.1016/S01652370(99)00012-1
  8. Kaminsky W., Predel M. & Sadiki A., (2004). Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polymer Degradation and Stability. 85, pp. 1045-1050, 146. DOI: 10.1016/j.polymdegradstab.2003.05.002
  9. Kirov N.Y. & Peck M.A. (1970). Characteristics of chars from fluid-bed coal carbonization, Fuel, 49( 4), pp. 375-394. DOI: 10.1016/S0016-2361(70)80003-5.
  10. Krishnamurthy S., Shah Y.T. & Stiegalt G.J. (1980). Pyrolysis of coal liquids, Fuel, 59(11), pp. 738-746. DOI: 10.1016/0016-2361(80)90247-1
  11. Lee D-J., (2022). Gasification of municipal solid waste (MSW) as a cleaner final disposal route: A mini-review. Bioresource Technology. 344, 126217. DOI: 10.1016/j.biortech.2021.126217
  12. Liu B., Han Z., Li J. & Yan B. (2022). Comprehensive evaluation of municipal solid waste power generation and carbon emission potential in Tianjin based on Grey Relation Analysis and Long Short Term Memory. Process Safety and Environmental Protection, 168, pp. 918-927. DOI: 10.1016/j.psep.2022.10.065
  13. Liu Q., Sheng Y. & Wang Z. (2023). Co-pyrolysis with pine sawdust reduces the environmental risks of copper and zinc in dredged sediment and improves its adsorption capacity for cadmium. Journal of Environmental Management, 334, 117502, DOI: 10.1016/j.jenvman.2023.117502
  14. Mazumdar B.K. & Chatterjee N.N. (1973). Mechanism of coal pyrolysis in relation to industrial practice. Fuel, 52(1), pp. 11-19. DOI: 10.1016/0016-2361(73)90005-7
  15. Ma J., Feng S., Zhang Z., Wang Z., Kong W., Yuan P., Shen B. & Mu L. (2022). Pyrolysis characteristics of biodried products derived from municipal organic wastes: Synergistic effect of bulking agents and modification of biodegradation, Environmental Research. 206, 112300., DOI: 10.1016/j.envres.2021.112300
  16. Miranda R., Pakdel H., Roy C. & Vasile C., (2001). Vacuum pyrolysis of commingled plastics containing PVC II. Product analysis. Polymer Degradation and Stability. 73, pp.47-67. DOI: 10.1016/S0141-3910(01)00066-0
  17. Öngen A., Karabag N., Yiğit H.S., Özcan H.K., Elmaslar Ö.E. & Aydın S., (2019). An Assessment of Pyrolysis Process for the Treatment of Agricultural and Forest Wastes. Recyclıng And Reuse Approaches For Better Sustaınabılıty. pp. 97110. DOI: 10.1007/978-3-319-95888-0_9
  18. Öngen A., Özcan H.K. & Elmaslar Ozbas E. (2016). Gasification of biomass and treatment sludge in a fixed bed gasifier. Internatıonal Journal of Hydrogen Energy, vol.41(19), 8146-8153. DOI: 10.1016/j.ijhydene.2015.11.159
  19. Öngen A., Özcan H.K., Elmaslar Özbaş, E. & Pangaliyev Y. (2019). Gasification of waste tires in a circulating fixed-bed reactor within the scope of waste to energy. Clean Technologies and Environmental Policy,.21,pp. 1281-1291. DOI: 10.1007/s10098-019-01705-0
  20. Özcan H.K., Öngen A. & Pangaliyev Y., (2016). An Experimental Study of Recoverable Products from Waste Tire Pyrolysis. Global Nest Journal. 3, pp. 582-590. DOI: 10.30955/gnj.001907
  21. Pan R. & Debenest G., (2022). Numerical investigation of a novel smoldering-driven reactor for plastic waste pyrolysis. Energy Conversion and Management, 257, 115439.DOI: 10.1016/j.enconman.2022.115439.
  22. Pan R., Martins M.F. & Debenest G., (2022). Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon. Energy, 248, 123514. DOI: 10.1016/j.energy.2022.123514
  23. Pan R., Lougou B. G., Shuai Y. & Debenest G. (2023). A multidimensional numeric study on smoldering-driven pyrolysis of waste polypropylene. Process Safety and Environmental Protection, 172, pp. 305-316. DOI: 10.1016/j.psep.2023.02.018
  24. Papari S., Bamdad H. & Berruti F. (2021). Pyrolytic conversion of plastic waste to value-added products and fuels: A Review. Materials. 14(10), 2586. DOI: 10.3390/ma14102586
  25. Pinto F., Costa P., Gülyurtlu I. & Cabrita I. (1999). Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. Journal of Analytical and Applied Pyrolysis. 51, pp. 39-55. DOI: 10.1016/S0165-2370(99)00007-8
  26. Saliba M., Frantzi S. & Beukering P. (2022). Shipping spills and plastic pollution: A review of maritime governance in the North Sea. Marine Pollution Bulletin, 181, 113939, DOI: 10.1016/j.marpolbul.2022.113939
  27. Schafer H.N.S. (1979). Pyrolysis of brown coals. 2. Decomposition of acidic groups on heating in the range 100–900 °C. Fuel, 58(9), pp. 673-679. DOI: 10.1016/0016-2361(79)90222-9
  28. Sharma B.K., Moser B.R., Vermillion K.E., Doll K.M. & Rajagopalan N. (2014). Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Processing Technology. 122, pp. 79-90. DOI: 10.1016/j.fuproc.2014.01.019
  29. Sogancioglu M., Ahmetli G. & Yel E. (2017). A Comparative Study on Waste Plastic Pyrolysis Liquid Products Quantity and Energy Recovery Potential. Energy Procedia, 118, pp.221-226. DOI: 10.1016/j.egypro.2017.07.020
  30. TS, TS 1233 ISO 3016, (1997). Petroleum products-Determination of pour point, Ankara. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073081055057051113111083082048090121
  31. TS, TS 1451 EN ISO 3104, (1999). Petroleum products-Transparent and opaque liquids-Kinematic viscosity determination and calculation of dynamic viscosity, Ankara. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073083077102090084083076053089099056
  32. TS, TS 6147 EN ISO 12937, (2002). Petroleum products- Water determination- Calometric Karl fischer titration method, Ankara. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073081107087097053098049101074085051
  33. TS, TS EN ISO 12185, (2007). Crude oil and petroleum products- Density determination - oscillating u-Tube method, Ankara. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073087088047079051101109088047113066
  34. TS, TS EN ISO 2719, (2016). Petroleum products and lubricants - Determination of flash point - Pensky Martens closed cup method, Ankara. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073082090086090075081118122084111048
  35. TS, TS EN ISO 6245, (2006). Petroleum products – Ash determination, Ankara. https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073084090047056119107056057109067090)
  36. Williams P.T. & Williams E.A. (1999). Interaction of Plastics in Mixed-Plastics Pyrolysis. Energy & Fuels.13, pp. 188-196. DOI:10.1021/ef980163x
  37. Williams P.T. & Slaney E. (2007). Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures. Resources, Conservation and Recycling. 51, pp. 754-769. DOI: 10.1016/j.resconrec.2006.12.002
  38. Varank G., Öngen A., Guvenc S. Y., Ozcan H. K., Ozbas E. & Guven E.C. (2022). Modeling and optimization of syngas production from biomass gasification. International Journal of Envıronmental Science and Technology, 19(4), pp. 3345-3358. DOI: 10.1007/s13762-021-03374-3
  39. Vinti G., Bauza V., Clasen T., Tudor T., Zurbrügg C. & Vaccari M. (2023). Health risks of solid waste management practices in rural Ghana: A semi-quantitative approach toward a solid waste safety plan. Environmental Research, 216(3), 114728. DOI: 10.1016/j.envres.2022.114728
  40. Zhang C., Hu M., Maio F., Sprecher B., Yang X. & Tukker A. (2022). An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Science of The Total Environment, 803, 149892. DOI: 10.1016/j.scitotenv.2021.149892 .
  41. Zhang J., Jin J., Wang M., Naidu R., Liu Y., Man Y.B., Liang X., Wong M.H., Christie P., Zhang Y., Song C. & Shan S. (2020). Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility. Environmental Research, 191, 110034. DOI: 10.1016/j.envres.2020.110034
Przejdź do artykułu

Autorzy i Afiliacje

Mehmet Can Sarıkap
1
Fatma Hoş Çebi
2
ORCID: ORCID

  1. İstanbul University-Cerrahpaşa, Turkey
  2. Karadeniz Technical University, Turkey
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The zinc and lead industry generates substantial quantities of waste. Among the many types of wastes, such as dust or liquid, a large proportion are solid waste such as slags. The purpose of the study was the qualitative and quantitative assessment of the short rotary kiln slags and slags deposited in a hazardous waste landfill originating from zinc and lead metallurgy. This assessment represents the primary step in evaluating materials such as slags concerning their potential for substantial applications, such as process for metal separation. Additionally, this evaluation forms the basis for a comprehensive environmental study. The concentrations of the four predominant metals – Fe>Pb>Zn>Cu – and accompanying elements – Na>Ca>K>Ni>Mn>Cr – were determined using atomic absorption spectroscopy (AAS) after aqua regia digestion. A large variation was found in the phase analysis of the studied materials based on SEM, XRD, X-ray microanalysis, and BCR sequential extraction. The BCR analysis revealed the occurrence of major metals in four different fractions: acid-soluble, reducible, oxidizable, and residual. Pb was mainly present in the acid-soluble fraction, while Fe, Cu, and Zn were present in the residual fraction.
Przejdź do artykułu

Bibliografia

  1. Alan, M. and D. Kara (2019). Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around boron mines in Turkey, Talanta, 194, pp. 189-198. DOI: 10.1016/j.talanta.2018.10.030.
  2. Baczewska, A. H., W. Dmuchowski, B. Gworek, P. Dąbrowski and P. Brągoszewska (2016). Comparison of bioindication methods for assessing the level of air pollution with heavy metals in Warsaw, Przemysł Chemiczny, 95/3, pp. 334-338. DOI: 10.15199/62.2016.3.1.
  3. Bernasowski, M., A. Klimczyk and R. Stachura (2017). Overview of Zinc Production in Imperial Smelting Process. Iron and Steelmaking Conference 4-6.10.2017, Horní Bečva, Česká republika.
  4. Briffa, J., E. Sinagra and R. Blundell (2020). Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6, 9, pp. 1-26. DOI: 10.1016/j.heliyon.2020.e04691.
  5. Cabała, J. (2009). Heavy metals in the soil environment of Olkusz Zn-Pb ore mining regions. Wydawnictwo Uniwersytetu Śląskiego Katowice 2009 (in Polish)
  6. Chao-Yin, K., W. Chung-Hsin and L. Shang-Lien (2005). Removal of copper from industrial sludge by traditional and microwave acid extraction, Journal of Hazardous Materials, 120, 1-3, pp. 249-256. DOI: 10.1016/j.jhazmat.2005.01.013.
  7. Dan Chen, Wing Yin Aua, A. R. Stijn van Ewijk and J. Stegemann (2021). Elemental and mineralogical composition of metal-bearing neutralisation sludges and zinc speciation – A review, Journal of Hazardous Materials, 416, 2. DOI: 10.1016/j.jhazmat.2021.125676.
  8. Ettler, V., F. Bodenan and O. Legendre (2001). Primary phases and natural weathering of old lead-zind pyrometallurgical slag from Pribram, Czech Republic, The Canadian Mineralogist, 39, pp. 873-888. DOI: 10.2113/gscanmin.39.3.873.
  9. Gao, H., G. F. Koopmans, J. Song, J. E. Groenenberg, X. Liu, R. N. J. Comans and L. Weng (2022). Evaluation of heavy metal availability in soils near former zinc smelters by chemical extractions and geochemical modelling, Geoderma, 423. DOI: 10.1016/j.geoderma.2022.115970.
  10. Herreweghe, S. V., R. Swennen, C. Vandecasteele and V. Cappuyns (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples, Environmental Pollution, 122, pp. 323-342. DOI: 10.1016/S0269-7491(02)00332-9.
  11. Izydorczyk, G., K. Mikula, D. Skrzypczak, K. Moustakas, A. Witek-Krowiak and K. Chojnacka (2021). Potential environmental pollution from copper metallurgy and methods of management, Environmental Research, 197, pp. 1-11. DOI: 10.1016/j.envres.2021.111050.
  12. Jin, Z., T. Liu, Y. Yang and D. Jackson (2014). Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition, Ecotoxicology and Environmental Safety, 104, pp. 43-50. DOI: 10.1016/j.ecoenv.2014.02.003.
  13. Jonczy, I., M. Kamińska, B. Chwedorowicz and B. Kowalski (2017). The use of X-ray Spectral Analysis in Microareas in the determination of elements accompanying minerals of Zinc-Lead Ores from the Klucze I deposit. Systemy Wspomagania w Inżynierii Produkcji Górnictwo Zrównoważonego Rozwoju 2016, P. A. Nova. (in Polish)
  14. Ke, W., J. Zeng, F. Zhu, X. Luo, J. Feng, J. He and S. Xue (2022). Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting, Environmental Pollution, 307, pp. 1-11. DOI: 10.1016/j.envpol.2022.119586.
  15. Król, A., K. Mizerna and M. Bożym (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag, Journal of Hazardous Materials, 384, 121502, pp. 1-9. DOI: 10.1016/j.jhazmat.2019.121502.
  16. Kruk, M. (2022). Comparison of digestion methods of slag samples from zinc and lead industry to identify the content of selected metals. ArchaeGraph. Łódź 2022 (in Polish)
  17. Lestari, F. Budiyanto and D. Hindarti (2018). Speciation of heavy metals Cu, Ni and Zn by modified BCR sequential extraction procedure in sediments from Banten Bay, Banten Province, Indonesia, IOP Conference Series: Earth and Environmental Science, 118, 1, pp. 1-7. DOI: 10.1088/1755-1315/118/1/012059.
  18. Li, L., Y. Zhang, J. A. Ippolito, W. Xing, K. Qiu and H. Yang (2020). Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans, Environmental Pollution, 257, pp. 1-7. DOI: 10.1016/j.envpol.2019.11361.
  19. Li, Y., I. Perederiy and V. G. Papangelakis (2008). Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching, Journal of Hazardous Materials, 152, pp. 607-615. DOI: 10.1016/j.jhazmat.2007.07.052.
  20. Luo, S., S. Zhao, P. Zhang, J. Li, X. Huang, B. Jiao and D. Li (2022). Co-disposal of MSWI fly ash and lead–zinc smelting slag through alkali-activation technology, Construction and Building Materials, 327, pp. 1-10. DOI: 10.1016/j.conbuildmat.2022.127006.
  21. Margui, V. Salvado, I. Queralt and M. Hidalgo (2004). Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes, Analytica Chimica Acta, 524, pp. 151-159. DOI: 10.1016/j.aca.2004.05.043.
  22. Nowińska, K. and Z. Adamczyk (2013). The mobility of accompanying elements to wastes from metallurgy of the zinc and the leadon in the environment, Górnictwo i Geologia, T. 8, z. 1, pp. 77-87. (in Polish)
  23. Nowińska, K. and Z. Adamczyk (2017). Slags of the Imperial Smelting Process for Zn and Pb production, Reference Module in Materials Science and Materials Engineering, pp. 1-5. DOI: 10.1016/B978-0-12-803581-8.03607-9.
  24. Pan, D. a., L. Li, X. Tian, Y. Wu, N. Cheng and H. Yu (2019). A review on lead slag generation, characteristic, and utilization, Resources, Conservation & Recycling, 146, pp. 140-155. DOI: 10.1016/j.resconrec.2019.03.036.
  25. Patle, A., R. Kurrey, M. K. Deb, T. K. Patle, D. Sinha and K. Shrivas (2022). Analytical approaches on some selected toxic heavy metals in the environment and their socio-environmental impacts: A meticulous review, Journal of the Idian Chemical Society, 99, pp. 1-12. DOI: 10.1016/j.jics.2022.100545.
  26. Rauret, G., J. Lopez-Sanchez, D. Luck, M. Yli-Halia, H. Muntau and P. Quevauviller (2001). EUR 19775 EN. E. Commission. Belgium.
  27. Rauret, G., J. F. Lopez-Sanchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure and P. Quevauviller (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, Journal of Environmental Monitoring,1, pp. 57-61. DOI: 10.1039/a807854h
  28. Różański, S. (2013). Fractionation of selected heavy metals in agricultural soils, Ecological Chemistry and Engineering S, 20, 1, pp. 117-125. DOI: 10.2478/eces-2013-0009.
  29. Seignez, N., D. Bulteel, D. Damidot, A. Gauthier and J.-L. Potdevin (2006). Weathering of metallurgical slag heaps: multi-experimental approach of the chemical behaviours of lead and zinc, Waste Management and the Environment III, 92, pp. 31-40. DOI: 10.2495/WM060041.
  30. Singh, A. and M. K. Chandel (2022). Mobility and environmental fate of heavy metals in fine fraction of dumped legacy waste: Implications on reclamation and ecological risk, Journal of Environmental Management, 304, pp. 1-11. DOI: 10.1016/j.jenvman.2021.114206.
  31. Singh, G., S. Das, A. A. Ahmed, S. Saha and S. Karmakar (2015). Study of Granulated Blast Furnace Slag as Fine Aggregates in Concrete for Sustainable Infrastructure, Procedia - Social and Behavioral Sciences, 195, pp. 2272-2279. DOI: 10.1016/j.sbspro.2015.06.316.
  32. Sobanska, S., D. Deneele, Barbillat and B. A. Ledesert (2016). Natural weathering of slags from primary Pb-Zn smelting as evidenced by Raman microspectroscopy, Applied Geochemistry, 64, pp. 107-117. DOI: 10.1016/j.apgeochem.2015.09.011.
  33. Tlustos, P., J. Szakova, A. Starkova and D. Pavlikova (2005). A comparison of sequential extraction procedures for fractionation of arsenic, cadmium, lead, and zinc in soil, Central European Journal of Chemistry, 3, 4, pp. 830-851. DOI: 10.2478/BF02475207.
  34. Wali, A., G. Colinet and M. Ksibi (2014). Speciation of Heavy Metals by Modified BCR Sequential Extraction in Soils Contaminated by Phosphogypsum in Sfax, Tunisia, Environmental Research, Engineering and Management, 4, 70, pp. 14-26. DOI: 10.5755/j01.erem.70.4.7807.
  35. Wang, J., Y. Jiang, J. Sun, J. She, M. Yin, F. Fang, T. Xiao, G. Song and J. Liu (2020). Geochemical transfer of cadmium in river sediments near a lead-zinc smelter, Ecotoxicology and Environmental Safety, 196, pp. 1-10. DOI: 10.1016/j.ecoenv.2020.110529.
  36. Warchulski, R. and K. Szopa (2014). Phase composition of Katowice – Wełnowiec pytometallurgical slags: preliminary SEM study, Contemporary Trends in Geoscience, 3, pp. 76-81. DOI: 10.2478/ctg-2014-0025.
  37. Xu, D.-M., R.-B. Fu, Y.-H. Tong, D.-L. Shen and X.-P. Guo (2021). The potential environment risk implications of heavy metals based on their geochemical and mineralogical characteristic in the size-segregated zinc smelting slags, Journal of Cleaner Production, 315, pp. 1-13. DOI: 10.1016/j.jelepro.2021.128199.
  38. Yin, N.-H., Y. Sivry, F. Guyou, P. N. L. Lens and E. D. v. Hullebusch (2016). Evaluation on chemical stability of lead blast furnance (LBF) and imperial smelting furnance (ISF) slags, Journal of Environmental Management, 180, pp. 310-323. DOI: 10.1016/j.jenvman.2016.05.052.
  39. Zemberyova, M., J. Bartekova and I. Hagarova (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins, Talanta, 70, pp. 973-978. DOI: 10.1016/j.talanta.2006.05.057.
  40. Zhang, S., N. Zhu, W. Shen, X. Wei, F. Li, W. Ma, F. Mao and P. Wu (2022). Relationship between mineralogical phase and bound heavy metals in copper smelting slags, Resources, Conservation & Recycling, 178, pp. 1-7. DOI: 10.1016/j.resconrec.2021.106098.
Przejdź do artykułu

Autorzy i Afiliacje

Milena Nocoń
1
Irena Korus
1
Krzysztof Loska
1

  1. Silesian University of Technology, Faculty of Environmental Engineering and Energy, Department of Water and Wastewater Engineering, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The rapid, high increase in production costs and prices of mineral fertilizers leads to a reduction in their use by farmers, while fertilizer manufacturers consider the use of alternative raw materials and reducing the energy consumption of fertilizer production processes. Given these circumstances, special attention is warranted for suspension fertilizers. The manufacturing of suspension fertilizers is simplified and less energy intensive in comparison with solid fertilizers. This is achieved by omitting certain production stages such as granulation, drying, sifting, which usually contribute to more than half of the production costs. This paper presents the production procedure of suspension fertilizers tailored for cabbage cultivation, utilizing alternative raw materials such as sewage sludge ash and poultry litter ash. The final products are thoroughly characterized. The obtained fertilizers were rich in main nutrients (ranging from 23.38% to 30.60% NPK) as along with secondary nutrients and micronutrients. Moreover, they adhere to the stipulated standards concerning heavy metal content as outlined in the European Fertilizer Regulation. A distribution analysis has showed that suspension fertilizers contain nutrients in both liquid and solid phases. This arrangement facilitates their easy availability for plants and subsequent release upon dissolution in soil conditions. To assess process consistency, the production of the most promising fertilizer was upscaled. A preliminary technological and economic analysis was also conducted. The method of producing suspension fertilizers using alternative raw materials is a simple waste management solution offering nutrient recycling with the principles of circular economy. This approach not only encourages nutrient recycling but also curtails reliance on imported raw materials.
Przejdź do artykułu

Bibliografia

  1. Biskupski, A., Zdunek, A., Malinowski, P. & Borowik, M. (2015). Utilization of industrial wastes in fertilizer industry, Chemik, 69, pp. 568-571.
  2. Bogusz, P. (2022a). The Possibility of Using Waste Phosphates from the Production of Polyols for Fertilizing Purposes, Molecules, 27, 17 pp. 5632. DOI:10.3390/molecules27175632
  3. Bogusz, P., Rusek, P. & Brodowska, M.S. (2022b). Suspension Fertilizers Based on waste Phosphates from the Production of Polyols, Molecules, 27, pp. 7916. DOI:10.3390/molecules27227916
  4. Bogusz, P., Rusek, P. & Brodowska, M.S. (2021). Suspension Fertilizers: How to Reconcile Sustainable Fertilization and Environmental Protection, Agriculture, 11, 10, pp. 1008. DOI:10.3390/agriculture11101008
  5. Coolong, T., Cassity-Duffey, K. & da Silva, A.L.B.R. (2022). Influence of Nitrogen Rate, Fertilizer Type, and Application Method on Cabbage Yield and Nutrient Concentrations, HortTechnology, 32, pp. 134-139. DOI:10.21273/HORTTECH04982-21
  6. Das, D. & Mandal, M. (2015). Advanced Technology of Fertilizer Uses for Crop Production Advanced Technology of Fertilizer Uses for Crop Production. [In:] Sihna S, Pant K.K. & Bajpai, S. (eds) Fertilizer Technology-I Synthesis, 1st edn. Studium Press, LLC, USA, pp. 101-150.
  7. EU (2019). Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilizing products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. European Parliament and of the Council.
  8. Górecki, H. & Hoffmann, J. (1995). Nawozy zawiesinowe-nowa generacja nawozów rolniczych i ogrodniczych, Przemysł Chemiczny, 74, pp. 87-90.
  9. Graphical Research (2022). Fertilizer Market Size & Share | North America, Europe, & APAC Industry Forecasts 2028.
  10. Hauck, D., Lohr, D., Meinken, E. & Schmidhalter, U. (2021). Plant availability of secondary phosphates depending on pH in a peat-based growing medium, Acta Horticulturae, 1305, pp. 437-442. DOI:10.17660/ActaHortic.2021.1305.57
  11. Jones, K. & Nti, F. (2022). Impacts and Repercussions of Price Increases on the Global Fertilizer Market, USDA Foreign Agricultural Service.
  12. Kebrom, T.H., Woldesenbet, S., Bayabil, H.K., Garcia, M., Gao, M., Ampim, P., Awal, R. & Fares, A. (2019). Evaluation of phytotoxicity of three organic amendments to collard greens using the seed germination bioassay, Environ. Sci. Pollut. Res., 26, pp. 5454–5462. DOI:10.1007/s11356-018-3928-4
  13. Kominko, H., Gorazda, K., Wzorek, Z. & Wojtas, K. (2018). Sustainable Management of Sewage Sludge for the Production of Organo-Mineral Fertilizers, Waste Biomass Valor, 9, 10, pp. 1817-1826. DOI:10.1007/s12649-017-9942-9
  14. Kominko, H., Gorazda, K. & Wzorek, Z. (2021). Formulation and evaluation of organo-mineral fertilizers based on sewage sludge optimized for maize and sunflower crops, Waste Manage, 136, pp. 57-66. DOI:10.1016/j.wasman.2021.09.040
  15. Luyckx, L. & Van Caneghem, J. (2021). Recovery of phosphorus from sewage sludge ash: Influence of incineration temperature on ash mineralogy and related phosphorus and heavy metal extraction, Journal of Environmental Chemical Engineering, 9, 6, pp. 106471. DOI:10.1016/j.jece.2021.106471
  16. Malinowski, P., Olech, M., Sas, J., Wantuch, W., Biskupski, A., Urbańczyk, L., Borowik, M. & Kotowicz, J. (2010). Production of compound mineral fertilizers as a method of utilization of waste products in chemical company Alwernia S.A., PJCT, 12, pp. 6-9. DOI:10.2478/v10026-010-0024-z
  17. Melia, P.M., Cundy, A.B., Sohi, S.P., Hooda, P.S. & Busquets, R. (2017). Trends in the re-covery of phosphorus in bioavailable forms from wastewater, Chemosphere, 186, pp. 381–395. DOI:10.1016/j.chemosphere.2017.07.089
  18. Meng, X., Huang, Q., Xu, J., Gao, H. & Yan, J. (2019). A review of phosphorus recovery from different thermal treatment products of sewage sludge, Waste Dispos. Sustain. Energy, 1, pp. 99-115. DOI:10.1007/s42768-019-00007-x
  19. Mikła, D., Hoffmann, K. & Hoffmann, J. (2007). Production of suspension fertilizers as a potential way of managing industrial waste, PJCT, 9, pp. 9-11. DOI:10.2478/v10026-007-0043-6
  20. Müller-Stöver, D., Thompson, R., Lu, C., Thomsen, T.P., Glæsner, N. & Bruun, S. (2021). Increasing plant phosphorus availability in thermally treated sewage sludge by post-process oxidation and particle size management, Waste Manage, 120, pp. 716-724. DOI:10.1016/j.wasman.2020.10.034
  21. Raymond, N.S., Müller Stöver, D., Richardson, A.E., Nielsen, H.H. & Stoumann Jensen, L. (2019). Biotic strategies to increase plant availability of sewage sludge ash phosphorus, J. Plant Nutr. Soil Sci, 182, pp. 175-186. DOI:10.1002/jpln.201800154
  22. Rene, E.R., Ge, J., Kumar, G., Singh, R.P. & Varjani, S. (2020). Resource recovery from wastewater, solid waste, and waste gas: engineering and management aspects, Environmental Science and Pollution Research, 27, pp. 17435-17437. DOI:10.1007/s11356-020-08802-4
  23. Rolewicz, M., Rusek, P., Mikos-Szymańska, M., Cichy, B. & Dawidowicz, M. (2016). Obtaining of Suspension Fertilizers from Incinerated Sewage Sludge Ashes (ISSA) by a Method of Solubilization of Phosphorus Compounds by Bacillus megaterium Bacteria, Waste Biomass Valoris, 7, pp. 871-877. DOI:10.1007/s12649-016-9618-x
  24. Rusek, P., Biskupski, A. & Borowik, M. (2009a). Studies on manufacturing suspension ferilizers on the basis of waste phosphates from polyether production, Przemysl Chemiczny, 88, pp. 563-564.
  25. Rusek, P., Biskupski, A., Borowik, M. & Hoffmann, J. (2009b). Development of the technology for manufacturing suspension fertilizers, Przemysl Chemiczny, 88, pp. 1332-1335.
  26. Smol, M., Kulczycka, J., Lelek. Ł., Gorazda, K. & Wzorek, Z., (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production, Arch. Environ. Protect., 46, 2, pp. 42-52. DOI:10.24425/aep.2020.133473
  27. Triratanaprapunta, P., Osotsapar, Y., Sethpakdee, R. & Amkha, S. (2014). The physical property changes during storage of 25-7-7 analysis grade of suspension fertilizer processed by Luxen's method, Modern Applied Science, 8, pp. 61-69. DOI:10.5539/mas.v8n6p61
  28. Zalewski, A. & Piwowar, A. (2018). The global market of mineral fertilizers, including changes in the prices of raw materials and direct energy carriers. Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej - Państwowy Instytut Badawczy, Warszawa. (in Polish). DOI:10.22004/ag.econ.164832
  29. Zhou, X., Xu, D., Yan, Z., Zhang, Z. & Wang, X. (2022). Production of new fertilizers by combining distiller's grains waste and wet-process phosphoric acid: Synthesis, characterization, mechanisms and application, Journal of Cleaner Production, 367, pp. 133081. DOI:10.1016/j.jclepro.2022.133081
Przejdź do artykułu

Autorzy i Afiliacje

Katarzyna Gorazda
1
Halyna Kominko
1
Anna K. Nowak
1
Adam Wiśniak
1

  1. Cracow University of Technology, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Determining the level of solid pollution in beach sands located near artificial inland water bodies in order to maintain high safety standards is a difficult and expensive task. The tests aimed at determining beach pollution caused by solid wastes through analysis of toxic and chemical concentrations, are time-consuming and usually require several days before the results are available. In addition, the maintenance of the beach area involving beach raking or grooming, and the seasonal replenishment of sand makes it difficult to realistically determine the chemical or bacterial contamination of the tested material. Solid pollutants, such as glass, caps, cans, thick foil, metal, and plastic fragments, pose a greater health risk to beachgoers. The above-mentioned pollutants, especially small ones, are hardly visible on the surface or they are buried at shallow depths. Beach garbage poses a serious threat that can lead to infections from cuts and scratches. These injuries can become infected, further jeopardizing the health and lives of beachgoers due to risks like tetanus, staphylococcus, etc. The authors presented a new petrographic method aimed at assessing the quality of sand by examining the content of solid pollutants. The obtained results allowed us to conclude that the mentioned procedure can be used for a quick quantitative estimation of the content of potentially dangerous and undesirable pollutants in beach sands. Consequently, the method implemented to determent the amount of solid pollutants in beach sands has proven to be a valuable tool for recreational facility administrators, helping them in taking necessary measures to ensure the safety of beach users. Petrographic analysis of beach sands revealed the presence of pollutants of plant origin (0.4–1.8%), plastic (0.1–0.4%), paper (0.1–0.6%), charcoal (0.1–0.5%), glass (0.1–0.4%), metals (0.1–0.4%), rust (0.1–0.3%), ash and slag (0.1–0.3%), and fossil coals (0.1–0.2%).
Przejdź do artykułu

Bibliografia

  1. Badyda, A., Rogula-Kozłowska, W., Majewski, G., Bralewska, K., Widziewicz-Rzońca, K., Piekarska, B., Rogulski, M. & Bihałowicz, J. (2022). Inhalation risk to PAHs and BTEX during barbecuing: The role of fuel/food type and route of exposure, Journal of Hazardous Materials, Volume 440, 129635, ISSN 0304-3894. DOI:10.1016/j.jhazmat.2022.129635.
  2. Cesia, J. Cruz, J., Muñoz-Perez, Maribel I., Carrasco-Braganza, Poullet, P., Lopez-Garcia, P., Contreras, A. & Rodolfo Silva, R. (2020). Beach cleaning costs, Ocean & Coastal Management, 188, 105118, ISSN 0964-5691. DOI:10.1016/j.ocecoaman.2020.105118.
  3. Claisse, D. (1989). Chemical contamination of French coasts. The results of a ten years mussel watch. Marine Pollution Bulletin. 20. No. 10, pp. 523-528. https://archimer.ifremer.fr/doc/00017/12775/9713.pdf
  4. Contreras-de-Villar, F., García, FJ., Muñoz-Perez, JJ., Contreras-de-Villar, A., Ruiz-Ortiz, V., Lopez, P., Garcia-López, S. & Jigena, B. (2021). Beach leveling using a Remote Piloted Aircraft System (RPAS): Problems and Solutions. Journal of Marine Science and Engineering. 9(1), 19. DOI:10.3390/jmse9010019
  5. Działo, J., Niedźwiedzka-Rystwej, P., Mȩkal, A. & Deptuła, W. (2010). Characteristics of mucosal lymphatic tissue associated with gastrointestinal tract and respiratory system. Alergia Astma Immunologia. 15(4). pp. 197-202. http://mediton.nazwa.pl/library/aai_volume-15_issue-4_article-939.pdf
  6. Frolik, A., Gzyl, G. & Kura, K. (2007). Revitalization concepts for sand mine pit in southern Poland: preliminary assessment of impact on aquatic environment. IMWA Symposium 2007: Water in Mining Environments, Cidu, R. & F. Frau (Eds), Cagliari, Italy
  7. García-Morales, G., Arreola-Lizárraga, J.A., Mendoza-Salgado, R.A., García-Hernández, J., Rosales-Grano, P. & Ortega-Rubio, A. (2018). Evaluation of beach quality as perceived by users. Journal of Environmental Planning and Management, 61(1), pp. 161-175. DOI:10.1080/09640568.2017.1295924
  8. Halliday, E. & Gast, R.J. (2011). Bacteria in Beach Sands: An Emerging Challenge in Protecting Coastal Water Quality and Bather Health. Environ. Sci. Technol. 45, 2, pp. 370–379. DOI:10.1021/es102747s
  9. Holman, M. & Bennett, J. (1973). Determinants of use of water-based recreational facilities. Water Resources Research, 238. DOI:10.1029/WR009i005p01208
  10. ISO 8036, 2015. Microscopes - immersion fluids for light microscopy. https://www.iso.org/standard/67551.html (in Polish)
  11. Labikon, software KS Run nr 0500324, Ihnatowicz J., Manufacture of computers and peripherals - 6310106641.
  12. Li, J. & Zhang, X. (2019). Beach Pollution Effects on Health and Productivity in California. Int. J. Environ. Res. Public Health 1987, 16. DOI:10.3390/ijerph16111987
  13. Marina, V. & Popa, F. (2020). An unusual case of leg wound made by a Sea Shell (Scapharca inaequivalis). International Journal of Surgery Case Reports. 67. pp. 127-129. DOI:10.1016/j.ijscr.2020.01.039
  14. McLaughlin, E. (2017). Dealing with Marine and Saltwater Infections. World Extreme Medicine. https://worldextrememedicine.com/blog/2017/11/dealing-with-marine-and-saltwater-infections/ (accessed 3 April 2022)
  15. Moran, K. & Webber, J. (2014). Leisure-related injuries at the beach: An analysis of lifeguard incident report forms in New Zealand, 2007–12. International Journal of Injury Control and Safety Promotion, 21,1, pp. 68-74. DOI: 10.1080/17457300.2012.760611)
  16. Nowak B. (2019). Threats and water protection of Lake Powidzkie, [in:] Nowak, B. (ed.), Jezioro Powidzkie wczoraj i dziś, IMGW-PIB, Warszawa: 137-150. (in Polish)
  17. Rzętała M. (2008). The functioning of water reservoirs and the course of limnic processes in conditions of various anthropopressure on the example of the Upper Silesian region. Wydawnictwo Uniwersytetu Śląskiego, Katowice ISSN 0208-6336 http://www.sbc.org.pl/Content/74082/funkcjonowanie_zbiornikow.pdf, (accessed on 28.03.2022)
  18. Sabino, R., Rodrigues, R., Costa, I., Carneiro, C., Cunha, M., Duarte, A., Faria, N., Ferreira, F.C., Gargaté, M.J., Júlio, C., Martins, M.L., Nevers, M.B., Oleastro, M., Solo-Gabriele, H., Veríssimo, C., Viegas, C., Whitman, R.L. & Brandão, J. (2014). Routine screening of harmful microorganisms in beach sands: Implications to public health. Science of The Total Environment. 472. pp. 1062-1069. DOI:10.1016/j.scitotenv.2013.11.091
  19. Şanlıtürk, G. & Güran M. (2021). Monitoring of microbiological dynamics in beach sand and seawater samples from recreational and non-recreational beaches over a two-year period. International Journal of Environmental Health Research. pp.1-13. DOI:10.1080/09603123.2021.1931049
  20. Spichler-Moffarah, A., Mohajer, M.A., Hurwitz, B.L. & Armstrong, D.G. (2016). Skin and Soft Tissue Infections. Microbiol Spectr. 4(4). DOI:10.1128/microbiolspec.DMIH2-0014-2015
  21. Stachowski, P., Kraczkowska, K., Liberacki, D. & Oliskiewicz-Krzywicka, A. (2018). Water reservoirs as an element of shaping water resources of post-mining areas. Journal of Ecological Engineering. 19(4), pp. 217-225. DOI:10.12911/22998993/89658
  22. Suárez-Ruiz, I., Luis, D. & Tomillo, P. (2023). Application of organic petrography as a forensic tool in environmental studies to investigate the source of coal pollution on beaches in Gijón (Northern Spain), International Journal of Coal Geology, 265, 104154. DOI:10.1016/j.coal.2022.104154.
  23. Tomenchok, L.E., Gidley, M.L., Mena, K.D., Ferguson, A.C. & Solo-Gabriele, H.M. (2020). Children’s abrasions in recreational beach areas and a review of possible wound infections. International Journal of Environmental Research and Public Health. 17(11), 4060. DOI:10.3390/ijerph17114060
  24. WHO (2003). Guidelines for safe recreational water environments: Coastal and fresh waters (Vol. 1). pp. 128-129. World Health Organization
  25. WHO (2021). Guidelines on recreational water quality. Volume 1 Coastal and Fresh Waters. pp. 3. World Health Organization
  26. Wufuer, R., Duo, J., Li, W., Fan, J. & Pan, X. (2021). Bioremediation of uranium- and nitrate-contaminated groundwater after the in situ leach mining of uranium. Water 13, 3188. DOI:10.3390/w13223188
  27. Wulai, X., Qingyang, R., Xuwei, D., Jun, Ch. & Ping, X. (2020). Rainfall is a significant environmental factor of microplastic pollution in inland waters, Science of The Total Environment, 732, 139065. DOI:10.1016/j.scitotenv.2020.139065.
  28. Zielinski, S., Botero, C.M. & Yanes, A. (2019). To clean or not to clean? A critical review of beach cleaning methods and impacts. Marine Pollution Bulletin, 139. pp. 390-401. DOI:10.1016/j.marpolbul.2018.12.027
Przejdź do artykułu

Autorzy i Afiliacje

Sebastian Kuś
1
ORCID: ORCID
Zbigniew Jelonek
1
ORCID: ORCID
Iwona Jelonek
1
ORCID: ORCID
Edyta Sierka
1
ORCID: ORCID

  1. University of Silesia in Katowice, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Filtration through biologically active carbon (BAC) filters is an effective method of organic matter removal during drinking water treatment. In this study, the microbial community in the initial period of filters’ operation, as well as its role in the organic matter removal were investigated. Research was carried out in a pilot scale on two BAC filters (Filter 1 and Filter 2) which were distinguished by the type of inflowing water. It was observed that the number of heterotrophic plate count bacteria and total microbial activity were significantly higher in water samples collected from Filter 2, which received an additional load of organic matter and microorganisms. Despite the differences in the values of chemical and microbiological parameters of inflowing water, the composition of the microbiome in both filters was similar. The predominant taxon was a bacterium related to Spongiibacter sp. (Gammaproteobacteria) (>50% of relative abundance). In both filters, the efficiency of organic matter removal was at the same level, and the composition and relative frequency of predicted functional pathways related to metabolism determined using PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States Software) at level 3 of KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthology – were also similar. The study demonstrated that a 40-day period of filter operation after filling with virgin granular activated carbon, was sufficient to initiate biofilm development. It was proved, that during the initial stage of filter operation, microorganisms capable of biodegradation of various organic compounds, including xenobiotics like nitrotoluene, colonized the filters
Przejdź do artykułu

Bibliografia

  1. APHA (2017). Standard Methods for the Examination of Water and Wastewater, (23st ed.) American Public Health Association, Washington DC.
  2. Chan, S., Pullerits, K., Keucken, A., Persson, K.M., Paul, C.J. & Rådström, P. (2019). Bacterial release from pipe biofilm in a full-scale drinking water distribution system, NPJ Biofilms Microbiomes, 5, 9. DOI:10.1038/s41522-019-0082-9
  3. Choi, Y.C., Li, X., Raskin, L. & Morgenroth, E. (2008). Chemisorption of oxygen onto activated carbon can enhance the stability of biological perchlorate reduction in fixed bed biofilm reactors, Water Research, 42, pp. 3425–3434. DOI:10.1016/j.watres.2008.05.004
  4. Dong, S., Liu, L., Zhang, Y. & Jiang, F. (2019). Occurrence and succession of bacterial community in O3/BAC process of drinking water treatment, International Journal of Environmental Research and Public Health, 16, 3112. DOI:10.3390/ijerph16173112
  5. Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., Huttenhower, C. & Langille, M.G.I. (2020). PICRUSt2 for prediction of metagenome functions, Nature Biotechnology, 38, pp. 685–688. DOI:10.1038/s41587-020-0548-6
  6. Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nature Methods, 10, pp. 996–998. DOI:10.1038/nmeth.2604
  7. Garrity, G.M. (Ed.) 2005. Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part C, The Alpha- Beta-, Delta- and Epsilonproteobacteria, Springer, New York, pp. 1-1388. DOI:10.1007/0-387-29298-5
  8. Guo, X., Xie, C., Wang, L., Li, Q. & Wang, Y. (2019). Biodegradation of persistent environmental pollutants by Arthrobacter sp., Environmental Science and Pollution Research, 26, pp. 8429–8443. DOI:10.1007/s11356-019-04358-0
  9. Hayward, C., Ross, K.E., Brown, M.H., Bentham, R. & Whiley, H. (2022) The presence of opportunistic premise plumbing pathogens in residential buildings: a literature review, Water, 14, 1129. DOI:10.3390/w14071129
  10. Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P. & Minghim, R. (2015). InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams, BMC Bioinformatics, 16, 169. DOI:10.1186/s12859-015-0611-3
  11. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski, Z. (2016). Effectiveness of Organic Compounds Removing During Water Treatment by Filtration Through a Biologically Active Carbon Filter with the Identification of Microorganisms, Annual Set The Environment Protection, 18, pp. 235–246 (in Polish), available on: http://ros.edu.pl/images/roczniki/2016/No2/17_ROS_N2_V18_R2016.pdf
  12. Holc, D., Mądrecka-Witkowska, B., Komorowska-Kaufman, M., Szeląg-Wasielewska, E., Pruss, A. & Cybulski, Z. (2021). The application of different methods for microbial development assessment in pilot scale drinking water biofilters, Archives of Environmental Protection, 47, 3, pp. 37-49. DOI:10.24425/aep.2021.138462
  13. Holc, D., Pruss, A., Komorowska-Kaufman, M., Mądrecka, B. & Cybulski, Z. (2019). The sorption of organic compounds from water during technological start-up of carbon filters, E3S Web Conferences, 100, 00027. DOI:10.1051/e3sconf/201910000027
  14. IARC, Monographs on the Evaluation of Carcinogenic Risks to Humans. (2012). Some chemicals present in industrial and consumer products, Food And Drinking-Water, 101, 9-549.
  15. Jean, W.D., Yeh, Y.T., Huang, S.P., Chen, J.S. & Shieh, W.Y. (2016). Spongiibacter taiwanensis sp. nov., a marine bacterium isolated from aged seawater, International Journal of Systematic and Evolutionary Microbiology, 66, pp. 4094–4098. DOI:10.1099/ijsem.0.001316
  16. Jin, L., Ko, S.R., Ahn, C.Y., Lee, H.G. & Oh, H.M. (2016). Rhizobacter profundi sp. nov., isolated from freshwater sediment, International Journal of Systematic and Evolutionary Microbiology, 66, pp. 1926-1931. DOI:10.1099/ijsem.0.000962
  17. Kaarela, O.E., Harkki, H.A., Palmroth, M.R.T. & Tuhkanen, T.A. (2015). Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures, Environmental Technology, 36, pp. 681-692. DOI:10.1080/09593330.2014.958542
  18. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. (2021). KEGG: Integrating viruses and cellular organisms, Nucleic Acids Research, 49, D545–D551. DOI:10.1093/nar/gkaa970
  19. Kennedy, A.M., Reinert, A.M., Knappe, D.R.U., Ferrer, I. & Summers R.S. (2015). Full- and pilot-scale GAC adsorption of organic micropollutants, Water Research, 68, pp. 238-248. DOI:10.1016/j.watres.2014.10.010
  20. Khan M.F., Jamal A., Rosy P. J., Alguno A.C., Ismail M., Khan I., Ismail, A. & Zahid, M. (2022). Eco-friendly elimination of organic pollutants from water using graphene oxide assimilated magnetic nanoparticles adsorbent, Inorganic Chemistry Communications, 139, 109422. DOI:10.1016/j.inoche.2022.109422
  21. Korotta-Gamage, S.M. & Sathasivan, A. (2017). A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167, pp. 120-138. DOI:10.1016/j.chemosphere.2016.09.097
  22. Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G. & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nature Biotechnology, 31, pp. 814–821. DOI:10.1038/nbt.2676
  23. LaPara, T.M., Hope Wilkinson, K., Strait, J.M., Hozalski, R.M., Sadowksy, M.J &, Hamilton, M.J. (2015). The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms, Applied and Environmental Microbiology, 81, pp. 6864-6872. DOI:10.1128/AEM.01692-15
  24. Li, C., Ling, F., Zhang, M., Liu, W.T., Li, Y. & Liu, W. (2017). Characterization of bacterial community dynamics in a full-scale drinking water treatment plant, Journal of Environmental Sciences, 51, pp. 21-30. DOI:10.1016/j.jes.2016.05.042
  25. Liao, X., Chen, C., Chang, C.-H., Wang, Z., Zhang, X. & Xie, S. (2012). Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnology and Bioprocess Engineering, 17, pp. 881–886. DOI:10.1007/s12257-012-0127-x
  26. Liao, X., Chen, C., Wang, Z., Chang, C.-H., Zhang, X. & Xie, S. (2015). Bacterial community change through drinking water treatment processes, International Journal of Environmental Science and Technology, 12, pp. 1867-1874. DOI:10.1007/s13762-014-0540-0
  27. Liao, X., Chen, C., Wang, Z., Wan, R., Chang, C.-H. & Zhang, X. (2013). Changes of biomass and bacterial communities in biological activated carbon filters for drinking water treatment. Process Biochemistry, 48, pp. 312-316. DOI:10.1016/j.procbio.2012.12.016
  28. Liu, G., Zhang, Y., van der Mark, E., Magic-Knezev, A., Pinto, A., van den Bogert, B., Liu, W., van der Meer, W. & Medema, G. (2018). Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints, Water Research, 138, pp. 86-96. DOI:10.1016/j.watres.2018.03.043
  29. Ma, B., LaPara, T.M. & Hozalski, R.M. (2020). Microbiome of Drinking Water Biofilters is Influenced by Environmental Factors and Engineering Decisions but has Little Influence on the Microbiome of the Filtrate, Environmental Science & Technology, 54, pp. 11526-11535. DOI:10.1021/acs.est.0c01730
  30. Makowska, N., Philips, A., Dabert, A., Nowis, K., Trzebny, A., Koczura, R. & Mokracka, J. (2020). Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome, Water Research, 170, 115277. DOI:10.1016/j.watres.2019.115277
  31. Matilainen, A., Vieno N., & Tuhkanen, T. (2006). Efficiency of the activated carbon filtration in the natural organic matter removal, Environment International, 32, pp. 324-331. DOI:10.1016/j.envint.2005.06.003
  32. Mądrecka, B., Komorowska-Kaufman, M., Pruss, A. & Holc, D. (2018). Metabolic activity tests in organic matter biodegradation studies in biologically active carbon filter beds, in: Water Supply and Wastewater Disposal, Sobczuk, H. & Kowalska, B. (Eds.), Lublin University of Technology, Lublin, pp.163-177
  33. Magic-Knezev, A., Wullings, B. & Van der Kooij, D. (2009). Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment, Journal of Applied Microbiology, 107, pp. 1457-1467. DOI:10.1111/j.1365-2672.2009.04337.x
  34. Matsis, V. M. & Grigoropoulou, H.P. (2008). Kinetics and equilibrium of dissolved oxygen adsorption on activated carbon, Chemical Engineering Science, 63, pp. 609-621. DOI:10.1016/j.ces.2007.10.005
  35. Oh, S., Hammes, F. & Liu, W.T. (2018). Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant, Water Research, 128, pp. 278-285. DOI:10.1016/j.watres.2017.10.054
  36. Papciak, D., Kaleta, J., Puszkarewicz, A. & Tchorzewska-Cieślak, B. (2016). The use of biofiltration process to remove organic matter from groundwater, Journal of Ecological Engineering, 17, pp. 119-124. DOI:10.12911/22998993/63481
  37. PN-C-04578-02:1985 Water and wastewater - Testing of oxygen demand and organic carbon content - Determination of chemical oxygen demand (COD) by the permanganate method. (in Polish)
  38. Qi, W., Li, W., Zhang, J. & Zhang, W. (2019). Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community, Frontiers of Environmental Science & Engineering, 13, 15. DOI:10.1007/s11783-019-1100-0
  39. Rosenberg, E., DeLong E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), (2014). The Prokaryotes. Alphaproteobacteria and Betaproteobacteria. (4rd ed.), Springer, Berlin, Heidelberg. pp. 3-1012. DOI:10.1007/978-3-642-30197-1
  40. Dos Santos, P.R. & Daniel, L.A. (2020). A review: organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment, International Journal of Environmental Science and Technology, 17, pp. 591-606. DOI:10.1007/s13762-019-02567-1
  41. Selbes, M., Brown, J., Lauderdale, C. & Karanfil, T. (2017). Removal of Selected C‐ and N‐DBP Precursors in Biologically Active Filters, Journal ‐ American Water Works Association, 109: E73-E84. DOI:10.5942/jawwa.2017.109.0014
  42. Servais, P., Billen, G. & Bouillot, P. (1994). Biological colonization of granular activated carbon filters in drinking-water treatment, Journal of Environmental Engineering, 120, 4, pp. 888-899. DOI:10.1061/(ASCE)0733-9372(1994)120:4(888)
  43. Shirey, T.B., Thacker, R.W. & Olson, J.B. (2012). Composition and stability of bacterial communities associated with granular activated carbon and anthracite filters in a pilot scale municipal drinking water treatment facility, Journal of Water and Health, 10, pp. 244–255. DOI:10.2166/wh.2012.092
  44. Simpson, D.R. (2008). Biofilm processes in biologically active carbon water purification, Water Research, 42, pp. 2839-2848. DOI:10.1016/j.watres.2008.02.025
  45. Su, H.-C., Liu, Y.-S., Pan C.-G., Chen, J., He, L.-Y. & Ying, G.-G. (2018). Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water, Science of the Total Environment, 616–617, pp. 453-461. DOI:10.1016/j.scitotenv.2017.10.318
  46. Velten, S., Boller, M., Köster, O., Helbing, J., Weilenmann, H.U. & Hammes, F. (2011). Development of biomass in a drinking water granular active carbon (GAC) filter, Water Research 45, pp. 6347-6354. DOI:10.1016/j.watres.2011.09.017
  47. Vignola, M., Werner,D., Wade, M.J., Meynet, P. & Davenport, R.J. (2018). Medium shapes the microbial community of water filters with implications for effluent quality, Water Research, 129, pp. 499-508. DOI:10.1016/j.watres.2017.09.042.
  48. Waak, M.B., Hozalski, R.M., Hallé, C. & LaPara, T.M. (2019). Comparison of the microbiomes of two drinking water distribution systems - with and without residual chloramine disinfection, Microbiome, 7, 87. DOI:10.1186/s40168-019-0707-5
  49. White, C.P., Debry, R.W. & Lytle, D.A. (2012). Microbial survey of a full-scale, biologically active filter for treatment of drinking water, Applied and Environmental Microbiology, 78, pp. 6390-6394. DOI:10.1128/AEM.00308-12
  50. Yapsakli, K. & Çeçen, F. (2010). Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters, Process Biochemistry, 45, pp. 355-362. DOI:10.1016/j.procbio.2009.10.005
Przejdź do artykułu

Autorzy i Afiliacje

Beata Mądrecka-Witkowska
1
ORCID: ORCID
Małgorzata Komorowska-Kaufman
1
ORCID: ORCID
Alina Pruss
1
ORCID: ORCID
Dorota Holc
1
ORCID: ORCID
Artur Trzebny
2
ORCID: ORCID
Miroslawa Dabert
2
ORCID: ORCID

  1. Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poznań, Poland
  2. Adam Mickiewicz University in Poznań, Faculty of Biology, Poznań, Poland
7
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Polycyclic aromatic hydrocarbons (PAHs) are significant pollutants found in petroleum products. There is ample literature on the biodegradation of PAHs containing less than five rings, but little has been done on those with more than five rings. Coronene (CRN), a seven-ring-containing PAH, has only been shown to be degraded by one bacterial strain. In this study, a bacterial strain 10SCRN4D was isolated through enrichment in the presence of CRN and 10% NaCl (w/v). Analysis of the 16S rRNA gene identified the strain as Halomonas caseinilytica. The strain was able to degrade CRN in media containing 16.5–165 μM CRN with a doubling time of 9–16 hours and grew in a wide range of salinity (0.5–10%, w/v) and temperature (30–50°C) with optimum conditions of pH 7, salinity 0.5%–10% (w/v), and temperature 37°C. Over 20 days, almost 35% of 16.5 μM CRN was degraded, reaching 76% degradation after 80 days as measured by gas chromatography. The strain was also able to degrade smaller molecular weight PAHs such as benzo[a]pyrene, pyrene, and phenanthrene. This is the first report of Halomonas caseinilytica degrading CRN as the sole carbon source in high salinity, and thus highlights the potential of this strain in bioremediation.
Przejdź do artykułu

Bibliografia


  1. Abbasian, F., Lockington, R., Mallavarapu, M. & Naidu, R. (2015). A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl Biochem Biotechnol 176, pp. 670–699. DOI:10.1007/s12010-015-1603-5.
  2. Al-Awadhi, H., Sulaiman, R. H. D., Mahmoud, H. M. & Radwan, S. S. (2007). Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77, pp. 183–186. DOI:10.1007/s00253-007-1127-1.
  3. Alva, V. A. & Peyton, B. M. (2003). Phenol and Catechol Biodegradation by the Haloalkaliphile Halomonas campisalis: Influence of pH and Salinity. Environ Sci Technol 37, pp. 4397–4402. DOI:10.1021/es0341844.
  4. Anonymous (2023). Team, R: A Language and Environment for Statistical Computing, 2023 (R Foundation for Statistical Computing: Vienna). 10 Feb 2023. Available at: http://www.r-project.org/index.html.
  5. Arulazhagan, P. & Vasudevan, N. (2011). Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62, pp. 388–394. DOI:10.1016/j.marpolbul.2010.09.020.
  6. Baali, A. & Yahyaoui, A. (2019). “Polycyclic Aromatic Hydrocarbons (PAHs) and Their Influence to Some Aquatic Species,” in Biochemical Toxicology, eds. M. Ince, O. K. Ince, and G. Ondrasek (Rijeka: IntechOpen), Ch. 12. DOI:10.5772/intechopen.86213.
  7. Bamforth, S. M. & Singleton, I. (2005). Review bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. J.Chem.Techn. Biotechn 80, pp. 723–736.
  8. Budiyanto, F., Thukair, A., Al-Momani, M., Musa, M. M. & Nzila, A. (2018). Characterization of Halophilic Bacteria Capable of Efficiently Biodegrading the High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Pyrene. Environ Eng Sci 35. DOI:10.1089/ees.2017.0244.
  9. Cheffi, M., Hentati, D., Chebbi, A., Mhiri, N., Sayadi, S., Marqués, A. & Chamkha, M. (2020). Isolation and characterization of a newly naphthalene-degrading Halomonas pacifica, strain Cnaph3: biodegradation and biosurfactant production studies. 3 Biotech 10. DOI:10.1007/s13205-020-2085-x.
  10. Chen, C., Anwar, N., Wu, C., Fu, G., Wang, R., Zhang, C., Wu, Y., Sun, C & Wu, M. (2018). Halomonas endophytica sp. nov., isolated from liquid in the stems of Populus euphratica. Int J Syst Evol Microbiol 68, pp. 1633–1638. DOI:10.1099/ijsem.0.002585.
  11. Dhar, K., Subashchandrabose, S. R., Venkateswarlu, K., Krishnan, K. & Megharaj, M. (2020). Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. Rev Environ Contam Toxicol 251, pp. 25–108. DOI:10.1007/398_2019_29.
  12. Dore, S. Y., Clancy, Q. E., Rylee, S. M. & Kulpa Jr., C. F. (2003). Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol 63, pp. 194–199. DOI:10.1007/s00253-003-1378-4.
  13. Ghosal, D., Ghosh, S., Dutta, T. K. & Ahn, Y. (2016). Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front Microbiol 7, 1369. DOI:10.3389/fmicb.2016.01369.
  14. Govarthanan, M., Khalifa, A. Y. Z., Kamala-Kannan, S., Srinivasan, P., Selvankumar, T., Selvam, K. & Kim, W. (2020). Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons. Chemosphere 243, 125389. DOI:10.1016/j.chemosphere.2019.125389.
  15. Habe, H., Kanemitsu, M., Nomura, M., Takemura, T., Iwata, K., Nojiri, H., Yamane, H. & Omori, T. (2004). Isolation and characterization of an alkaliphilic bacterium utilizing pyrene as a carbon source. J Biosci Bioeng 98, pp. 306–308. DOI:10.1016/S1389-1723(04)00287-7.
  16. Hajizadeh, N., Sefidi Heris, Y., Zununi Vahed, S., Vallipour, J., Hejazi, M., Golabi, S., Asadpour-Zeynali, K. & Hejazi, M.S. (2015). Biodegradation of Para-Amino Acetanilide by Halomonas sp. TBZ3. Jundishapur J Microbiol 8. DOI:10.5812/jjm.18622.
  17. Harrison, J., Hallsworth, J. & Cockell, C. (2015). Reduction of the Temperature Sensitivity of Halomonas hydrothermalis by Iron Starvation Combined with Microaerobic Conditions. Appl Environ Microbiol 81, pp. 2156–2162. DOI:10.1128/AEM.03639-14.
  18. Juhasz, A. L., Britz, M. L. & Stanley, G. A. (1996). Degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas cepacia. Biotechnol Lett 18, pp. 577–582. DOI:10.1007/BF00140206.
  19. Juhasz, A. L., Britz, M. L. & Stanley, G. A. (1997). Degradation of benzo[a]pyrene, dibenz[a,h]anthracene and coronene by Burkholderia cepacia. Water Science and Technology 36, pp. 45–51. DOI:10.1016/S0273-1223(97)00641-0.
  20. Juhasz, A. L., Stanley, G. A. & Britz, M. L. (2000). Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30, pp. 396–401. DOI:10.1046/j.1472-765x.2000.00733.x.
  21. Kaye, J. Z., Márquez, M. C., Ventosa, A. & Baross, J. A. (2004). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54, pp. 499–511. DOI:10.1099/ijs.0.02799-0.
  22. Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons. A review. Cogent Environ Sci 3, 1339841. DOI:10.1080/23311843.2017.1339841.
  23. Leahy, J. G. & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54, pp. 305–315. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC372779/.
  24. Lee, B.-K. & v Vu, T. (2010). “Sources, Distribution and Toxicity of Polyaromatic Hydrocarbons (PAHs) in Particulate Matter,” in Air Pollution DOI:10.5772/10045.
  25. Lima, A. L. C., Farrington, J. W. & Reddy, C. M. (2005). Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment—A Review. Environ Forensics 6, pp. 109–131. DOI:10.1080/15275920590952739.
  26. Margesin, R. & Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56, pp. 650–663. DOI:10.1007/s002530100701.
  27. Ming, H., Ji, W., Li, M., Zhao, Z., Cheng, L., Niu, M., Ling-Yu, Z., Wang, Y. & Guo-Xing, N. (2020). Halomonas lactosivorans sp. nov., isolated from salt-lake sediment. Int J Syst Evol Microbiol 70, pp. 3504–3512. DOI:10.1099/ijsem.0.004209.
  28. Nzila, A. (2018). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environ Pollut 239, pp. 788–802. DOI:10.1016/j.envpol.2018.04.074.
  29. Nzila, A. & Musa, M. M. (2020). Current Status of and Future Perspectives in Bacterial Degradation of Benzo[a]pyrene. Int J Environ Res Public Health 18. DOI:10.3390/ijerph18010262.
  30. Nzila, A., Musa, M. M., Sankara, S., Al-Momani, M., Xiang, L. & Li, Q. X. (2021). Degradation of benzo[a]pyrene by halophilic bacterial strain Staphylococcus haemoliticus strain 10SBZ1A. PLoS One 16, e0247723. DOI:10.1371/journal.pone.0247723.
  31. Nzila, A., Ramirez, C. O. C. O., Musa, M. M. M., Sankara, S., Basheer, C. & Li, Q. X. Q. X. (2018). Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY4 strain. Int Biodeterior Biodegradation 130, pp. 40–47. DOI:10.1016/j.ibiod.2018.03.014.
  32. Nzila, A., Sankara, S., Al-Momani, M., Musa Musa, M. & Musa, M. M. (2017). Isolation and characterisation of bacteria degrading polycyclic aromatic hydrocarbons: phenanthrene and anthracene. Arch Environ Prot 44, pp. 43–54. DOI:10.1515/aep-2016-0028.
  33. Patel, A. B., Shaikh, S., Jain, K. R., Desai, C. & Madamwar, D. (2020). Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol 11. Available at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.562813.
  34. Pohl, A. & Kostecki, M. (2020). Spatial distribution, ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in water and bottom sediments of the anthropogeniclymnic ecosystems under conditions of diversified anthropopressure. Archives of Environmental Protection 46, pp. 104–120. DOI:10.24425/aep.2020.135769.
  35. Qin, W., Fan, F., Zhu, Y., Huang, X., Ding, A., Liu, X. & Dou, J. (2018). Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated soil. Braz J Microbiol 49, pp. 258–268. DOI:10.1016/j.bjm.2017.04.014.
  36. Stapleton, R. D., Savage, D. C., Sayler, G. S. & Stacey, G. (1998). Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl Environ Microbiol 64, pp. 4180–4184. DOI:10.1128/AEM.64.11.4180-4184.1998.
  37. Swaathy, S., Kavitha, V., Pravin, A. S., Mandal, A. B. & Gnanamani, A. (2014). Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnology Reports 4, pp. 161–170. DOI:10.1016/j.btre.2014.10.004.
  38. Wenting, R., Montazersaheb, S., Khan, S. A., Kim, H. M., Tarhriz, V., Hejazi, M. A. & Che, O.O. (2021). Halomonas azerica sp. nov., Isolated from Urmia Lake in Iran. Curr Microbiol 78, pp. 3299–3306. DOI:10.1007/s00284-021-02482-0.
  39. Włodarczyk-Makuła, M. (2012). Half-Life of Carcinogenic Polycyclic Aromatic Hydrocarbons in Stored Sewage Sludge. Archives of Environmental Protection 38. DOI:10.2478/v10265-012-0016-6.
  40. Wu, Y., He, T., Zhong, M., Zhang, Y., Li, E., Huang, T. & Hu, Z. (2009). Isolation of marine benzo[a]pyrene-degrading Ochrobactrum sp. BAP5 and proteins characterization. Journal of Environmental Sciences 21, pp. 1446–1451. DOI:10.1016/S1001-0742(08)62438-9.
  41. Wu, Y.-H., Xu, X.-W., Huo, Y.-Y., Zhou, P., Zhu, X.-F., Zhang, H.-B. & Wu, M. (2008). Halomonas caseinilytica sp. nov., a halophilic bacterium isolated from a saline lake on the Qinghai-Tibet Plateau, China. Int J Syst Evol Microbiol 58, pp. 1259–1262. DOI:10.1099/ijs.0.65381-0.
  42. Xiao-Ran, J., Jin, Y., Xiangbin, C. & Guo-Qiang, C. (2018). “Chapter Eleven - Halomonas and Pathway Engineering for Bioplastics Production,” in Methods in Enzymology, ed. N. Scrutton (Academic Press), pp. 309–328. DOI:10.1016/bs.mie.2018.04.008.
  43. Xu, L., Ying, J.-J., Fang, Y.-C., Zhang, R., Hua, J., Wu, M., Han, B-N. & Sun, C. (2021). Halomonas populi sp. nov. isolated from Populus euphratica. Arch Microbiol 204, 86. DOI:10.1007/s00203-021-02704-w.
  44. Ye, J.-W. & Chen, G.-Q. (2021). Halomonas as a chassis. Essays Biochem, 65(2), pp. 393-403. DOI:10.1042/EBC20200159.
  45. Yessica, G.-P., Alejandro, A., Ronald, F.-C., José, A. J., Esperanza, M.-R., Samuel, C.-S. J., Mendoza-Lopes, M.R & Ormeño-Orrillo, E. (2013). Tolerance, growth and degradation of phenanthrene and benzo[a]pyrene by Rhizobium tropici CIAT 899 in liquid culture medium. Applied Soil Ecology 63, pp. 105–111. DOI: 10.1016/j.apsoil.2012.09.010.
  46. Yin, J., Chen, J.-C., Wu, Q. & Chen, G.-Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33, pp. 1433–1442. DOI:10.1016/j.biotechadv.2014.10.008.
Przejdź do artykułu

Autorzy i Afiliacje

Ajibola H. Okeyode
1
Assad Al-Thukair
1
Basheer Chanbasha
2 3
Mazen K. Nazal
4
Emmanuel Afuecheta
5 6
Musa M. Musa
2 7
ORCID: ORCID
Shahad Algarni
1
Alexis Nzila
1 3

  1. Department of Bioengineering, King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia,
  2. Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
  3. Interdisciplinary Research Center for Membranes and Water Security, King Fahd University ofPetroleum and Minerals, Dhahran, Saudi Arabia
  4. Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd Universityof Petroleum and Minerals, Dhahran, Saudi Arabia
  5. Departments of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, SaudiArabia
  6. Interdisciplinary Research Center for Finance and Digital Economy, KFUPM, Dhahran, Saudi Arabia
  7. Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University ofPetroleum and Minerals, Dhahran 31261, Saudi Arabia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Atrazine (ATR) is a widely used chlorinated herbicide from the s-triazine group. Due to the widespread use of ATR, it leaks into the environment and is detected in drinking water, exceeding the WHO-acceptable concentration of atrazine in drinking water, which is 2 μg/L. The aim of our study was to determine toxicity, protein degradation and genotoxicity of ATR at concentrations of 10; 1; 0.1; 0.01 mg/L on Chlorella vulgaris and with the application of E. coli bioluminescent biosensor strains. We measured the content of chlorophyll a, b, carotenoids in Chlorella vulgaris and the inhibition of this algae culture growth. E. coli RFM443 strains with gene constructs grpE:luxCDABE, lac:luxCDABE, recA:luxCDABE and E. coli strain MM294 trc:luxCDABE were used to determine toxicity, degradation of cellular proteins and genotoxicity. On the base of the obtained results, we concluded that ATR in the tested concentrations shows a toxic effect in relation to Chlorella vulgaris. ATR is toxic and genotoxic in E. coli RFM443 strains with grpE, lac, recA promoters and causes degradation of cellular proteins. Moreover, we have detected ATR toxicity toward the GFP protein in E. coli strain MM294-GFP. Taking into account the toxicity and genotoxicity of ATR documented in our research and in the experiments of other authors, we conclude that the presence of this herbicide in surface waters and drinking water is a serious threat to living organisms.
Przejdź do artykułu

Bibliografia

  1. Akhtar, N., Khan, M. F., Tabassum, S. & Zahran, E. (2021). Adverse effects of atrazine on blood parameters, biochemical profile, and genotoxicity of snow trout (Schizothorax plagiostomus). Saudi Journal of Biological Sciences, 28, pp. 1999–2003. DOI:10.1016/j.sjbs.2021.01.001
  2. Ali, S.A., Mittal, D. & Kaur G. (2021). In situ monitoring of xenobiotics using genetically engineered whole cell based microbial biosensors: recent advances and outlook. World Journal of Microbiology and Biotechnology, 7, pp. 37–81. DOI:10.21203/rs.3.rs-264683/v1
  3. Bae, J. W., Seo, H. B., Belkin, S. & Gu M. B. (2020). An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment. Analitical and Bioanalitical Chemistry, 412, pp. 3373–3381. DOI:10.1007/s00216-020-02469-z
  4. Barsanti, L. & Gualtieri, P. (2014). Algae. Anatomy, Biochemistry, and Biotechnology (2 ed). CRC Press. Taylor & Francis Group. DOI:10.1201/b16544
  5. Camuel, A., Guieysse, B., Alcántara, C., & Béchet, Q. (2017). Fast algal ecotoxicity assessment: influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU. Ecotoxicology and Environmental Safety, 140, pp. 141–147. DOI:10.1016/j.ecoenv.2017.02.013
  6. Chen, J., Liu, J., Wu, S., Liu, W., Xia, Y., Zhao, J., Yang, Y., Peng, Y. & Zhao, S. (2021). Atrazine promoted epithelial ovarian cancer cells proliferation and metastasis by inducing low dose reactive oxygen species (ROS). Iran Journal of Biotechnology, 19, pp. 2623 – 2635. DOI:10.30498/IJB.2021.2623
  7. Dębowski, M. (2018). The use of microalgae biomass in engineering and environmental protection technologies. Polish Journal of Natural Sciences, 27, pp. 151-164. DOI:10.3390/en14196025
  8. Fareed, A., Hussain, A., Nawaz, M., Imran, M., Ali, Z. & Haq, S. U. (2021). The impact of prolonged use and oxidative degradation of Atrazine by Fenton and photo-Fenton processes. Environmental Technology and Innovation, 24, pp. 18-32. 101840. DOPI:10.1016/j.eti.2021.101840
  9. Jiang, B., Li, G., Xing, Y., Zhang, D., Jia, J., Cui, Z., Luan, X. & Tang, H. (2017). A whole cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere, 184, pp. 384–392. DOI:10.1016/j.chemosphere.2017.05.159
  10. Kamaz, M., Jones, S. M., Qian, X., Watts, M. J., Zhang, W. & Wickramasinghe, S. R. (2020). Atrazine removal from municipal wastewater using a membrane bioreactor. International Journal of Environmental Research and Public Health, 17, pp. 2567-2578. DOI:10.3390/ijerph17072567
  11. Kopcewicz, J., Lewak, S., Jaworski, K., Tretyn, A., Gniazdowska, A., Szmidt-Jaworska, A., Kęsy, J., Gabryś, H., Szymańska, M., Hawrylak-Nowak, B., Strzałka, K., Ciereszko, I., Rychter, A. M. & Tyburski, J. (2020). Plant physiology Polish Scientific Publishers PWN, Warsaw, Poland. (in Polish).
  12. Lu, Q., Zhou, X., Liu, R., Shi, G., Zheng, N., Gao, G. & Wang, Y. (2023). Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris. Ecotoxicology and Environmental Safety, 249, pp. 1–13. DOI:10.1016/j.ecoenv.2022.114451
  13. Majewska, M., Harshkova, D., Pokora, W., Baścik-Remisiewicz, A., Tułodziecki, S. & Aksmann, A. (2021). Does diclofenac act like a photosynthetic herbicide on green algae? Chlamydomonas reinhardtii synchronous culture-based study with atrazine as reference. Ecotoxicology and Environmental Safety, 208, 111630. DOI:10.1016/j.ecoenv.2020.111630
  14. Malcata, F. X. (2019). Marine macro- and microalgae: an overview. CRC Press Taylor & Francis Group. DOI:10.1201/9781315119441
  15. Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020a). The study of biological activity of transformation products of dicoflenac and its interaction with chlorogenic acid. Journal of Environmental Sciences, 91, pp. 128–141. DOI:10.1016/j.jes.2020.01.022
  16. Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020b). Evaluation of the biological impact of the mixtures of diclofenac with its biodegradation metabolites 4’-hydroxydiclofenac and 5-hydroxydiclofenac on Escherichia coli. DCF synergistic effect with caffeic acid. Archives of Environmental Protection, 46, pp. 32–53. DOI:10.24425/aep.2020.135760
  17. Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020c). Synergistic interaction of diclofenac and its metabolites with selected antibiotics and amygdalin in wastewaters. Environmental Research, 186, 109511. DOI:10.1016/j.envres.2020.109511
  18. Matejczyk, M., Ofman, P., Parcheta, M., Świsłocka, R. & Lewandowski, W. (2022). The study of biological activity of mandelic acid and its alkali metal salts in wastewaters. Environmental Research, 205, 112429. DOI:10.1016/j.envres.2021.112429
  19. Melamed, S., Lalush, C., Elad, T., Yagur-Krol, S., Belkin, S. & Pedahzur, R. (2012). A bacterial reporter panel for the detection and classification of antibiotic substances: Detection and classification of antibiotics. Microbiology and Biotechnology, 5, pp. 536–548. DOI:10.1111/j.1751-7915.2012.00333.x
  20. Mofeed, J. & Moshleh, Y. (2013). Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture. Ecotoxicology and Environmental Safety, 95, pp. 234–240. DOI:10.1016/j.ecoenv.2013.05.023
  21. Moraskie, M., Roshid, H., O’Connor, G., Dikici, E., Zings, J. M., Deo, S. & Daunert, S. (2021). Microbial whole-cell biosensors: current applications, challenges, and future perspectives. Biosensors and Bioelectronics, 191, 113359. DOI:10.1016/j.bios.2021.113359
  22. Ozturk, M., Coskuner, K. A., Serdar, B., Atar, F. & Bilgili, E. (2022). Impact of white mistletoe (Viscum album ssp. abietis) infection severity on morphology, anatomy and photosynthetic pigment content of the needles of cilicican fir (Abies cilicica). Flora, 294, 152135. DOI:10.1016/j.flora.2022.152135
  23. Qian, H., Sheng, G., Liu, W., Lu, Y., Liu, Z. & Fu, Z. (2008). Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Environmental Toxicology and Chemistry, 27, pp. 182–187. DOI:10.1897/07-163.1
  24. Rojas-Villacorta, W., Rojas-Flores, S., De La Cruz-Noriega, M., Espino, H. C., Diaz, F. & Cardenas, M. G. (2022). Microbial biosensors for wastewater monitoring: mini review. Processes, 10, pp. 2-13. DOI:10.3390/pr10102002
  25. Roustan, A., Aye, M., De Meo, M. & Giorgio, C. D. (2014). Genotoxicity of mixtures of glyphosate and atrazine and their environmental transformation products before and after photoactivation. Chemosphere, 108, pp. 93-100. DOI:10.1016/j.chemosphere.2014.02.079
  26. Santos, K. C. & Martinez, C. B. R. (2014). Genotoxic and biochemical effects of atrazine and Roundups, alone and in combination, on the Asian clam Corbicula fluminea. Ecotoxicology and Environmental Safety, 100, pp. 7-14. DOI:10.1016/j.ecoenv.2013.11.014
  27. Shan, W., Hu, W., Wen, Y., Ding, X., Ma, X., Yan, W. & Xia, Y. (2021). Evaluation of atrazine neurodevelopment toxicity in vitro-application of hESC-based neural differentiation model. Reproductive Toxicology, 103, pp. 149-158. DOI:10.1016/j.reprotox.2021.06.009
  28. Silveyra, G. R., Medesani, D. A. & Rodríguez, E. M. (2022). Effects of the herbicide atrazine on Crustacean Reproduction. Mini-Review. Frontiers in Physiology, 13, pp. 1-5. DOI:10.3389/fphys.2022.926492
  29. Sivathanu, B. & Palaniswamy, S. (2012). Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Biomedical Prevention and Nutrition, 2, pp. 276-282. DOI:10.1016/j.bionut.2012.04.006
  30. Song,Y., Jiang, B., Tian, S., Tang, H., Liu, Z., Li, C., Jia, J., Huang, W. E., Zhang, X. & Li, G. (2014). A whole cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environmental Pollution, 195, pp. 178–184. DOI:10.1016/j.envpol.2014.08.024
  31. Su, Y., Cheng, Z., Chou, Y., Lin, S., Gao, L., Wang, Z., Bao, R. & Peng, L. (2022). Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris. Aquatic Toxicology, 244, 106097. DOI:10.1016/j.aquatox.2022.106097
  32. Sun, C., Xu, Y., Hu, N., Ma, J., Sun, S., Cao, W., Klobučar, G., Hu, C. & Zhao, Y. (2020). To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Chemosphere, 244, 125514. DOI:10.1016/j.chemosphere.2019.125514
  33. Węgrzyn, A. & Mazur, R. (2020). Regulatory mechanisms of photosynthesis light reactions in higher plants. Postępy Biochemii (Advances in biochemistry), 66, pp. 134-42. (in Polish). DOI:10.18388/pb.2020_325
  34. Woutersen, M., Belkin, S., Brouwer, B., Wezel, A. P. & Heringa, M. B. (2011). Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Analitical and Bioanalitical Chemistry, 400, pp. 915-929. DOI:10.1007/s00216-010-4372-6
  35. Xiong, J. Q., Kurade, M. B., Abou-Shanab, R. A. J., Ji, M. K., Choi, J., Kim, J. O. & Jeon, B. H. (2016). Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresources Technology, 205, pp. 183-90. DOI:10.1016/j.biortech.2016.01.038
  36. Yang, F., Gao, M., Lu, H., Wei, Y., Chi, H., Yang, T., Yuan, M., Fu, H., Zeng, W. & Liu, C. (2021). Effects of atrazine on chernozem microbial communities evaluated by traditional detection and modern sequencing technology. Microorganisms, 9, 1832. DOI:10.3390/microorganisms9091832
  37. Yang, H., Jiang, Y., Lu, K., Xiong, H., Zhang, Y. & Wei, W. (2021a). Herbicide atrazine exposure induce oxidative stress, immune dysfunction and WSSV proliferation in red swamp crayfish Procambarus clarkii. Chemosphere, 283, 131227. DOI:10.1016/j.chemosphere.2021.131227
  38. Zappi, D., Coronado, E., Soljan, V., Basile, G., Varani, G., Turems, M. & Giardi, M. (2021). A microbial sensor platform based on bacterial bioluminescence (luxAB) and green fluorescent protein (gfp) reporters for in situ monitoring of toxicity of wastewater nitrification process dynamics. Talanta, 221, pp. 1-8. DOI:10.1016/j.talanta.2020.121438
  39. Zhang, Y., Meng, D., Wang, Z., Guo, H. & Wang, Y. (2012). Oxidative stress response in two representative bacteria exposed to atrazine. FEMS Microbiology Letters, 334, pp. 95–101. DOI:10.1111/j.1574-6968.2012.02625.x
  40. Zhao, Y., Yunyang, L., Bao, H., Nan, J. & Xu, G. (2023). Rapid biodegradation of atrazine by a novel Paenarthrobacter ureafaciens ZY and its effects on soil native microbial community dynamic. Frontiers in Microbiology, 4, pp. 1-13. DOI:10.3389/fmicb.2022.1103168
  41. Zhu, Y., Elcin, E., Jiang, M., Li, B., Wang, H., Zhang, X. & Wang, Z. (2022). Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Frontiers in Chemistry, 10, 1018124. DOI:10.3389/fchem.2022.1018124
Przejdź do artykułu

Autorzy i Afiliacje

Marzena Matejczyk
1
Paweł Kondzior
1
Piotr Ofman
2
Edyta Juszczuk-Kubiak
3
Renata Świsłocka
1
Grażyna Łaska
4
Józefa Wiater
5
Włodzimierz Lewandowski
1

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,Department of Chemistry, Biology and Biotechnology, Bialystok, Poland
  2. Bialystok University of Technology, Department of Environmental Engineering Technology,Bialystok, Poland
  3. Institute of Agricultural and Food Biotechnology-State Research Institute, Laboratory of Biotechnologyand Molecular Engineering, Warsaw, Poland
  4. Department of Agri-Food Engineering and Environmental Management,Bialystok University of Technology, Bialystok, Poland
  5. Bialystok University of Technology, Department of Agricultural and Food Engineeringand Environmental Management, Bialystok, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Rising carbon dioxide emissions are driving climate change and there is growing pressure to find alternative energy sources. Co-combustion of waste with fuels is still occurring in some regions of the world, and it is important to know the compounds emitted from such combustion. This study investigated the emissions from the combustion of wood pellets with waste. The wood pellet was combusted with different additions of polyethylene terephthalate plastic and medium-density fiberboard (10 and 50%), in a low-power boiler (18W). Phenols, alkylphenols, phthalates, biomass burning markers, and polycyclic aromatic hydrocarbon emissions were determined. Gas chromatography coupled with a mass spectrometry detector was used to analyze these compounds after extraction and derivatization in the particulate matter and gas phase. The emissions of biomass burning markers and phthalates were the highest among all the compounds determined for MDF addition. The total emission of these compounds was 685 mg/h and 408 mg/h for 10% addition and 2401 mg/h and 337 mg/h for 50% addition, respectively. For the co-combustion of biomass with PET, PAHs and phenols had the highest emission; the emission was 197 mg/h and 114.5 mg/h for 10% addition and 268 mg/h and 200 mg/h for 50% addition, respectively. In our opinion, the obtained results are insufficient for the identification of source apportionment from household heating. After further study, tested compounds could be treated as markers for the identification of the fuel type combusted in households.
Przejdź do artykułu

Bibliografia

  1. Chen, L., Zhao, Y., Li, L., Chen, B. & Zhang, Y. (2012), Exposure assessment of phthalates in non-occupational populations in China, Science of the Total Environment, 427-428, pp. 60-69. DOI:10.1016/j.scitotenv.2012.03.090
  2. Chen, Q., Zhang, X., Bradford, D., Sharifi, V. & Swithenbank, J. (2010). Comparison of emission characteristics of small-scale heating systems using biomass instead of coal, Energy Fuels, 24, 8, pp. 4255-4265. DOI:10.1021/ef100491v
  3. Cincinelli, A., Guerranti, C., Martellini, T. & Scodellini, R. (2019). Residential wood combustion and its impact on urban air quality in Europe, Current Opinion In Environmental Science & Health, 8, pp. 10-14. DOI:10.1016/j.coesh.2018.12.007
  4. Czaplicka, M., Cieślik, E., Komosiński, B. & Rachwał, T. (2019). Emission factors for biofuels and coal combustion in a domestic boiler 18kW, Atmosphere, 10, 12. DOI:10.3390/atmos10120771
  5. Czaplicka, M., Klyta, J., Komosiński, B., Konieczny, T. & Janoszka, K. (2021), Comparison of carbonaceous compounds emission from the co-combustion of coal and waste in boilers used in residential heating in Poland, Central Europe, Energies, 14, 5326, pp. 1-15. DOI:10.3390/en14175326
  6. Czaplicka, M., Węglarz, A., Klejnowski, K. (2001), Analysis of organic contaminants from motor vehicles adsorbed on the particulate matter for PAHs, Chemia Analityczna, 46, pp. 677-689
  7. Demibras, A. (2004). Combustion characteristics of different biomass fuels, Progress in Energy and Combustion Science, 30, pp. 219-230. DOI:10.1016/j.pecs.2003.10.004
  8. Dhahak, A., Grimmer, Ch., Neumann, A., Rüger, Ch., Sklorz, M., Streibel, Th., Zimmermann, R., Mauviel, G. & Burkle-Vitzhum, V. (2020). Real-time monitoring of slow pyrolysis of polyethylene terephthalate (PET) by different mass spectrometric techniques, Waste Management, 106, pp. 226-239. DOI:10.1016/j.wasman.2020.03.028
  9. Hardy, T., Musialik-Piotrowska. A., Ciołek, J., Mościcki, K. & Kordylewski, W. (2012). Negative Effects of Biomass Combustion and Co-combustion in boilers, Environment Protection Engineering, 38, 1, pp. 25-33
  10. Ishaq, M., Ahmad, I., Shakirullah, M., Arsala Khan, M., ur Rehman, H. & Bahadur, A. (2006), Pyrolysis of some whole plastics and plastics-coal mixtures, Energy Conversion and Management, 47, 18-19, pp. 3216-3223. DOI: 10.1016/j.enconman.2006.02.019
  11. Janoszka, K., Czaplicka M. & Klejnowski, K. (2020), Comparison of biomass burning tracers concentration between two winter seasons in Krynica Zdrój, Air Quality, Atmopshere& Health, 13, pp. 379-385. DOI:10.1007/s11869-020-00801-1
  12. Jaworek, K. & Czaplicka, M. (2013), Determination of phthalates in polymer materials – Comparison of GC/MS and GC/ECD methods, Polímeros, 23, pp. 718-724. DOI:10.4322/polimeros.2014.014
  13. Kistler, M., Schmidl, Ch., Padouvas, E., Giebl, H., Lohninger, J., Ellinger, R., Bauer, H. & Puxbaum, H. (2012). Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to central Europe, Atmospheric environment, 51, pp. 86-93. DOI:10.1016/j.atmosenv.2012.01.044
  14. Kojić, I., Bechtel, A., Aleksić, N., Životić, D., Trifunović, S., Gajica, G. & Stojanović, K. (2021), Study of the synergetic effect of co-pyrolysis of lignite and high-density polyethylene aiming to improve utilization of low-rank coal, Polymers, 13, 5, pp. 1-25. DOI:10.3390/polym13050759
  15. Krugly, E., Martuzevicius, D., Puida, E., Buinevicius, K., Stasiulaitiene, I., Radziuniene, I., Minikauskas, A. & Klucininkas, L. (2014), Characterization of gaseous- and particulate-phase emissions from the combustion of biomass-residue-derived fuels in a small residential boiler, Energy Fuels, 28, pp. 5057-5066. DOI:10.1021/ef500420t
  16. Li, D. H., Oh, J. R. & Park, J. (2003), Direct extraction of alkylphenols, chlorophenols and bisphenol A from acid-digested sediment suspension for simultaneous gas chromatographic-mass spectrometric analysis, Journal of Chromatography A, 1012, pp. 207-214. DOI:10.1016/S0021-9673(03)01174-9
  17. Li, Zh., Guo, S., Li, Zh., Wang, Y., Hu, Y., Xing, Y., Liu, G., Fang, R. & Zhu, H. (2020), PM2,5 Associated phenols, phthalates and water-soluble ions from five stationary combustion sources, Aerosol and Air Quality Research, 20, pp. 61-71. DOI:10.4209/aaqr.2019.11.0602
  18. Lim, M. T., Phan, A., Roddy, D. & Harvey, A. (2015). Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review, Renewable and Sustainable Energy Reviews, 49, pp. 574-584. DOI:10.1016/j.rser.2015.04.090
  19. Musialik-Piotrowska, A., Kordylewski, W., Ciołek J. & Mościcki, K. (2010). Characteristics of air pollutants emitted from biomass combustion in small retort boiler, Environment Protection Engineering, 36, 2, pp. 123-131.
  20. Oh, S.-Y. & Seo, T.-C. (2019) Upgrading biochar via co-pyrolisation of agricultural biomass and polyethylene terephthalate wastes, RCS Advances, 9, pp. 28284-28290. DOI:10.1039/C9RA05518E
  21. Pan, Ch.-X., Wei, X.-Y., Shui, H.-F., Wang, Zh.-C., Gao, J., Wei, Ch., Cao, X.-Zh. & Zong, Zh.-M. (2013), Investigation on the macromolecular network structure of Xianfeng lignite by a new two-step depolymerization, Fuel, 109, pp. 49-53. DOI:10.1016/j.fuel.2012.11.059
  22. Růžičková, J., Kucbel, M., Raclavská, H., Švédová, B., Raclavský, K. & Juchelková, D. (2019). Comparison of organic compounds in char and soot from the combustion of biomass in boilers of various emission classes. Journal of Environment Management, 15, pp. 769-783. DOI:10.1016/j.jenvman.2019.02.038
  23. Růžičková, J., Raclavská, H., Raclavský, K. & Juchelková, D. (2016), Phthalates in PM2,5 airborne particles in the Moravian-Silesian Region, Czech Republic, Perspectives in Science, 7, pp. 178-183. DOI:10.1016/j.pisc.2015.11.029
  24. Salapasidou, M., Samara, C. & Voutsa, D. (2011), Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece, Atmospheric Environment, 45, 22, pp. 3720-3729. DOI:0.1016/j.atmosenv.2011.04.025
  25. Song, B. & Hall, P. (2020). Densification of biomass and waste plastic blends as a solid fuel: hazards, advantages, and perspectives, Frontiers in Energy Research, 8, 58, pp. 1-7. DOI:10.3389/fenrg.2020.00058
  26. Sun, J., Shi, G., Jin, W., Chen, Y., Shen, G., Tian, Ch., Zhang, Y., Zong, Zh., Cheng, M., Zhang, X., Zhang, Y., Liu, Ch., Lu, J., Wang, H., Xiang, J., Tong, L. & Zhang, X. (2018). Emissions factors of organic carbon and elemental carbon for residential coal and biomass fuels in China – A new database for 39 fuel-stove combinations, Atmospheric Environment, 190, pp. 241-248. DOI:10.1016/j.atmosenv.2018.07.032
  27. Sun, L., Wang, F., Xie, Y., Feng, J. & Wang, Q. (2012), The combustion performance of medium density fiberboard treated with fire retardant microspheres, Bioresources, 7, pp. 593-601.
  28. Szyszlak-Bargłowicz, J., Zając, G. & Słowik, T. (2015). Hydrocarbon emissions during biomass combustion, Polish Journal of Environmental Studies, 24, pp. 1349-1354. DOI:10.15244/pjoes/37550
  29. Tomsej, T., Horak, J., Tomsejowa, S., Krpec, K., Klanova, J., Dej, M. & Hopan, F. (2018) The impact of co-combustion of polyethylene plastics and wood in the small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5-triphenylbenzene, Chemosphere, 196, pp. 18-24. DOI:10.1016/j.chemosphere.2017.12.127
  30. Uğuz, C., Işcan, M. & Togan, I. (2009), Alkylphenols in the environment and their adverse effects on living organisms, Kocatepe Veterinary Journal, 2, 1, pp. 49-58.
  31. Wang, S., Wang, W. & Yang, H. (2018), Comparison of product carbon footprint protocols: Case study on medium-density fiberboard in China, International Journal of Environmental Research and Public Health, 15, 10, pp. 1-14. DOI:10.3390/ijerph15102060
  32. Wasilewski, R. & Siudyga, T. (2013), Odzysk energetyczny odpadowych tworzyw sztucznych, Chemik, 67, 5, pp. 435-445.
  33. Williams. A., Jones. J. M., Ma. L & Pourkashanian, M. (2012). Pollutants from the combustion of solid biomass fuels, Progress in Energy and Combustion Science, 38, pp. 113-137. DOI:10.1016/j.pecs.2011.10.001
  34. Zeng, Q., Lu, Q., Zhou, Y., Chen, N., Rao, J. & Fan, M. (2018), Circular development of recycled natural fibers from medium density fiberboard wastes, Journal of Cleaner Production, 8, pp. 1-17. DOI:10.1016/j.jclepro.2018.08.166
  35. Zubkova, V. & Czaplicka, M. (2012), Changes in the structure of plasticized coals caused by extraction with dichloromethane, Fuel, 96, pp. 298-305. DOI:10.1016/j.fuel.2011.12.067
  36. Zubkova, V., Czaplicka, M. & Puchala, A. (2016), The influence addition of coal tar pitch (CTP) and expired pharmaceuticals (EP) on properties and composition of pyrolysis products for lower and higher rank coal, Fuel, 170, pp. 197-209. DOI:10.1016/j.fuel.2011.12.067
Przejdź do artykułu

Autorzy i Afiliacje

Justyna Klyta
1
ORCID: ORCID
Katarzyna Janoszka
1
ORCID: ORCID
Marianna Czaplicka
1
ORCID: ORCID
Tomasz Rachwał
1
ORCID: ORCID
Katarzyna Jaworek
1
ORCID: ORCID

  1. Institute of Environmental Engineering PAS, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Studies on packaging made of polylactide (PLA) subjected to long-term influence of soil environment conditions have been presented in this paper. The scientific objective of this study was to determine changes in selected properties of the PLA packaging after long-term incubation in soil. These changes were investigated by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The structure, thermal properties, and disintegration degree of the packaging after their three-year incubation in soil have been discussed. It was found that the PLA packaging did not disintegrate significantly in the soil environment, and slight changes in their structure and lack of significant changes in thermal properties indicate that the efficiency of their degradation in soil conditions after three years is very low. This was mainly due to inadequate temperatures in the soil. It was also found (based on the results of scanning electron microscopy and gel permeation chromatography) that initiation of the biodegradation process took place and that this process is much faster than in the case of conventional non-biodegradable polymers. The results are confirmation that materials obtained of various biodegradable polymers (not only PLA) should be biodegradable only under strictly defined conditions, allocated to a specific type of polymer, i.e. those in which they are easily and quickly biodegradable
Przejdź do artykułu

Bibliografia

  1. Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K.S. & Kubo, M. (2016). Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms, Journal of Agricultural Chemistry and Environment, 5, pp. 23-34. DOI:10.4236/jacen.2016.51003
  2. Ahmed, J. & Varshney, S.K. (2011). Polylactides – Chemistry, Properties and Green Packaging Technology: A Review, International Journal of Food Properties, 14, pp. 37-58. DOI:10.1080/10942910903125284
  3. Bhagwat, G., Gray, K., Wilson, S.P., Muniyasamy, S., Vincent, S.G.T., Bush, R. & Palanisami, T. (2020). Benchmarking Bioplastics: A Natural Step Towards a Sustainable Future, Journal of Polymers and the Environment, 28, pp. 3055-3075. DOI:10.1007/s10924-020-01830-8
  4. Deroiné, M., Le Duigou, A., Corre, Y.M., Le, Gac, P.Y., Davies, P., César, G. & Bruzaud, S. (2014). Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater, Polymer Degradation and Stability, 108, pp. 319-329. DOI:10.1016/j.polymdegradstab.2014.01.020
  5. Dintcheva, N.T., Al-Malaika, S., Morici, E. & Arrigo, R. (2017). Thermo-oxidative stabilization of poly(lactic acid)-based nanocomposites through the incorporation of clay with in-built antioxidant activity, Journal of Applied Polymer Science, 134, pp. 44974-44986. DOI:10.1002/app.44974
  6. Donghee, K., Yoshito, A., Yoshihito, S. & Haruo, N. (2011). Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization, ACS Applied Materials & Interfaces, 3, pp. 385-391. DOI:10.1021/am1009953
  7. Fischer, E.W., Sterzel, H.J. & Wegner, G. (1973). Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions, Colloid and Polymer Science, 251, pp. 980-990. DOI:10.1007/BF01498927
  8. Itavaara, M., Karjomaa, S. & Selin, J.F. (2002). Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions, Chemosphere, 46, pp. 879-885. DOI:10.1016/s0045-6535(01)00163-1
  9. Janczak, K., Dąbrowska, G.B., Raszkowska-Kaczor., A., Kaczor, D., Hrynkiewicz, K. & Richert, A. (2020). Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants, International Biodeterioration & Biodegradation, 155, 105087. DOI:10.1016/j.ibiod.2020.105087
  10. John, R.P., Nampoothiri, K.M. & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives, Applied Microbiology and Biotechnology, 74, pp. 524-534. DOI:10.1007/s00253-006-0779-6
  11. Kale, G., Auras, R. & Singh, S.P. (2007). Comparison of the degradability of poly (lactide ) packages in composting and ambient exposure conditions, Packaging Technology & Science, 20, pp. 49-70. DOI:10.1002/pts.742
  12. Kamiya, M., Asakawa, S. & Kimura, M. (2007). Molecular Analysis of Fungal Communities of Biodegradable Plastics in Two Japanese Soils, Soil Science and Plant Nutrition, 53, pp. 568-574. DOI:10.1111/j.1747-0765.2007.00169.x
  13. Kim, M.N., Kim, W.G., Weon, H.Y. & Lee, S.H. (2008). Poly(L-Lactide)-Degrading Activity of a Newly Isolated Bacterium, Journal of Applied Polymer Science, 109, pp. 234-239. DOI:10.1002/app.26658
  14. Kim, D.Y. & Rhee, Y.H. (2003). Biodegradation of Microbial and Synthetic Polyesters by Fungi, Applied Microbiology and Biotechonology, 61, pp. 300-308. DOI:10.1007/s00253-002-1205-3
  15. Lee, S.H. & Kim, M.N. (2010). Isolation of Bacteria Degrading Poly(butylenes succinate-co-butylene adipate) and Their lip A Gene, International Biodeterioration and Biodegradation, 64, pp. 184-190. DOI:10.1016/j.ibiod.2010.01.002
  16. Mehlika, K., Ashley, H. & Geoffrey, D.R. (2014). Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost, International Biodeterioration & Biodegradation, 95, pp. 301-310. DOI:10.1016/j.ibiod.2014.09.006
  17. Nakamura, K., Tomita, T., Abe, N. & Kamio, Y. (2001). Purification and Characterization of an Extracellular Poly(L-Lactic Acid) Depolymerase from a Soil Isolate, Amycolatopsis sp. Strain K104-1, Applied Environmental Microbiology, 67, pp. 345-353. DOI:10.1128/aem.67.1.345-353.2001
  18. PlasticsEurope (2022). Plastics – the Facts 2022, (https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (11.01.2023))
  19. Poluszyńska, J., Ciesielczuk, T., Biernacki, M. & Paciorkowski, M. (2021). The effect of temperature on the biodegradation of different types of packaging materials under test conditions, Archives of Environmental Protection, 47, pp. 74-83. DOI:10.24425/aep.2021.139503
  20. Saadi, Z., Rasmont, A., Cesar, G., Bewa, H. & Benguigui, L. (2012). Fungal degradation of poly(l-lactide) in soil and in compost, Journal of Polymers and the Environment, 20, pp. 273-282. DOI:10.1007/s10924-011-0399-9
  21. Sarasua, J.R., Prud’Homme, R.E., Wisniewski, M., Le Borgne, A. & Spassky, N. (1998). Crystallization and Melting Behavior of Polylactides. Macromolecules, 31, pp. 3895-3905. DOI:10.1021/ma971545p
  22. Satti, S.M., Shah, A.A., Marsh, T.L. & Auras, R. (2018). Biodegradation of Poly(lactic acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-augmentation and Bio-stimulation, Journal of Polymers and the Environment, 26, pp. 3848-3857. DOI:10.1007/s10924-018-1264-x
  23. Shah, A.A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological Degradation of Plastics: A Comprehensive Review, Biotechnology Advances, 26, pp. 246-265. DOI:10.1016/j.biotechadv.2007.12.005
  24. Siparsky, G.L., Voorhees, K.J., Dorgan, J.R. & Schilling, K. (1997). Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA/polyethylene glycol blends, Journal of Environmental Polymer Degradation, 5, pp. 125-136. DOI:10.1007/BF02763656
  25. Södergard, A., Selin, J.F. & Näsman, J.H. (1996). Hydrolytic degradation of peroxide modified poly(L-lactide), Polymer Degradation and Stability, 51, pp. 351-359. DOI:10.1016/0141-3910(95)00271-5
  26. Sterzyński, T. (2000). Processing and property improvement in isotactic polypropylene by heterogeneous nucleation, Polimery, 45, pp. 786-791.
  27. Teeraphatpornchai, T., Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nakayama, M., Nomura, N., Nakahara, T. & Uchiyama, H. (2003). Isolation and Characterization of a Bacterium That Degrades Various Polyester-Based Biodegradable Plastics, Biotechnology Letters, 25, pp. 23-28. DOI:10.1023/A:1021713711160
  28. Tsuji, H., Tezuka, Y., Saha, S.K., Suzuki, M. & Itsuno, S. (2005). Spherulite growth of l-lactide copolymers: Effects of tacticity and comonomers, Polymer, 46, pp. 4917-4927. DOI:10.1016/j.polymer.2005.03.069
  29. Weir, N.A., Buchanan, F.J., Orr, J.F., Farrar, D.F. & Dickson, G.R. (2004). Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 218, pp. 321-330. DOI:10.1243/0954411041932809
  30. Żenkiewicz, M., Malinowski, R., Rytlewski, P., Richert, A., Sikorska, W. & Krasowska, K. (2012). Some composting and biodegradation effects of physically or chemically crosslinked poly(lactic acid), Polymer Testing, 31, pp. 83-92. DOI:10.1016/j.polymertesting.2011.09.012
Przejdź do artykułu

Autorzy i Afiliacje

Rafał Malinowski
1
ORCID: ORCID
Marta Musioł
2
ORCID: ORCID
Krzysztof Moraczewski
3
ORCID: ORCID
Volodymyr Krasinskyi
1
ORCID: ORCID
Lauren Szymańska
1
ORCID: ORCID
Krzysztof Bajer
1
ORCID: ORCID

  1. Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland
  2. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  3. Faculty of Materials Engineering, Kazimierz Wielki University, Bydgoszcz, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This data article aimed to evaluate the influencing mechanisms of the nutrients and the level of eutrophication in the Yangtze River estuary. The seasonal characteristics of nutrients (dissolved inorganic nitrogen (DIN), SiO32−–Si, and PO4 3–P) in the seawater of the Yangtze River estuary were analyzed by conducting surveys in spring and summer of 2019. The findings revealed that the concentrations of all nutrient at the surface and bottom layers were lower in spring compared to summer. NO3 −–N was typically the major form of DIN. Runoff was identified as the primary source of DIN and SiO3 2−–Si, while PO4 3−–P originated from a various sources.The SiO32−–Si/PO43−–P and DIN/PO43−–P values in the surface and bottom layers during the spring and summer were higher than the Redfield values, indicating an imbalanced nutrient distribution. Furthermore, discrepancies were observed in the distributions of DIN/PO4 3−–P, SiO3 2−–Si/DIN, and SiO3 2−–Si/PO4 3−–P in the Yangtze River estuary. Through an examination of the ratio of DIN/PO4 3−–P absorbed by phytoplankton, PO4 3−–P was identified as a potential limiting factor for nutrition in the sea area of the Yangtze River estuary during spring and summer. The Eutrophication Index (E) values for both spring and summer were found to be higher than the eutrophication threshold, indicating severe eutrophication in the studied sea area.
Przejdź do artykułu

Bibliografia

  1. Avik, K. & Ruma, P. (2013). Seasonal Dynamics of Surface Micro Phytoplankton Assemblages in an Understudied Tropical Estuarine Station Along the Bhagirathi–Hooghly Estuary, India.Proceedings of the National Academy of Sciences, India Section B: Biological Sciences,84, pp. 635–647. DOI:10.1007/s40011-013-0275-6
  2. Bauer, J. & Bianchi, T. (2011). Dissolved organic carbon cycling and transformation. Treatise on Estuarine and Coastal Science, 5: pp. 7-67.
  3. Biswas, D. (2011). Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutrient Cycling in Agroecosystems, 89, pp. 15-30. DOI:10.1007/s10705-010-9372-6
  4. Brown, E. & Button, D. (1979). Phosphate-limited growth kinetics of Selanastrum capricornatum (Chlorophyceae), Journal of Phycology, 15, pp. 305-311. DOI:10.1111/j.0022-3646.1979.00305.x
  5. Chen, H.T., Yu, Z.G., Yao, Q.Z., Yao, Q.Z., Mi, T.Z. & Liu, P.X. (2010). Nutrient concentrations and fluxes in the Changjiang Estuary during summer. Acta Oceanologica Sinica, 29, pp. 107-119. DOI:10.1007/s13131-010-0029-8
  6. Chen, N., Wu, Y., Wu, J., Yan, X. & Hong, H. (2014). Natural and human influences on dissolved silica export from watershed to coast in Southeast China. Journal of Geophysical Research: Biogeosciences, 119(1), pp. 95-109.
  7. Cho, H., Kim, G., Kwon, E.Y., Moosdorf, N., Garcia-Orellana, J. & Santos, I. (2018). Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean. Scientific Reports,8(1), pp. 24-39. DOI:10.1038/s41598-018-20806-2
  8. Christoph, H., Daniel, J.C., Lars, R., Fredrik, W. & Venugopalan, I. (2000). Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments. AMBIO A Journal of the Human Environment, 29(1), pp. 45-50. DOI:10.1579/0044-7447-29.1.45
  9. Coffin, M., Knysh, K.M., Roloson, S.D., Pater, C.C., Theriaul, E., Cormier, J.M., Courtenay, S.C. & Heuvel, M. (2021).Influence of nutrient enrichment on temporal and spatial dynamics of dissolved oxygen within northern temperate estuaries. Environmental monitoring and assessment, 804(193). DOI:10.1007/s10661-021-09589-8
  10. Gilbert, M., Needoba, J., Koch, C., Barnard, A. & Baptista, A. (2013). Nutrient Loading and Transformations in the Columbia River Estuary Determined by High-Resolution In Situ Sensors. Estuaries and Coasts, 36, pp. 708-727. DOI:10.1007/s12237-013-9597-0
  11. Glibert, P., Cai, W.J., Hall, E., Li, M., Main, K., Rose, K., Testa, J. & Vidyarathna, N. (2022). Stressing over the complexities of multiple stressors in marine and estuarine systems. Ocean-Land-Atmosphere Research, pp. 1-27. DOI:10.34133/2022/9787258
  12. Hasan, J., Shaha, D., Kundu, S., Ahmed, M., Shahroz, M., Haque, F., Ahsan, M. E., Ahmed, S., Hossain, M.I. & Mohammad, A. (2022). Outwelling of nutrients into the Pasur River estuary from the Sundarbans mangrove creeks. Heliyon, 8(12), e12270. DOI:10.1016/j.helyon.2022.e12270
  13. Husnain, I., Wakatsuki, T. & Masunaga, T. (2009). Dissolved silica dynamics and phytoplankton population in Citarum Watershed, Indonesia. Journal of Food Agriculture & Environment, 7(3-4), pp. 655-661. DOI:10.3168/jds.2009-92-7-3543
  14. Julia, C. & Hans, W. (2012).Composition of inorganic and organic nutrient sources influences phytoplankton community structure in the New River Estuary, North Carolina. Aquatic Ecology, 46, pp. 269-282. DOI:10.1007/s10452-012-9398-8
  15. Li, L, Shen, X. & Jiang, M. (2016). Change characteristics of DSi and nutrition structure at the Yangtze River Estuary after Three Gorges Project impounding and their ecological effect, Archives of Environmental Protection, 43(2), pp. 73-78. DOI:10.1515/aep-2017-0012
  16. Li, W., Yang, Y., Li, Z.Z., Xu, J.T. & Gao, K.S. (2017).Effects of seawater acidification on the growth rates of the diatom Thalassiosira (Conticribra) weissflogii under different nutrient, light, and UV radiation regimes. Journal of Applied Phycology, 29, pp. 133-142. DOI:10.1007/s10811-016-0944-y
  17. Li, X., Yang, L.B. & Yan, W. (2011). Model analysis of dissolved inorganic phosphorus exports from the Yangtze river to the estuary. Nutrient Cycling in Agroecosystems, 90, pp. 157-170. DOI:10.1007/s10705-010-9419-8
  18. Liu, S., Lou, S., Kuang, C., Huang, W., Chen, W., Zhang, J., & Zhong, G. (2011). Water quality assessment by pollution-index method in the coastal waters of Hebei Province in western Bohai Sea, China.Marine Pollution Bulletin, 62(10), pp. 2220-2229. DOI:10.1016/j.marpolbul.2011.06.021,
  19. Liu, S., Zhang, H., He, Y., Cheng, X., Zhang, H., Qin, Y., Ji, X., He, H. & Chen, Y.(2021). Interdecadal variability in ecosystem health of Changjiang (Yangtze) River estuary using estuarine biotic integrity index. Journal of Oceanology and Limnology, 39, pp. 1417-1429. DOI:10.1007/s00343-020-0188-1
  20. Liu, X., Liu, D., Wang, Y., Shi, Y., Wang, Y.X. & Sun, X. (2019). Temporal and spatial variations and impact factors of nutrients in Bohai Bay, China.Marine pollution bulletin, pp. 549-562. DOI:10.1016/j.marpolbul.20191.02.011
  21. Lou, Q., Zhang, X., Zhao, B., Cao, J. & Li, Z. (2022). The Derivation of Nutrient Criteria for the Adjacent Waters of Yellow River Estuary in China. Journal of Ocean University of China, 21(5), pp. 1227-1236. DOI:10.1007/s11802-022-5141-9
  22. Lu, X.Q., Yu, W.W., Chen, B., Ma, Z.Y., Chen, G.C., Ge, F.Y., An, S.Q. & Han, W.X. (2023). Imbalanced phytoplankton C, N, P and its relationship with seawater nutrients in Xiamen Bay, China. Marine pollution bulletin, 187.114566 DOI:10.1016/J.MARPOLBUL.2022.114566
  23. Maavara, T., Lauerwald, R., Regnier, P. & Van Cappellen, P. (2017).Global perturbation of organic carbon cycling by river damming. Nature communications, 15347. DOI:10.1038/ncomms15347
  24. Nelson, D. & Brzezinski, A. (1990). Kinetics of silicate acid uptake by natural diatom assemblages in two Gulf & Stream warm-core rings, Marine Ecology Progress Series, 62, pp. 283-292. DOI:0171-8630/90.0062.0283
  25. Rathika, S. & Helen, H. M. (2018).Characteristics of nutrients in the estuaries of Kanyakumari district-A comparative study. International Journal of ChemTech Research, 11(7), pp. 329-336. DOI:10.20902/IJCTR.2018.110739
  26. Reckhardt, A., Beck, M., Seidel, M., Riedel T., Wehmann, A., Bartholomae, A., Schnetger, B., Dittmar, T. & Brumsack, H.J. (2015).Carbon, nutrient and trace metal cycling in sandy sediments: a comparison of high-energy beaches and backbarrier tidal flats. Estuarine, Coastal and Shelf Science, 159, pp. 1-14. DOI:10.1016/j.ecss.2015.03.025
  27. Redfield, A.C., Ketchum, B.H. & Richards, F.A. (1963).The influence of organisms on the composition seawater. Hill M N. The Sea(Vol.2). New York: John Wiley. 26-77.
  28. Sarma, V.V.S.S., Krishna, M.S. & Srinivas, T.N.R. (2023).Long-term changes in Nutrient Concentration and Fluxes from the Godavari Estuary: Role of River Discharge and Fertilizer Inputs. Estuaries and Coasts,46, pp. 959-973. DOI:10.1007/s12237-023-01179-w
  29. Shen, L., Xu, H.P., Guo, X.L. & Li, M.(2011). Characteristics of largescale harmful algal blooms (HABs) in the Yangtze River estuary and the adjacent East China Sea (ECS) from 2000 to 2010, Journal of environmental protection and ecology, 2(10), pp. 1285-1294. DOI:10.4236/ jep.2011.210148
  30. Shi, T.J., Li, Z.M. & Zhao, Y.D. (2019). Spatial Variation in Water Column Structure, Nutrients, Chlorophyll and Zooplankton in an Estuarine Transect of Southampton Water. IOP Conference Series Earth and Environmental Science. DOI:10.1088/1755-1315/281/1/012008
  31. Shulkin, V., Tishchenko, P., Semkin, P. & Shvetsova., M. (2018). Influence of river discharge and phytoplankton on the distribution of nutrients and trace metals in Razdolnaya River estuary, Russia. Estuarine Coastal & Shelf Science, 211(31), pp. 166-176. DOI:10.1016/j.ecss.2017.09.024
  32. Song, S.Q., Li, Z., Li, C.W. & Yu, Z.M. (2017). The response of spring phytoplankton assemblage to diluted water and upwelling in the eutrophic Changjiang (Yangtze River) Estuary. Acta Oceanologica Sinica, 36, pp. 101-110. DOI:10.1007/s13131-017-1094-z.
  33. Statham, P J.(2012). Nutrients in estuaries an overview and the potential impacts of climate change. Science of the Total Environment, 434: pp. 213-227. DOI:10.1016/j.scitotenv.2011.09.088
  34. Sun, K.M., Xin, M., Sun, P., Li, Y., Li, R.X., Tang, X.X. & Wang, Z.L. (2019). Photosynthetic activity of Prorocentrum donghaiense Lu acclimated to phosphorus limitation and its photosynthetic responses to nutrient depletion. Journal of Applied Phycology, 31, pp. 1721-1732. DOI:10.1007/s10811-018-1701-1
  35. Szatten, D., Habel, M. & Babiński, Z. (2021). Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland), Resources, 10(7), pp. 70. DOI:10.3390/resources10070070
  36. Taillardat, P., Marchand, C., Friess, D. A.,Widory, D. & Ziegler, A.D. (2020).Respective contribution of urban wastewater and mangroves on nutrient dynamics in a tropical estuary during the monsoon season. Marine Pollution Bulletin, 160. DOI:10.1016/j.marpolbul.2020.111652
  37. Tavşanoğlu, N.H., Šorf, M., Stefanidis, K., Brucet, S., Türkan, S., Agasild, H., Baho, D.L., Scharfenberger, U., Hejzlar, J., Papastergiadou, E., Adrian, R., Angeler, D.G., Zingel, P., Çakıroğlu, A.I., Özen, A., Drakare, S., Søndergaard, M., Jeppesen, E. & Beklioğlu, M. (2017). Effects of nutrient and water level changes on the composition and size structure of zooplankton communities in shallow lakes under different climatic conditions: a pan-European mesocosm experiment. Aquatic Ecology, 51, pp. 257-273. DOI:10.1007/s10452-017-9615-6
  38. Vinita, J., Lallu, K.R., Revichandran, C., Muraleedharan, K.R, Jineesh, V.K. & Shivaprasad, A. (2015). Residual fluxes of water and nutrient transport through the main inlet of a tropical estuary, Cochin estuary, West Coast, India. Environmental Monitoring and Assessment, 187(11), pp. 675-688. DOI:10.1007/s10661-015-4870-2
  39. Yang, H.F., Zhu, Q.Y., Liu, J.A., Zhang, Z.L., Yang,S.L., Shi, B.W.,Zhang, W.X. & Wang, Y.P. (2023). Historic changes in nutrient fluxes from the Yangtze River to the sea: Recent response to catchment regulation and potential linkage to maritime red tides. Journal of hydrology, 617. DOI:10.1016/J.JHYDROL.2022.129024
  40. Zębek, E. (2013). Phytoplankton-nutrient relationships in years with various water levels in the Pasłęka River in the vicinity of the hydroelectric power station (North-east Poland), Russian Journal of Ecology, 44, pp. 492-499. DOI:10.1134/S1067413613060143
  41. Zhang, J., Liu, S.M., Ren, J.L., Wu, Y. & Zhang, G.L. (2007). Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and reevaluation of budgets for the East China Sea Shelf. Progress in Oceanography, 74(4), pp. 449-478. DOI:10.1016/j.pocean.2007.04.019
  42. Zhang, X.Y., Qi, M., Chen, L., Wu,T.Y., Zhang, W,Wang, X.J. & Tong, Y.D. (2020). Recent change in nutrient discharge from municipal wastewater in China's coastal cities and implication for nutrient balance in the nearshore waters. Estuarine, Coastal and Shelf Science, 242, 106856.
  43. Zhao, J.W., Xu, Y.F., Peng, L., Liu, G.L., Wan, X.Q., Hua, Y.M., Zhu, D.W. & Hamilton, D.P. (2019).Diversity of anammox bacteria and abundance of functional genes for nitrogen cycling in the rhizosphere of submerged macrophytes in a freshwater lake in summer. Journal of Soils and Sediments, 19, pp. 3648-3656. DOI:10.1007/s11368-019-02340-4
  44. Zheng, L., Liu, T.T., Yuan, D.H., Wang, H.P., Zhang, S.R., Ding, A.Z. & Xie, E. (2020). Abundance, diversity, and distribution patterns along with the salinity of four nitrogen transformation-related microbes in the Yangtze Estuary. Annals of Microbiology, 70(26), pp. 1-17. DOI:10.1186/s13213-020-01561-0
Przejdź do artykułu

Autorzy i Afiliacje

Lei Li
1
Guodong Xv
1
Yingjie Zheng
1
Mei Jiang
1

  1. East China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences, China

Instrukcja dla autorów

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Procedura recenzowania

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Recenzenci

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Polityka antyplagiatowa

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji