Applied sciences

Archives of Environmental Protection


Archives of Environmental Protection | 2021 | vol. 47 | No 2

Download PDF Download RIS Download Bibtex


Filtering Respiratory Protective Devices (FRPD) is not typically evaluated for exposure to volatile compounds, even though they significantly affect their protective performance. Such compounds are released into the atmosphere by industrial processes and pose serious health risks in people inhaling them. The adsorbent materials currently used to prevent those risks include activated carbon (AC). Zeolites and mesoporous silica materials (MCM) are very popular among the sorption materials. Due to their physical and chemical properties, they are able to adsorb significant amounts of volatile compounds from air. The melt-blown technology was used to produce filtering nonwovens with modifiers. As a result, polymer nonwoven structures with modifiers in the form of AC, zeolite (NaP1 type), molecular sieves (SM, SM 4Å) and mesoporous silica materials (MCM-41) were produced. The use of ACs (AC1 from Zgoda and AC2 from Pleisch) and their mixtures with others modifiers allowed to obtain satisfactory sorption, protective and utility properties. The longest breakthrough time against cyclohexane (approx. 53 min) was afforded by a variant containing AC, against ammonia (approx. 12 min) for the variant with AC2 and a mixture of AC2 and MCM-41. In the case of acetone vapor satisfactory breakthrough times were found for the variants with AC2 and AC1+SM (~20–25 min.). The present work deals with scientific research to improve workers’ and society’s health and safety by pursuing a better working life, and creating a safe social environment.
Go to article


  1. Anand, S.S., Philip, B.K. & Mehendale, H.M. (2014). Volatile Organic Compounds, [In] Wexler, P. (ed.) Encyclopedia of Toxicology (Third Edition), Academic Press, pp. 967-970, ISBN: 9780123864550, DOI: 10.1016/B978-0-12-386454-3.00358-4
  2. Amid, H., Maze, B., Flickinger, M.C. & Pourdeyhimi, B. (2016). Hybrid adsorbent nonwoven structures: a review of current technologies. Journal of Material Science, 51, pp. 4173-4200, DOI: 10.1007/s10853-016-9741-x
  3. Balanay, J.A.G., Bartolucci, A.A. & Lungu, C.T. (2014). Adsorption Characteristics of Activated Carbon Fibers (ACFs) for Toluene: Application in Respiratory Protection. Journal of Occupacional Environmental and Hygiene, 11, pp. 133-143, DOI: 10.1080/15459624.2013.816433
  4. Balanay, J.A.G. & Lungu, C.T. (2016). Determination of pressure drop across activated carbon fiber respirator cartridges. Journal of Occupational Environmental and Hygiene, 13, pp. 141-147, DOI: 10.1080/15459624.2015.1091960
  5. Baysal, G. (2019). Cleaning of pesticides from aqueous solution by a newly synthesized organoclay. Archives of Environmental Protection, 45(3), pp. 21–30, DOI: 10.24425/aep.2019.128637
  6. Brochocka, A., Nowak A., Panek, R. & Franus, W. (2019). The Effects of Textural Parameters of Zeolite and Silica Materials on the Protective and Functional Properties of Polymeric Nonwoven Composites. Applied Science, 9. pp. 515, DOI: 10.3390/app9030515
  7. Brochocka, A., Zagawa, A., Panek, R., Madej, J. & Franus, W. (2018). Method for introducing zeolites and MCM-41 into polypropylene melt-blown nonwovens. AUTEX Research Journal, DOI: 10.1515/aut-2018-0043
  8. Buonanno, G., Marks, G.B. & Morawska, L. (2013). Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects. Environmental Pollution, 180, pp. 246-250, DOI: 10.1016/j.envpol.2013.05.039
  9. Buteau, S. & Goldberg, MS. (2016). A structured review of panel studies used to investigate associations between ambient air pollution and heart rate variability. Environmental Research, 148, pp. 207-247, DOI: 10.1016/j.envres.2016.03.013
  10. Cerrillo, J.R., Palomares, A.E. & Rey, F. (2020). Silver exchanged zeolites as bactericidal additives in polymeric materials. Microporous and Mesoporous Material, 305, pp. 110367, DOI: 10.1016/j.micromeso.2020.110367
  11. Cheng, T., Jiang, Y., Zhang, Y. & Shuanqiang, L. (2004). Prediction of breakthrough curves for adsorption on activated carbon fibres in a fixed bed. Carbon, 42, pp. 3081-3085, DOI: 10.1016/j.carbon.2004.07.021
  12. Chiang, Y.C. & Juang, R.S. (2017). Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review. Journal of the Taiwan Institute of Chemical Engineers, 71, pp. 214-234, DOI:10.1016/j.jtice.2016.12.014
  13. Commission Directive 2000/39/EC of 8 June 2000 establishing a first list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC on the protection of the health and safety of workers from the risks related to chemical agents at work,
  14. Czuma, N., Zarębska, K. & Baran, P. (2016). Analysis of the influence of fusion synthesis parameters on the SO2 sorption properties of zeolites produced out of fly ash. SEED Science Research, 10, DOI: 10.1051/e3sconf/20161000010
  15. Das, D., Vivekand, G. & Nishith, V. (2004). Removal of volatile organic compound by activated carbon fiber. Carbon, 42, pp. 2949-2962, DOI: 10.1016/j.carbon.2004.07.008
  16. Deng, L., Yuan, P., Liu, D., Annabi-Bergaya, F. & Zhou, J. (2017). Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite, on their benzene adsorption behaviours. Applied Clay Science, 143, pp. 184-191, DOI:10.1016/j.clay.2017.03.035
  17. Duad, W.M.A.W. & Haushamnd, A.H. (2010) Textural characteristics, surface chemistry and oxidation of activated carbon. Journal of Natural Gas Chemistry, 19(3), pp. 267-79, DOI: 10.1016/S1003-9953(09)60066-9
  18. EN 13274-3:2008. Respiratory Protective Devices. Methods of Tests. Determination of Breathing Resistance; The European Committee for Standardization (CEN): Brussels, Belgium, 2008.
  19. EN 13274-7:2008. Respiratory Protective Devices. Methods of tests. Determination of Particle Filter Penetration. The European Committee for Standardization (CEN): Brussels, Belgium, 2008.
  20. EN 14387:2004+A1:2008. Respiratory Protective Devices. Gas Filters And Combined Filters. Requirements, Testing, Marking. The European Committee For Standardization (CEN): Brussels, Belgium, 2004.
  21. EN 149:2001+A1:2009. Respiratory Protective Devices—Particle filtering half Masks—Requirements, Testing, Marking. The European Committee for Standardization (CEN): Brussels, Belgium, 2001.
  22. Haobo, T., Yan, Z., Yue, L., Ying, W. & Xuemei, W. (2017). Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste. Waste Manage, 68, pp. 677-687, DOI: 10.1016/j.wasman.2017.07.015
  23. Hassounah, I.A., Rowland, W.C., Sparks, S.A., Orler, E.B., Joseph, E.G., Camelio, J.A. & Mahajan, R.L. (2014). Processing of Multilayerd Filament Composites by Melt Blown Spinning. Journal of Applied Polymer Science, 131, DOI: 10.1002/APP.40786
  24. Huang, Z.H., Kang, F., Zheng, Y.P., Yang, J.B. & Liang, K.M. (2002). Adsorption of trace polar methy-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers. Carbon, 40, pp. 1363-1367, DOI: 10.1016/S0008-6223(01)00292-5
  25. Ki-Joong, K. & Ho-Geun, A.H.N. (2012). The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous and Mesoporous Material, 152, pp. 78-83, DOI: 10.1016/j.micromeso.2011.11.051
  26. Krajewska, B. & Kośmider, J. (2005). Standards of Odour Quality Air. Air protection and Waste Issues, 6, pp. 81-191, (in Polish).
  27. Kraus, M., Trommler, U., Holzer, F., Kopinke, F.D. & Roland, U. (2018). Competing adsorption of toluene and water on various zeolites. Chemical Engineering Journal, 351, pp. 356-363, DOI: 10.1016/j.cej.2018.06.128
  28. Kumar, V., Kumar, S., Kim, K.H., Tsang, D.C.W. & Lee, S.S. (2019). Metal organic frameworks as potent treatment media for odorants and volatiles in air. Environmental Research, 168, pp. 336-356, DOI: 10.1016/j.envres.2018.10.002
  29. Makles, Z. & Galwas-Zakrzewska, M. (2005). Malignant gases in the work environment. Work Safety, 9, pp. 12-16, (in Polish).
  30. Michalak, A., Krzeszowiak, J. & Pawlas, K. (2014). Whether exposure to unpleasant odors (odors) harms health?. Environmental Medicine, 17, pp. 76-81, (in Polish).
  31. Namieśnik, J., Gębicki, J. & Wysocka, I. (2019). Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 26, pp. 9409–9434, DOI: 10.1007/s11356-019-04195-1
  32. Okrasa, M., Hitz, J., Nowak, A., Brochocka, A., Thelen, C. & Walczak, Z. (2019). Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators. International Journal of Environmental Research and Public Health, 16 (11), pp. 1973, DOI: 10.3390/ijerph16111973
  33. Oya A. & Iu WG. (2002). Deodorization performance of charcoal particles loaded with orthophosphoric acid against ammonia and trimethylamine. Carbon, 40(9), pp. 1391-1399, DOI: 10.1016/S0008-6223(01)00273-1
  34. Panek, R., Wdowin, M., Franus, W., Czarna, D., Stevens, L.A., Deng, H., Liu, J., Sun, C., Liu, H. & Snape, C.E. (2017). Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. Journal of CO2 Utilization, 22, pp. 81-90, DOI:10.1016/j.jcou.2017.09.015
  35. Pope III, CA. & Dockery, DW. (2016). Health Effects of Fine Particulate Air Pollution: Line that Connect. J Air Waste Manage, 56, pp. 709-742, DOI: 10.1080/10473289.2006.10464485
  36. Regulation (EU) 2016/425 of the European Parliament and the Council of 9 March 2016 on personal protective equipment and repealing Council Directive 89/686/EEC.
  37. Regulation of the Minister for Family, Labor and Social Policy on the Highest Permissible Concentrations and Intensities of Factors Harmful to Health in the Work Environment; Journal of Laws from 2018, item 1286; International Labour Organization: Geneva, Switzerland, 12 June 2018.
  38. Rubahamya, B., Suresh Kumar Reddy, K., Prabhu, A., Al Shoaibi, A. & Srinivasakannan, C. (2019). Porous Carbon Screening for Benzene Sorption. Environmental Progress & Sustainable Energy, 38(1), pp. 93-99, DOI: 10.1002/ep.12925
  39. Rybarczyk, P., Szulczyński, B., Gębicki, J. & Hupka, J. (2019). Treatment of malodorous air in biotrickling filters: A review. Biochemical Engineering Journal, 141, pp. 146-162, DOI: 10.1016/j.bej.2018.10.014
  40. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Management, 25 (9), pp. 928–939, DOI: 10.1016/j.wasman.2005.07.006
  41. Schmid, O., Möller, W., Semmler-Behnke, M.A., Ferron, G.A., Karg, E.W., Lipka, J., Schulz, H., Kreyling, W.G. & Stöeger, T. (2009). Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers, 14, pp. 67-73, DOI: 10.1080/13547500902965617
  42. Stelmach, S., Wasilewski, R. & Figa, J. (2006). An attempt to produce granular adsorbents based on carbonates from used car tires. Archives of Waste Management and Environmental Protection, 4, pp. 107-114.
  43. Szynkowska, MI., Wojciechowska, E., Węglińska, A.& Paryjczak, T. (2009). Odorous emission. An environmental protection issue. Przemysł Chemiczny, 88(6) pp. 712-720. (in Polish)
  44. Tsai, J.H., Chiang, H.M., Huang, G.Y. & Chiang, H.L. (2008). Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers. Journal of Hazardous Materials, 154, pp. 1183-1191, DOI: 10.1016/j.jhazmat.2007.11.065
  45. Wang, G., Dou, B., Zhang, Z., Wang, J., Liu, H. & Hao, Z. (2015). Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon, Journal of Environmental Science, 30, pp. 65-73, DOI: 10.1016/j.jes.2014.10.015
  46. Xin, Z., Honglei, C., Fangong, K., Yujie, Z., Shoujuan, W., Shouxin, L., Lucian, A.L., Pedram, F. & Huan, P. (2019). Fabrication characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. The Chemical Engineering Journal, 364, pp. 226-243, DOI: 10.1016/j.cej.2019.01.159
  47. Xueyang, Z., Bin, G., Creamer, A.E., Chengcheng, C. & Yuncong, L. (2017). Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 338, pp. 102-127, DOI: 10.1016/j.jhazmat.2017.05.013
  48. Yin, T., Meng, X., Jin, L., Yang, C., Liu, N. & Shi, L. (2020). Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment. Microporous and Mesoporous Materials, 305, pp. 110327, DOI:10.1016/j.micromeso.2020.110327
  49. Yue, Z. & Vakili, A. (2017). Activated carbon–carbon composites made of pitch-based carbon fibers and phenolic resin for use of adsorbents. Journal of Material Science, 52, pp. 12913-12921, DOI:10.1007/s10853-017-1389-7
  50. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff. Archives of Environmental Protection, 44(1), pp. 87–96, DOI:10.24425/118185
  51. Zhang, H., Liu, J., Zhang, X. & Jin, X. (2018). Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture. RSC Advences, 8, pp. 7932-7941, DOI: 10.1039/c7ra10916d
  52. Zhang, X., Gao, B., Zheng, Y., Hu, X., Creamer, A.E., Annable, M.D. & Li, Y. (2017). Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms. Bioresource Technology, 245, pp. 606-614, DOI: 10.1016/j.biortech.2017.09.025
Go to article

Authors and Affiliations

Agnieszka Brochocka
Aleksandra Nowak
Rafał Panek
Paweł Kozikowski
Wojciech Franus

  1. Central Institute for Labour Protection-National Research Institute, Lodz, Poland
  2. Lublin University of Technology, Lublin, Poland
Download PDF Download RIS Download Bibtex


The paper presents the preliminary study of n-butanol removal in the adsorption process. The main objective of the research was to asess whether and to what extent biochars produced from selected organic waste materials are suitable for odor removal. Biochars produced from dried sewage sludge and beekeeping waste were tested in the adsorption process. At first, raw materials were pyrolyzed and then modified with a 25% ZnCl2 solution or a 30% H2O2 solution. The adsorption process was conducted using a model gas – the European reference odorant – n-butanol. The output parameter was odor concentration Cod [ouE/m3]. Odor concentration Cod values were obtained using a dynamic olfactometry method on T08 olfactometer. The solid byproducts of pyrolysis of digested sewage sludge and beekeeping waste may be used as adsorbents for the removal of n-butanol in the adsorption process. Adsorption performance of biochar from sewage sludge is better than biochar from beekeeping waste. Additional modification with H2O2 or ZnCl2 increases the efficiency of the process, thus decreasing the required bed height for the elimination of odorant. The results of the studies confirm the findings of other authors that biochars derived from sewage sludge and other organic waste materials may be efficient sorbents in the removal of various substances from water or the air. Other biochars and methods of their activation should be tested. For practical reasons, the next stage of the research should be the determination of the adsorption front height and its migration rate.
Go to article


  1. Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J-K., Yang, J.E. & Ok, Y.S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544. DOI: 10.1016/j.biortech.2012.05.042
  2. Angın, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128, 593–597. DOI: 10.1016/j.biortech.2012.10.150
  3. Bogusz, A., Oleszczuk, P.& Dobrowolski, R. (2015). Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresource Technology, 196, 540–549. DOI: 10.1016/j.biortech.2015.08.006
  4. Chen, T., Zhang, Y., Wang, H., Lu, W., Zhou, Z., Zhang, Y. & Ren, L. (2014). Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresource Technology, 164, 47–54. DOI: 10.1016/j.biortech.2014.04.048
  5. Chen, X., Jeyaseelan, S. & Graham, N. (2002). Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Management, 22(7), pp. 755–760. DOI: 10.1016/S0956-053X(02)00057-0
  6. Curyło, J. & Rybak, H. (1972). Characteristics of the domestic wax melted from beeswax and the wax extracted from slumgum with trichlorethylene (TRI). Pszczelnicze Zeszyty Naukowe, XVI, pp. 153–162. (in Polish)
  7. De la Guardia, M. & Morales-Rubio, A. (1996). Modern strategies for the rapid determination of metals in sewage sludge. Trends in Analytical Chemistry, 15(8), pp. 311–318. DOI: 10.1016/0165-9936(96)00041-6
  8. Graham, N., Chen, X.G. & Jayaseelan, S. (2001). The potential application of activated carbon from sewage sludge to organic dyes removal. Water Sci Technol, 43(2), pp. 245–252. PMID: 11380186
  9. Guo, C., Zou, J., Yang, J., Wang, K. & Song, S. (2020). Surface characterization of maize-straw-derived biochar and their sorption mechanism for Pb2+ and methylene blue. PLOS ONE, 15(8): e0238105. DOI: 10.1371/journal.pone.0238105
  10. Hvitved-Jacobsen, T., Vollertsen, J., Yongsiri, C., Nielsen, A. & Abdul-Talib, S. (2002). Sewer microbial processes, emissions and impacts. Sewer Processes.
  11. Hwang, Y., Matsuo, T., Hanaki, K. & Suzuki, N. (1995). Identification and quantification of sulfur and nitrogen containing odorous compounds in wastewater. Water Research, 29(2), pp. 711–718. DOI: 10.1016/0043-1354(94)00145-W
  12. Ignatowicz, K. (2008) Sorption process for migration reduction of pesticides from graveyards‎. Archives of Environmental Protection. 34(3)., pp. 143-149.
  13. Ignatowicz, K., Piekarski, J., Skoczko, I. & Piekutin, J. (2016). Analysis of simplified equations of adsorption dynamics of HCH. Desalination and Water Treatment, 57 (3), pp. 1420–1428. DOI: 10.1080/19443994.2014.996011
  14. Kim, W-K., Shim, T., Kim, Y-S., Hyun, S., Ryu, C., Park, Y-K. & Jung, J. (2013). Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource Technology, 138, 266–270. DOI: 10.1016/j.biortech.2013.03.186
  15. Lach, J. & Ociepa, E. (2003). Effect of high-temperature modification of activated carbon on the sorption of Cr(VI) anions and Cr(III) cations from aqueous solutions. Ochrona Środowiska, 3 (25), pp. 57–60. (in Polish)
  16. Latosińska, J. (2014). The analysis of heavy metals mobility from sewage sludge from wastewater treatment plants in Olsztyn and Sitkówka-Nowiny. Inżynieria i Ochrona Środowiska, 17(2), pp. 243–253. (in Polish)
  17. Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y-K., Jung, J. & Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology, 148, 196–201. DOI: 10.1016/j.biortech.2013.08.135
  18. Lu, H., Zhang, W., Wang, S., Zhuang, L., Yang, Y. & Qiu, R. (2013). Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 102, 137–143. DOI: 10.1016/j.jaap.2013.03.004
  19. Milik, J., Pasela, R., Szymczak, M. & Chalamoński, M. (2016). Evaluation of the Physico-chemical Composition of Sludge from Municipal Sewage Treatment Plant. Rocznik Ochrona Środowiska, 18, pp. 579–590. (in Polish)
  20. Norouzi, H., Jafari, D. & Esfandyari, M. (2020). Study on a new adsorbent for biosorption of cadmium ion from aqueous solution by activated carbon prepared from Ricinus communis. Desal. Water Treat., 191, pp. 140–152. DOI:10.5004/dwt.2020.25702
  21. Piecuch, T., Kowalczyk, A., Dąbrowski, T., Dąbrowski, J. & Andriyevska, L. (2015). Reduction of Odorous Noxiousness of Sewage Treatment Plant in Tychowo. Rocznik Ochrona Środowiska, 17, pp. 646–663. (in Polish)
  22. Piekarski, J. (2009). Numerical modeling of the filtration and sorption process. Monografia, Wydawnictwo Politechniki Koszalińskiej. (in Polish)
  23. Piekarski, J., Dąbrowski, T. & Ignatowicz, K. (2021). Effect of bed height on efficiency of adsorption of odors from sewage sludge using modified biochars from organic waste materials as an adsorbent. Desal. Water Treat., 218, 252–259. DOI: 10.5004/dwt.2021.26975
  24. PN-EN 13725:2007 "Air quality. Determination of odor concentration by dynamic olfactometry". (in Polish)
  25. Puchlik, M., Ignatowicz, K. & Dabrowski, W. (2015). Influence of bio- preparation on wastewater purification process in constructed wetlands. Journal of Ecological Engineering, 16 (1), pp. 159–163. DOI: 10.12911/22998993/602
  26. Rauf, A., Mahmud, T. & Ashraf, M. (2020). Sorption studies on removal of Cd2+ from the aqueous solution using fruit-peels of Litchi chinensis Sonn. Desal. Water Treat., 187, pp. 277–286. DOI: 10.5004/dwt.2020.25414
  27. Semkiw, P., Skubida, P., Jeziorski, K. & Pioś, A. (2018). The beekeeping sector in Poland. Instytut Ogrodnictwa, Zakład Pszczelarstwa w Puławach. (in Polish)
  28. Shaaban, A.,Se, S-M., Dimin, M.F., Juoi, J.M., Husin, M.H.M. & Mitan, N.M.M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 31–39. DOI: 10.1016/j.jaap.2014.01.021
  29. Sówka, I. (2011). Methods of identification of odour gases emitted from industrial plants. Oficyna Wydawnicza Politechniki Wrocławskiej. (in Polish)
  30. Sówka, I., Miller, U., Skrętowicz, M., Nych, A. & Zwoździak, J. (2013). The Conditions and Requirements Necessary for the Proper Functioning of the Olfactometric Laboratory. Rocznik Ochrona Środowiska, 15, pp. 1207–1215. (in Polish)
  31. Szostek, M., Kaniuczak, J., Hajduk, E., Stanek-Tarkowska, J., Jasiński, T., Niemiec, W. & Smusz, R. (2018). Effect of sewage sludge on the yield and energy value of the aboveground biomass of Jerusalem artichoke (Helianthus tuberosus L.). Archives of Environmental Protection, 44(3), pp. 42–50. DOI: 10.24425/aep.2018.122285
  32. Tang, Y., Samrat, Alam, Md., Konhauser, K.O., Alessi, D.S., Xu, S., Tian, W. & Liu, Y. (2019). Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. Journal of Cleaner Production, 209, pp. 927–936. DOI: 10.1016/j.jclepro.2018.10.268
  33. Titova, J. & Baltrėnaitė, E. (2020). Physical and Chemical Properties of Biochar Produced from Sewage Sludge Compost and Plants Biomass, Fertilized with that Compost, Important for Soil Improvement. Waste Biomass Valor. DOI: 10.1007/s12649-020-01272-2
  34. Wen, Q., Li, C., Cai, Z., Zhang, W., Gao, H., Chen, L., Zeng, G., Shu, X. & Zhao, Y. (2011). Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresource Technology, 102(2), pp. 942–947. DOI: 10.1016/j.biortech.2010.09.042
  35. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste, Archives of Environmental Protection, 46(3), pp. 60–68. DOI: 10.24425/aep.2020.134536
  36. Włodarczyk, E., Próba, M. & Wolny, L. (2014). Comparison of Test Results for Stabilized Sewage Sludge Derived from Storage Yard and Drying Hall. Inżynieria i Ochrona Środowiska, 17( 3), pp. 473–481. (in Polish)
  37. Zhang, F-S., Nriagu, J.O. & Itoh, H. (2005). Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research, 39(2–3), pp. 389–395. DOI: 10.1016/j.watres.2004.09.027
Go to article

Authors and Affiliations

Jacek Piekarski
Tomasz Dąbrowski
Janusz Dąbrowski
Katarzyna Ignatowicz

  1. Koszalin University of Technology
  2. Bialystok University of Technology
Download PDF Download RIS Download Bibtex


The purpose of the work was to determine the relationship between the of the water quality parameters in an artificial reservoir used as cooling ponds. Multivariate methods, cluster analysis and factor analysis were applied to analyze eighteen physico-chemical parameters such as air and water temperature, dissolved oxygen concentration, visibility of the Secchi disk, concentrations of total nitrogen, ammonium, nitrate, nitrite, total phosphorus, phosphate, concentrations of calcium, magnesium, chlorides, sulfates and total dissolved salts, pH, chemical oxygen demand and electric conductivity from 2002-2017 to investigated cooling water discharge. Hierarchical cluster analysis (CA) allowed identified five different clusters that reflect the different water quality characteristics of the water system. Similar results were obtained in exploratory factor analysis, five factors were obtained with 65.96% total variance. However, confirmatory factor analysis showed that four latent variables: salinity, temperature, eutrophication, and ammonia provide better fit to the data than a five-factor structure. Correlations between latent variables temperature, eutrophication and ammonia show a significant effect of temperature on the transformation of nitrogen and phosphorus compounds.
Go to article


  1. Arsonists, G.B., Stow, C.A., Steinberg, L.J., Kenney M.A., Lathro, R.C., McBride, S.J. & Reckhow, K.H. (2006). Exploring ecological patterns with structural equation modeling and Bayesian analysis. Ecological Modelling, 192, pp. 385–409. DOI:10.1016/j.ecolmodel.2005.07.028
  2. Baran, A., Tarnowski M., Urbański K., Klimkowicz-Pawlas A. & Spałek I. (2017). Concentration, sources and risk assessment of PAHs in bottom sediments, Environmental Science and Pollution Research, 24, pp. 23180–23195. DOI 10.1007/s11356-017-9944-y
  3. Bloemkolk, J.W., van der Schaaf, R.J. (1996). Design alternatives for the use of cooling water in the process industry: minimization of the environmental impact from cooling systems. Journal of Cleaner Production 4(1), pp. 21-27.
  4. Boyacioglu, H. & Boyacioglu, H. (2018). Application of environmetric methods to investigate control factors on water quality on water quality. Archives of Environmental Protection. 43 (3) pp. 17–23. DOI: 10.1515/aep-2017-0026
  5. Boyacioglu, H. & Boyacioglu, H. (2018) Environmental Determinants of Surface Water Quality Based on Environmetric Methods. Environment and Ecology Research. 6(2), pp. 120-124. DOI: 10.13189/eer.2018.060204
  6. Choiński, A. & Ptak, M. (2013). Variability of thermals and water levels in Konin lakes as a result of the activity of the «Konin» and «Pątnów» power plants. Науковий вісник Східноєвропейського національного університету імені Лесі Українки РОЗДІЛ І. Фізична і конструктивна географія. 16 (265), pp. 31-40 (in Polish).
  7. Conclusions from the forecast analysis for the energy production sector – annex no. 2 to Poland's energy policy until 2040 (PEP 2040 – ver 2.1), Ministry of Energy Warsaw 2019 (in Polish).
  8. Doria, M.F, Pidgeon, N. & Hunter, P.(2005). Pe.2005.0245rception of tap water risks and quality: a structural equation model approach. Water Science & Technology, 52 (8) pp. 143–149. DOI:10.2166/wst.2005.0245
  9. Dragan, D. & Topolŝek, D. (2014). Introduction to Structural Equation Modeling: Review, Methodology and Practical Applications. The International Conference on Logistics & Sustainable Transport, 19–21 June 2014 Celje, Slovenia
  10. Dyer, K., Holmes, P., Roast S.,. Taylor, C.J.L. & Wicher, A. (2017). Challenges in the management and regulation of large cooling water discharges. Estuarine, Coastal and Shelf Science, 190, pp. 23-30. DOI: 10.1016/j.ecss.2017.03.027
  11. European Environment Agency, (2018). Water abstraction by sector, EU, European Environment Agency
  12. Fan, Y., Chen, J., Shirkey, G., John, R., Susie, R. Wu., S.R., Park, H. & Shao, C. (2016). Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecological Processes 5, 19. DOI 10.1186/s13717-016-0063-3
  13. Fox J., Nie Z. & ,Byrnes, J. (2020). Package ‘sem’.
  14. Gao, C., Yan, J., Yang, S. & Tan G. (2011). Applying Factor Analysis to Water Quality Assessment: A Study Case of Wenyu River [In] S. Li (Ed.): Nonlinear Mathematics for Uncertainty and its Applications, 2011, Springer-Verlag Berlin Heidelberg , pp. 541–547. ISBN 978-3-642-22832-2. DOI 10.1007/978-3-642-22833-9
  15. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J.M.& Fernandez, L. (2000). Temporal evolution of groundwater analysis. Water Research 34 (3), pp. 807-16. DOI: 10.1016/S0043-1354(99)00225-0
  16. Hossain, M.G., Selim Reza, A.H.M. & Lutfun-Nessa, M. (2013). Factor and cluster analysis of water quality data of the groundwater wells of Kushtia, Bangladesh: Implication for arsenic enrichment and mobilization. Journal of the Geological Society of India, 81, pp. 377–384. DOI: 10.1007/s12594-013-0048-0
  17. Jabłońska-Czapla, M., Szopa, S., Zerzucha, P., Łyko, A. & Michalski, R. (2015). Chemometric and environmental assessment of arsenic, antimony, and chromium speciation form ocurrence in a water reservoir subjected to thermal anthropopressure. Environmental Science and Pollution Research 22, pp.15731–15744. DOI: 10.1007/s11356-015-4769-z
  18. Jabłońska, M., Kostecki, M., Szopa, S., Łyko, A. & Michalski, R. (2012). Speciation of Inorganic Arsenic and Chromium Forms in Selected Water Reservoirs of Upper Silesia. Ochrona Środowiska, 34(3), pp. 25–32. (in Polish)
  19. Jancewicz, A., Dmitruk, U., Sosnicki, L. & Tomczuk, U. (2012). Influence of Land Development in the Drainage Area on Bottom Sediment Quality in Some Dam Reservoirs. Ochrona Środowiska 34(4), pp. 29–34.(In Polish)
  20. Johnson, R.A. & Wichern, D.W. (2007). Applied Multivariate Statistical Analysis, Pearson Education, Inc. 6th ed. ISBN 0-13-187715-1
  21. Johst M. & Rothsteinn B., (2014). Reduction of cooling water consumption due to photovoltaic and wind electricity feed-in. Renewable and Sustainable Energy Reviews 35, 311–317 DOI: 10.1016/j.rser.2014.04.029
  22. Jolliffe I.T. (2002). Principal Component Analysis, Second Edition Springer Verlag. ISBN 0-387-05442-2
  23. Kannel P.R., Lee S., Kanel S.R. & Khan S.P. (2007). Chemometric application in classification and assessment of monitoring locations of an urban river system, Analytica Chimica Acta 582, pp. 390–399. DOI: 10.1016/j.aca.2006.09.006
  24. Kim, S.E., Seo, I.W. & Choi S.Y. (2017). Assessment of water quality variation of a monitoring network using exploratory factor analysis and empirical orthogonal function. Environmental Modelling & Software 94, pp. 21-35. DOI: 10.1016/j.envsoft.2017.03.035
  25. Koczorowska, R. (2001). The impact of a fuel-energy complex on selected ]elements of water balance [In] German, K. & Balon, J. (Eds) Przemiany środowiska przyrodniczego Polski a jego funkcjonowanie, IGiGP UJ, Kraków, ss. 814., pp. 158-163. (in Polish),000025?&page=start&menu=3&nr=000025_018&brf=summary#000025_018
  26. Korkmaz, S., Goksuluk, D. & Zararsiz, G. (2020). Package ‘bestNormalize’
  27. Kostecki, M. (2005) Specificity of the thermal conditions of the "Rybnik" water reservoir as an effect of heated waterseated discharge, Problemy Ekologii 9 (3) 151-161 (in Polish)
  28. Kostecki, M. & Kowalski, E. (2007). Spatial arrangement of heavy metals in the dam-reservoir sediments in the conditions of anthropomixion, Archives of Environmental Protection, 3, pp. 67–81.
  29. Kostecki, M. (2007). Bioaccumulation of heavy metals in selected elements of trophic chain of anthropogenic reservoirs in the aspect of environmental protection and economical function. Institute of Environmental Engineering of the Polish Academy of Sciences, Works & Studies, 71, pp. 87. (in Polish)
  30. Kowalska-Musiał M. & Ziółkowska, A. (2013). Factor analysis in investigating relation structure in relation marketing. Zeszyt Naukowy Wyższej Szkoły Zarządzania i Bankowości w Krakowie. (in Polish)
  31. Kowalski, E., Mazierski, J. (2008). Effects of cooling water discharges from a power plant on reservoir water quality. Oceanological and Hydrobiological Studies International Journal of Oceanography and Hydrobiology, 37, pp. 107- 118. DOI: 10.2478/v10009-008-0001-5
  32. Kumar, J.I.N. (2009). Assessment of spatial and temporal fluctuations in water quality of a tropical permanent estuarine system - Tapi, West Coast India. Applied Ecology and Environmental Research 7(3), pp. 267-276. DOI: 10.15666/aeer/0703_267276
  33. Liu, C.W., Lin, K.H. & Kuo, Y.M., (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment 313, pp. 77–89. DOI: 10.1016/S0048-9697(02)00683-6
  34. Loska,K., Korus, I. & Wiechuła, D. (2009). Arsenic speciation in Rybnik reservoir. Architecture Civil Engineering Environmen, 2(3) pp. 109-116.
  35. Loska, K. , Wiechuła, D. , Pęciak, G. (2003a) Contamination of the arsenic in the bottom sediment of the Rybnik Reservoir. Problemy Ekologii 7 (1), pp. 29-32 (in Polish))
  36. Loska, K., Korus, I., Pelczar J., Wiechuła D. (2005) Analysis of spatial distribution of arsenic in bottom sediments of the Rybnik Reservoir. Gospodarka Wodna 65(3), pp. 104-107. (in Polish)
  37. Loska,.K., Wiechuła, D. (2003b). Application of principal component analysis for the
  38. estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51, pp. 723–733. DOI: 10.1016/S0045-6535(03)00187-5
  39. Loska K., Wiechuła D., Cebula J. (2000) Changes in the Forms of Metal Occurrence in Bottom Sediment under Conditions of Artificial Hypolimnetic Aeration of Rybnik Reservoir, Southern Poland. Polish Journal of Environmental Studies 9(6), pp. 523-530.
  40. Loska K., Cebula J., Pelczar J., Wiechuła D. & Kwapuliński J. (1997). Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water, Air, & Soil Pollution, 93, pp. 347–365. DOI: 10.1023/A:1022121615949
  41. Loska, K., Wiechula D., Pelczar J. & Kwapulinski J. (1994) Occurrence of heavy metals in bottom sediments of a heated reservoir [the Rybnik Reservoir, southern Poland]. Acta Hydrobiologica. 36(3), pp. 281-295
  42. Loska K., Wiechuła D., Cebula J. & Kwapulinski J (2001) Occurrence of sodium, potassium and calcium in the Rybnik Reservoir. Ochrona Powietrza i Problemy Odpadów, vol. 35 (6), pp. 229–234. (in Polish)
  43. Marsh, H. W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A. J. S., & Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA and EFA: Application to students' evaluations of university teaching. Structural Equation Modeling, 16(3), 439-476. DOI:10.1080/10705510903008220
  44. Masduqi, A., Endah, N., Soedjono, E. S., Hadi, W. (2010) Structural equation modeling for assessing of the sustainability of rural water supply systems. Water Science & Technology: Water Supply—WSTWS | 10.5 pp. 815 – 823. DOI: 10.2166/ws.2010.339
  45. Mustapha, A. & Aris, A.Z. (2012). Multivariate Statistical Analysis and Environmental Modeling of Heavy Metals Pollution by Industries. Polish Journal of Environmental Studies 5, pp.1359-1367.
  46. OpenStreetMap Foundation (OSMF)
  47. Petersen, W., Bertino, L., Callies, U. & Zorita E. (2001). Process identification by principal component analysis of river water-quality data, Ecological Modelling 138, pp. 193 – 213.
  48. Peterson R.A. (2020). Package ‘bestNormalize’
  50. R Core Team, (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  51. Rajagopal, S., Venugopalan, V.P. & Jenner H.A., (2012). Cooling Water Systems: Efficiency vis-à-vis Environment. [In] Rajagopal, S., Jenner, H.A. & Venugopalan V.P. (Eds) Operational and Environmental Consequences of Large Industrial Cooling Water Systems, pp. 455-461
  52. Reference Document on the application of Best Available Techniques to Industrial Cooling Systems. European Commission, December 2001.
  53. Revelle W. (2020) Package ‘psych’
  54. Rodrigues, P.M.S.M, Rodrigues, R.M.M., Costa, B.H.F., Tavares Martins, A.A.A.L., Estaves da Silva, J.C.G. (2010) Multivariate analysis of the water quality variation in the Serra da Estrela (Portugal) Natural Park as a consequence of road deicing with salt, Chemometrics and Intelligent Laboratory Systems 102, pp. 130–135. DOI: 10.1016/j.chemolab.2010.04.014
  55. Ryberg, K. R. (2017) Structural Equation Model of Total Phosphorus Loads in the Red River of the North Basin, USA and Canada. Journal of Environmental Quality. 46 pp. 1072-1080. DOI: 10.2134/jeq2017.04.0131
  56. Rzętała, M. (2008). Operation of water reservoirs and the course of limnic processes in diverse conditions anthropopression on the example of the Upper Silesian region. Katowice: University of Silesia Publishing House.(in Polish)
  57. Simeonov, V. Stratis, J.A. Samara, C., Zachariadis,G., Voutsa, D., Anthemidis, A., Sofoniou, M., Th. Kouimtzis, Th. (2003) Assessment of the surface water quality in Northern Greece, Water Research 37, pp. 4119–4124. DOI: 10.1016/S0043-1354(03)00398-1
  58. Singh, K.P., Malik, A., Mohan, D., Sinha, S., (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - a case study. Water Research 38, pp. 3980-3992. DOI: 10.1016/j.watres.2004.06.011
  59. Standard Methods for the Examination of Water and Wastewater (2017) 23rd Edition American Public Health Association, American Water Works Association, and Water Environment Federation. ISBN: 978-0-87553-287-5
  60. Statistical Yearbook of Republic of Poland, Warsaw, 2018. (in Polish)
  61. Vega, M., Pardo, R., Barrado, E. & Debán L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water Research 32 pp. 3581-3592. DOI: 10.1016/S0043-1354(98)00138-9
  62. Viswanath, N.C., Kumar, P.G.D. & Ammad K.K. (2015). Statistical Analysis of Quality of Water in Various Water Shed for Kozhikode City, Kerala, India, Aquatic Procedia 4 pp. 1078 – 1085. DOI: 10.1016/j.aqpro.2015.02.136
  63. Wang, S.-W., Liu, C.-W. & Jang, C.-S. (2003). Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Applied Geochemistry, 22, pp. 460–47. DOI: 10.1016/j.apgeochem.2006.11.011
  64. Wiechuła, D., Loska, K. & Korus, I. (2005). Lead partitioning in the bottom sediment of Rybnik reservoir (southern Poland). Water, Air, & Soil Pollution 164, pp. 315–327.
  65. Widziewicz, K. & Loska, K. (2012) Multivariate statistical analyses on arsenic occurrence in Rybnik reservoir. Archives of Environmental Protection 38(2) pp.12-23. DOI: 10.2478/v10265-012-0014-8
  66. Wu, E.M.-Y., Tsai, C.C., Cheng, J.F., Kuo, S.L., Lu, W.T. (2014) The Application of Water Quality Monitoring Data in a Reservoir Watershed Using AMOS Confirmatory Factor Analyses, Environmental Modeling & Assessment 19, pp. 325–333. DOI 10.1007/s10666-014-9407-5
  67. Zemełka, G. & Szalinska, E. (2017). Heavy Metal Contamination of Sediments from Recreational Reservoirs of Urban Areas and its Environmental Risk Assessment, Engineering and Protection of Environment, 20(1), pp.131-145. DOI: 10.17512/ios.2017.1.10
Go to article

Authors and Affiliations

Jerzy Mazierski
Maciej Kostecki

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex


In this work, a highly effective catalyst (MoO3) is synthesized and applied for catalytic wet air oxidation (CWAO) treatment of pharmaceutical wastewater. The catalyst is systematically characterized to investigate the morphology, crystal structure and chemical composition, and the findings demostrated that MoO3 catalyst is successfully synthesized. The degradation mechanism is also illustrated by the density functional theory (DFT) calculation. The degradation experiments confirm that MoO3 catalyst exhibits excellent catalytic performance in CWAO, and the removal rate of TOC (Total Organic Carbon) and COD (Chemical Oxygen Demand) is achieved to more than 93%. The catalyst doses, reaction temperature and reaction time have a significant impact on the removal of pollutants. The degradation process of pollutants in CWAO could be satisfactorily fitted by the second-order kinetics. Besides, MoO3 displays a favorable stability as CWAO catalyst. DFT calculation illustrates that MoO3 catalyst is a typical indirect band gap semiconductor. Moreover, the high temperature environment provides the thermal excitation energy, which favors to the free electrons nearing Fermi level to escape the material surface, and excites them to the conduction band, then directly reduces the pollutants in CWAO. These findings demonstrate that MoO3 can be used as an efficient and excellent catalyst for CWAO of pharmaceutical wastewater.
Go to article


  1. Ahsani, M., Hazrati, H., Javadi, M., Ulbricht, M., & Yegani, R. (2020). Preparation of antibiofouling nanocomposite PVDF/Ag-SiO2 membrane and long-term performance evaluation in the MBR system fed by real pharmaceutical wastewater. Separation and Purification Technology, 249,116938. DOI: 10.1016/j.seppur.2020.116938
  2. Aniszewski, A. (2020). Impact of ground adsorption capacity on he change on the chemical composition of groundwater. Archives of Environmental Protection, 46,2, pp. 35-41. DOI: 10.24425/aep.2020.133472
  3. Chen, C., Cheng, T., Shi, Y., & Tian, Y. (2014a). Adsorption of Cu(II) from Aqueous Solution on Fly Ash Based Linde F (K) Zeolite. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 33,3, pp. 29-35. DOI: 10.30492/IJCCE.2014.11328
  4. Chen, C., Cheng, T., Wang, Z. L., & Han, C. H. (2014b). Removal of Zn2+ in aqueous solution by Linde F (K) zeolite prepared from recycled fly ash. Journal of the Indian Chemical Society 91,2, pp. 285-291
  5. Chen, C., Cheng, T., Zhang, X., Wu, R., & Wang, Q. (2019a). Synthesis of an Efficient Pb Adsorption Nano-Crystal under Strong Alkali Hydrothermal Environment Using a Gemini Surfactant as Directing Agent. Journal of the Chemical Society of Pakistan, 41,6, pp. 1034-1038.
  6. Chen, C., Chenhao, Y., Ting, C., Xiao, Z., & Jiandong, Z. (2019b). Preparation of Mo-Na composite catalyst and its application in pharmaceutical wastewater treatment. Industrial Water Treatment 39,8, pp. 77-81.(in Chinese)
  7. Chen, C., Jiandong, Z., Ting, C., & Xiao, Z. (2018). Preparation of Nano-manganese Cerium/γ-Al2O3 Composite Catalyst and Its Catalytic Wet Air Oxidation Treatment of Antibiotic Production Wastewater. Journal of Synthetic Crystals 47,11, pp. 2288-2294. (in Chinese)
  8. Chen, C., Li, Q., Shen, L., & Zhai, J. (2012). Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash. Environ Technol 33,10-12, pp. 1313-1321. DOI: 10.1080/09593330.2011.626797
  9. Chen, M., Ren, L., Qi, K., Li, Q., Lai, M., Li, Y., Li, X., & Wang, Z. (2020). Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor. Bioresource Technology, 311,123579. DOI: 10.1016/j.biortech.2020.123579
  10. Cheng, T., Chen, C., Tang, R., Han, C.-H., & Tian, Y. (2018). Competitive Adsorption of Cu, Ni, Pb, and Cd from Aqueous Solution Onto Fly Ash-Based Linde F(K) Zeolite. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 37,1, pp. 61-72. DOI: 10.30492/IJCCE.2018.31971
  11. Cheng, T., Chen, C., Wang, L., Zhang, X., Ye, C., Deng, Q., & Chen, G. (2021). Synthesis of Fly Ash Magnetic Glass Microsphere@BiVO4 and Its Hybrid Action of Visible-Light Photocatalysis and Adsorption Process. Polish Journal of Environmental Studies, 30,3, pp. 1-14. DOI: 10.15244/pjoes/127918
  12. Coimbra, R. N., Calisto, V., Ferreira, C. I. A., Esteves, V. I., & Otero, M. (2019). Removal of pharmaceuticals from municipal wastewater by adsorption onto pyrolyzed pulp mill sludge. Arabian Journal of Chemistry, 12,8, pp. 3611-3620. DOI: 10.1016/j.arabjc.2015.12.001
  13. Dong, S., Cui, L., Zhang, W., Xia, L., & Sun, J. J. C. E. J. (2020). Double-shelled ZnSnO3 hollow cubes for efficient photocatalytic degradation of antibiotic wastewater. Chemical engineering journal 384,123279. DOI: 10.1016/j.cej.2019.123279
  14. Ferrer-Polonio, E., Fernandez-Navarro, J., Iborra-Clar, M.-I., Alcaina-Miranda, M.-I., & Antonio Mendoza-Roca, J. (2020). Removal of pharmaceutical compounds commonly-found in wastewater through a hybrid biological and adsorption process. Journal of Environmental Management 33,3, pp. 29-35. DOI: 10.1016/j.jenvman.2020.110368
  15. Guo, J., Fortunato, L., Deka, B. J., Jeong, S., & An, A. K. (2020). Elucidating the fouling mechanism in pharmaceutical wastewater treatment by membrane distillation. Desalination, 475,114148. DOI: 10.1016/j.desal.2019.114148
  16. He, Y., Chen, Y.-g., Zhang, K.-n., Ye, W.-m., & Wu, D.-y. (2019). Removal of chromium and strontium from aqueous solutions by adsorption on laterite. Archives of Environmental Protection, 45,3, pp. 11-20. DOI 10.24425/aep.2019.128636
  17. Hofman-Caris, C. H. M., Siegers, W. G., van de Merlen, K., de Man, A. W. A., & Hofman, J. A. M. H. (2017). Removal of pharmaceuticals from WWTP effluent: Removal of EfOM followed by advanced oxidation. Chemical Engineering Journal, 327,1, pp. 514-521. DOI: 10.1016/j.cej.2017.06.154
  18. Hohenberg, P. & Kohn, W. (1964). InhomogeIIeous Electron Gas. Physical Review, 136,3B, pp. 864-871
  19. Huang, J., Wang, X., Li, S. & Wang, Y. (2010). ZnO/MoO3 mixed oxide nanotube: A highly efficient and stable catalyst for degradation of dye by air under room conditions. Applied Surface Science, 257,1, pp. 116-121. DOI: 10.1016/j.apsusc.2010.06.046
  20. Huang, P. R., He, Y., Cao, C. & Lu, Z. H. (2014). Impact of lattice distortion and electron doping on alpha-MoO3 electronic structure. Sci Rep. 4,7131, pp. 1-7. DOI: 10.1038/srep07131
  21. Kang, J., Zhan, W., Li, D., Wang, X., Song, J. & Liu, D. (2011). Integrated catalytic wet air oxidation and biological treatment of wastewater from Vitamin B-6 production. Physics and Chemistry of the Earth, 36,9-11, pp. 455-458. DOI: 10.1016/j.pce.2010.03.043
  22. Khan, A. H., Khan, N. A., Ahmed, S., Dhingra, A., Singh, C. P., Khan, S. U., Mohammadi, A. A., Changani, F., Yousefi, M., Alam, S., Vambol, S., Vambol, V., Khursheed, A. & Ali, I. (2020). Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment. Journal of Cleaner Production, 269,122411. DOI: 10.1016/j.jclepro.2020.122411
  23. Klancar, A., Trontelj, J., Kristl, A., Meglic, A., Rozina, T., Justin, M. Z. & Roskar, R. (2016). An advanced oxidation process for wastewater treatment to reduce the ecological burden from pharmacotherapy and the agricultural use of pesticides. Ecological Engineering, 97,186-195. DOI: 10.1016/j.ecoleng.2016.09.010
  24. Kohn, W. & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133.
  25. Kresse, & Furthmuller (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review. B, Condensed matter 54,16, pp. 11169-11186
  26. Li, W., Zhao, S., Qi, B., Du, Y., Wang, X. & Huo, M. (2009). Fast catalytic degradation of organic dye with air and MoO3:Ce nanofibers under room condition. Applied Catalysis B-Environmental, 92,3-4, pp. 333-340. DOI: 10.1016/j.apcatb.2009.08.012
  27. Li, Y., Shen, J., Quan, W., Diao, Y., Wu, M., Zhang, B., Wang, Y., & Yang, D. (2020). 2D/2D p-n Heterojunctions of CaSb2O6/g-C(3)N(4)for Visible Light-Driven Photocatalytic Degradation of Tetracycline. European Journal of Inorganic Chemistry, 2020,40, pp. 3852-3858. DOI: 10.1002/ejic.202000635
  28. Tan, l., Yu, C., Wang, M., Zhang, S. & Sun, J., Dang, S. & Sun, J. (2019). Synergistic effect of adsorption and photocatalysis of 3D g-C3N4-agar hybrid aerogels. Applaied Surface Science, 467-468, pp. 286-292. DOI: 10.1016/j.apsusc.2018.10.067
  29. Lunagomez Rocha, M. A., Del Angel, G., Torres-Torres, G., Cervantes, A., Vazquez, A., Arrieta, A. & Beltramini, J. N. (2015). Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catalysis Today 250,145-154. DOI: 10.1016/j.cattod.2014.09.016
  30. Ma, Y., Jia, Y., Jiao, Z., Wang, L., Yang, M., Bi, Y. & Qi, Y. (2015). Facile synthesize α-MoO3 nanobelts with high adsorption property. Materials Letters, 157,53-56. DPOI: 10.1016/j.matlet.2015.05.095
  31. Mucha, Z. & Kułakowski, P. (2016). Turbidity measurements as a tool of monitoring and control of the SBR effluent at the small wastewater treatment plant – preliminary study. Archives of Environmental Protection, 42,3, pp. 33-36. DOI 10.1515/aep-2016-0030
  32. Mukimin, A., Vistanty, H. & Zen, N. (2020). Hybrid advanced oxidation process (HAOP) as highly efficient and powerful treatment for complete demineralization of antibiotics. Separation and Purification Technology, 241,116728. DOI: 10.1016/j.seppur.2020.116728
  33. Parvas, M., Haghighi, M. & Allahyari, S. (2019). Catalytic wet air oxidation of phenol over ultrasound-assisted synthesized Ni/CeO2-ZrO2 nanocatalyst used in wastewater treatment. Arabian Journal of Chemistry, 12,7, pp. 1298-1307. DOI: 10.1016/j.arabjc.2014.10.043
  34. Perdew, J., Burke, K. & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical review letters, 77,3865-3868. DOI: 10.1103/PhysRevLett.77.3865
  35. Perdew, J., Chevary, J. A., H, V., Jackson, K., Pederson, M., Singh, D. & Fiolhais, C. (1992). Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical review. B, Condensed matter, 46,6671-6687.
  36. Phoon, B. L., Ong, C. C., Saheed, M. S. M., Show, P.-L., Chang, J.-S., Ling, T. C., Lam, S. S. & Juan, J. C. (2020). Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials, 400,122961. DOI: 10.1016/j.jhazmat.2020.122961
  37. Schrank, S. G., Jose, H. J., Moreira, R. F. P. M. & Schroder, H. F. (2004). Elucidation of the behavior of tannery wastewater under advanced oxidation conditions. Chemosphere, 56,5, pp. 411-23. DOI: 10.1016/j.chemosphere.2004.04.012
  38. Sushma, Kumari, M. & Saroha, A. K. (2018). Treatment of toxic industrial effluent containing nitrogenous organic compounds by integration of catalytic wet air oxidation at atmospheric pressure and biological processes. Journal of Environmental Chemical Engineering, 6,5, pp. 6256-6262. DOI:10.1016/j.jece.2018.09.057
  39. Urbanowska, A. & Kabsch-Korbutowicz, M. (2019). Nanofiltration as an effective method of NaOH recovery from regenerative solutions. Archives of Environmental Protection, 45,2, pp. 31-36. DOI: 10.24425/aep.2019.127978
  40. Verma, A., Kaur, H. & Dixit, D. (2013). Photocatalytic, Sonolytic and Sonophotocatalytic Degradation of 4-Chloro-2-Nitro Phenol. Archives of Environmental Protection, 39,2, pp. 17-28. DOI: 10.2478/aep-2013-0015
  41. Wang, G., Wang, D., Xu, Y., Li, Z. & Huang, L. (2020a). Study on optimization and performance of biological enhanced activated sludge process for pharmaceutical wastewater treatment. Science of the Total Environment, 739,140166. DOI:10.1016/j.scitotenv.2020.140166
  42. Wang, J., Dong, S., Yu, C., Han, X., Guo, J. & Sun, J. (2017). An efficient MoO3 catalyst for in-practical degradation of dye wastewater under room conditions. Catalysis Communications, 92,100-104. DOI: 10.1016/j.catcom.2017.01.013
  43. Wang, P., Liang, Y. N., Zhong, Z. & Hu, X. (2020b). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233,15, pp. 11590. DOI: 10.1016/j.seppur.2019.115960
  44. Xu, K., Liao, N., Zheng, B. & Zhou, H. (2020). Adsorption and diffusion behaviors of H2, H2S, NH3, CO and H2O gases molecules on MoO3 monolayer: A DFT study. Physics Letters A, 384,21, pp. 1-5. DOI: 10.1016/j.physleta.2020.126533
  45. Yadav, A., Teja, A. K. & Verma, N. (2016). Removal of phenol from water by catalytic wet air oxidation using carbon bead – supported iron nanoparticle – containing carbon nanofibers in an especially configured reactor. Journal of Environmental Chemical Engineering, 4,2, pp. 1504-1513. DOI: 10.1016/j.jece.2016.02.021
  46. Zhang, X., Cheng, T., Chen, C., Wang, L., Deng, Q., Chen, G. & Ye, C. (2020). Synthesis of a novel magnetic nano-zeolite and its application as an efficient heavy metal adsorbent. Materials Research Express, 7,8, pp. 085007. DOI: 10.1088/2053-1591/abab43
  47. Zhang, Y., Zhang, Z., Yan, Q. & Wang, Q. (2016). Synthesis, characterization, and catalytic activity of alkali metal molybdate/α-MoO3 hybrids as highly efficient catalytic wet air oxidation catalysts. Applied Catalysis A: General, 511,47-58. DOI: 10.1016/j.apcata.2015.11.035
  48. Zou, H., Ma, W. & Wang, Y. (2015). A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation. Archives of Environmental Protection, 41,4, pp. 33-39. DOI: 10.1515/aep-2015-0037
Go to article

Authors and Affiliations

Chen Chen
Ting Cheng
Lei Wang
Yuan Tian
Qin Deng
Yisu Shi

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, China
  2. School of Environmental Ecology, Jiangsu City Vocational College, China
Download PDF Download RIS Download Bibtex


The aim of this study was to investigate the impact of industrial waste landfill on the release of polychlorinated biphenyls (PCBs) on the environment with reference to water flow directions. 10 study plots were designated around the landfill site. Soil samples were taken from different soil layers. Plants: Solidago canadensis (leaves, stem), Quercus L. (leaves), and Poaceae were tested on PCBs contents. Groundwater samples were taken from piezometers. PCBs in the samples were determined by gas chromatography with an electron capture detector (GC / ECD).The highest accumulation of PCBs congeners was observed in the topsoil layers and decreased with the sampling depth. The dominant PCBs congeners in soil were PCB 28 and PCB 138, in plants PCB 28 and PCB 52. The most significant PCBs accumulation in the topsoil layer occurred in the research area on which the largest amount of waste was deposited and was equal to 14.2 ng/g. The largest sum of determined PCBs congeners was found in Solidago canadensis leaves – 3.26 ng/g and Quercus L. leaves – 3.32 ng/g. PCB 28 and PCB 52 were capable of translocation from soil to plants. It was found that the water flow direction did not affect PCB content in soils
Go to article


  1. ATSDR. (2000). Toxicological profile for polychlorinated biphenyls (PCBs), Atlanta, GA, US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.
  2. Arp H.P.H., Morin N.A.O., Andersson P.L., Hale S.E., Wania F., Breivik K. & Breedveld G.D. (2020). The presence, emission and partitioning behavior of polychlorinated biphenyls in waste, leachate and aerosols from Norwegian waste-handling facilities, Science of The Total Environment, 715, 136824. DOI: 10.1016/j.scitotenv.2020.136824
  3. Böhme, F., Welsch-Pausch, K. & McLachlan, M.S. (1999). Uptake of airborne semivolatile organic compounds in agricultural plants: Field measurements of interspecies variability. Environ. Sci. Technol. DOI: 10.1021/es980832l
  4. Degrendele, C., Fiedler, H., Kočan, A., Kukučka, P., Přribylová, P., Prokeš R, Klánová, J. & Lammel, G. (2020). Multiyear levels of PCDD/Fs, dl-PCBs and PAHs in background air in central Europe and implications for deposition. Chemosphere. 240: 124852. DOI: 10.1016/j.chemosphere.2019.124852
  5. Dias-Ferreira, C., Pato, R.L., Varejão, J.B., Tavares, A.O. & Ferreira, A.J.D. (2016). Heavy metal and PCB spatial distribution pattern in sediments within an urban catchment—contribution of historical pollution sources. J Soils Sediments. 16: 2594–2605. DOI: 10.1007/s11368-016-1542-y
  6. Erickson, M.D. (2001). Introduction: PCB Properties, Uses, Occurrence, and Regulatory History, in: PCBs: Recent Advances in Environmental Toxicology and Health Effects.
  7. Gabryszewska, M., Gworek, B. & Garlej, B. (2018). PCB content in soil and plants along routes with high traffic intensity. Desalin. WATER Treat. DOI: 10.5004/dwt.2018.22398
  8. Gabryszewska, M. & Gworek, B. (2020a). Impact of municipal and industrial waste incinerators on PCBs content in the environment. Plos One. DOI: 10.1371/journal.pone.0242698
  9. Gabryszewska, M. & Gworek, B. (2020b). Polychlorinated biphenyls in soils of diversified use. Przem. Chem. DOI: 10.15199/62.2020.12.18 (in Polish)
  10. Gabryszewska, M. & Gworek, B. (2020c). Municipal waste landfill as a source of polychlorinated biphenyls releases to the environment, Peer J, in press, DOI 10.7717/peerj.10546
  11. Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A.H., Bragoszewska, P., Sieczka, A. & Osiński, P. (2016). Impact of the municipal solid waste lubna landfill on environmental pollution by heavy metals. Water (Switzerland). DOI: 10.3390/w8100470
  12. Hansen, L. G. & Robertson, L. W. (2001). PCB Recent advances in environmental toxicology and health effects The University Press of Kentucky.
  13. Hue, N.T., Thuy, N.T.T. & Tung, N.H. (2016). Polychlorobenzenes and polychlorinated biphenyls in ash and soil from several industrial areas in North Vietnam: residue concentrations, profiles and risk assessment. Environ Geochem Health DOI:10.1007/s10653-015-9726-8
  14. Kaya, D., Imamoglu, I., Sanin, F.D. & Sowers, K.R. (2018). A comparative evaluation of anaerobic dechlorination of PCB-118 and Aroclor 1254 in sediment microcosms from three PCB-impacted environments. J. Hazard. Mater. DOI: 10.1016/j.jhazmat.2017.08.005
  15. Kodavanti, P.R.S. (2017). Polychlorinated Biphenyls (PCBs). Ref. Modul. Neurosci. Biobehav. Psychol. DOI: 10.1016/B978-0-12-809324-5.03955-9
  16. Kuzu, S.L., Saral, A., Demir, S., Coltu, H., Can, M. & Beyaz, T. (2013). Estimation of atmospheric PCB releases from industrial facilities in Turkey, Atmospheric Pollution DOI:10.5094/APR.2013.048
  17. Liu, J. & Schnoor, J.L. (2008). Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere. DOI: 10.1016/j.chemosphere.2008.08.009
  18. Liu, X., Fiedler, H., Gong, W., Wang, B. & Yu, G. (2018). Potential sources of unintentionally produced PCB, HCB, and PeCBz in China: A preliminary overview. Front. Environ. Sci. Eng. DOI: 10.1007/s11783-018-1036-9
  19. Melnyk, A., Dettlaff, A., Kuklińska, K., Namieśnik, J. & Wolska, L. (2015). Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill. Sci. Total Environ. DOI: 10.1016/j.scitotenv.2015.05.092
  20. Murphy, T.J., Formanski, L.J., Brownawell, B. & Meyer, J.A. (1985). Polychlorinated biphenyl emissions to the atmosphere in the Great Lakes region. Municipal landfills and incinerators. Environmental Science Technology. 1985, 19 (10), pp. 942–946. DOI: 10.1021/es00140a009
  21. Norris, G., Brinstingl, J., Plant, S. J., Cui, S. & Mayell, P. (1999). A case study of the management and remediation of soil contaminated with polychlorinated biphenyls. Engineering Geology, 53, 177-185. DOI: 10.1016/S0013-7952(99)00031-9
  22. Rosik-Dulewska, C. & Karwaczynska, U. (2008). Methods of leaching contaminants from mineral waste in the aspect of its potential utilization in hydrotechnical construction‎, Rocznik Ochrona Środowiska, 10, pp.‏ 205-219.(in Polish)
  23. Ti, Q., Gu, C., Liu, C., Cai, J., Bian, Y., Yang, X., Song, Y., Wang, F., Sun, C. & Jiang, X. (2018). Comparative evaluation of influence of aging, soil properties and structural characteristics on bioaccessibility of polychlorinated biphenyls in soil. Chemosphere. DOI: 10.1016/j.chemosphere.2018.07.111
  24. Travis, C.C. & Hester, S.T. (1991). Global chemical pollution. Environ. Sci. Technol. 25 5: 814–819.
  25. Whitfield Åslund, M.L., Rutter, A., Reimer, K.J. & Zeeb, B.A. (2008). The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions. Sci. Total Environ. DOI: 10.1016/j.scitotenv.2008.07.066
  27. Yu, L., Duan, L., Naidu, R. & Semple, K.T. (2018). Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. Sci. Total Environ. DOI: 10.1016/j.scitotenv.2017.09.025
Go to article

Authors and Affiliations

Marta Gabryszewska
Barbara Gworek

  1. Institute of Environmental Protection - National Research Institute, Poland
Download PDF Download RIS Download Bibtex


The introduction highlights the technologies of converting the chemical energy of biomass and municipal waste into various forms of final energy (electricity, heat, cooling, new fuels) as important in the pursuit of a low-carbon economy, especially for energy and transport sector. The work continues to focus mainly on gasification as a process of energy valorization of the initial form of biomass or waste, which does not imply that other methods of biomass energy use are not considered or used. Furthermore, the article presents a general technological flowchart of gasification with a gas purification process developed by Investeko S.A. in the framework of In addition, selected properties of the municipal waste residual fraction are described, which are of key importance when selecting the technology for its energy recovery. Significant quality parameters were identified, which have a significant impact on the production and quality of syngas, hydrogen production and electricity generation capacity in SOFC cells. On the basis of the research on the waste stream, a preliminary qualitative assessment was made in the context of the possibility of using the waste gasification technology, syngas production with a significant share of hydrogen and in combination with the technology of energy production in oxide-ceramic SOFC cells. The article presents configurations of energy systems with a fuel cell, with particular emphasis on oxide fuel cells and their integration with waste gasification process. An important part of the content of the article is also the environmental protection requirements for the proposed solution.
Go to article


  1. Al-attab, K.A. & Zainal, Z.A. (2015). Externally fired gas turbine technology: A review. Applied Energy, 138, pp. 474–487, DOI: 10.1016/j.apenergy.2014.10.049
  2. Andersson, M., Yuan, J. & Sunden, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy 87, pp. 1461–1476, DOI: 10.1016/j.apenergy.2009.11.013
  3. Regise, A., Muller, C., Schmid, M, Colomar, D., Ortloff, F., Sporl, R., Brisse, A. & Graf, F. (2019). Innovative power-to-gas plant concepts for upgrading of gasification bio-syngas through steam electrolysis and catalytic methanation. Energy Conversion and Management, 183, pp. 462–473. DOI: 10.1016/j.enconman.2018.12.101
  4. Bartela, Ł., Kotowicz, J. & Dubiel-Jurga, K. (2018). Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine. Energy, 150, pp. 601 – 616. DOI: 10.1016/
  5. Chmielniak, T. (2020). Energetyka wodorowa, s.378. PWN, Warszawa.
  6. Colpan, C. O., Hamdullahpur, F., Dincer, I. & Yoo, Y. (2010). Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems. I. J. of Hydrogen Energy, 35, pp. 5001 – 5009. DOI: 10.1016/j.ijhydene.2009.08.083
  7. Colpan , C.O. (2009). Thermal Modeling of Solid Oxide Fuel Cell Based Biomass Gasification Systems, Department of Mechanical and Aerospace Engineering Carleton University Ottawa, Ontario, Canada, (Thesis).
  8. Di Carlo, A., Borello, A. & Bocci, E. (2013). Process simulation of a hybrid SOFC/mGT and enriched air/steam fluidized bed gasifier power plant, I.J.of Hydrogen Energy, 38, pp. 5857-5874. DOI: 10.1016/j.ijhydene.2013.03.005
  9. Dong, L., Liu, H. & Riffat, S. (2009). Development of small-scale and micro-scale biomass fuelled CHP systems—a literature review. Appl Therm Eng, 29, pp.2119–26. DOI: 10.1016/j.applthermaleng.2008.12.004
  10. Integrated Emission Directive no. 2010/75/UE 24.11.2010.
  11. Fortunato B., Camporeale, S.M., Torresi, M. & Fornarelli, F. (2016). A Combined Power Plant Fueled by Syngas Produced in a Downdraft Gasifier, Proceedings of ASME Turbo Expo, GT2016-58159, V003T06A023. DOI: 10.1115/GT2016-58159
  12. Fryda, L., Panopoulos, K.D. & Kakaras, E. (2008). Integrated CHP with autothermal biomass gasification and SOFC–MGT. Energy Conversion and Management, 49, pp. 281–290. DOI: 10.1016/j.enconman.2007.06.013
  13. Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf , F., Bajohr, S., Reimert,R. & Kolb, T., (2016). Renewable Power-to-Gas: A technological and economic review. Renewable Energy, 85, pp. 1371 – 1390. DOI: 10.1016/j.renene.2015.07.066
  14. Huang, Y., Wang, Y.D., Rezvani, S., McIlveen-Wright, D.R., Anderson, M., Mondol, J., Zacharopolous, A. & Hewitt, N. J. (2013). A techno-economic assessment of biomass fuelled trigeneration system integrated with organic Rankine cycle. Applied Thermal Engineering, 53, pp. 325 – 331. DOI: 10.1016/j.applthermaleng.2012.03.041
  15. Kupecki, J. (2018). Modelling, Design, Construction, and Operation of Power Generators with Solid Oxide Fuel Cells, s. 261. Springer.
  16. Kupecki, J. (2018). Selected problems of mathematical modeling of solid oxide fuel cell stacks during transient operation, p. 133. Wyd. Instytutu Technologii Eksploatacji, (in Polish)
  17. Kupecki, J., Skrzypkiewicz, M., Wierzbicki, M. & Stepien M. (2017). Experimental and numerical analysis of a serial connection of two SOFC stacks in a micro-CHP system fed by biogas. I.J. of Hydrogen Energy, 4, 2, pp. 3487 – 3497. DOI: 10.1016/j.ijhydene.2016.07.222
  18. Lian, Z.T., Chua, K.J. & Chou, S.K. (2010) A thermoeconomic analysis of biomass energy for trigeneration. Applied Energy, 87, pp. 84–95. DOI: 10.1016/j.apenergy.2009.07.003
  19. Maraver, D., Sin, A., Royo, J. & Sebastián, F. (2013). Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters. Applied Energy, 102, pp. 1303–1313. DOI: 10.1016/j.apenergy.2012.07.012
  20. Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., Ostergaard, P.A., Moller, B., Nielsen, S., Ridjan, I., Karnoe, P., Sperling, K. & Hvelplund, F.K. (2015). Smart Energy Systems for coherent 100% renewable energy and transport solutions. Applied Energy, 145, pp. 139–154. DOI: 10.1016/j.apenergy.2015.01.075
  21. Mauro, A., Arpina, F., Massarotti, N. (2011). Three – dimensional simulation of heat and mass transport phenomena in planar SOFCs. I. J. of Hydrogen Energy, 36, pp. 10288 – 10301. DOI: 10.1016/j.ijhydene.2010.10.023
  22. Menon, V., Janardhanan, V.M., Tisher, S. & Deutschmann, O. (2012). A novel approach to model the transient behaviour of solid - oxide fuel cell stacks. J. of Power Sources, 214 pp. 227 – 238. DOI: 10.1016/j.jpowsour.2012.03.114
  23. Primus, A. & Rosik-Dulewska, C. (2018). Fuel potential of the over-sieve fraction of municipal waste and its role in the national model of waste management. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 105, pp.121-134. DOI:10.24425/124382 (in Polish)
  24. Primus, A. & Rosik-Dulewska, C. (2019). Integration of energy and material recovery processes of municipal plastic waste into the national waste management system. Polityka Energetyczna Energy Policy Journal, 22, 4, pp. 129–140. DOI: 10.33223/epj/114741
  25. Puig-Arnavat, M, Bruno, J.C. & Coronas, A. (2014). Modeling of trigeneration configurations based on biomass gasification and comparison of performance. Applied Energ,y 114 pp. 845–856. DOI:10.1016/j.apenergy.2013.09.013
  26. Kempegowda, R.S., Assabumrungrat, S. & Laosiripojana, N. (2009). Integrated CHP System Efficiency Analysis of Air, Mixed Air- Steam And Steam Blown Biomass Gasification Fuelled SOFC, Proc.of the IASIED International Conf. Modelling, Simulation, and Indentification. October 12 -14, 2009, Beijing, China
  27. Nikdalila, R., Azad, |A.T., Saghir, M., Taweekun, J., Bakar, M.S.A., Reza, M.S. & Azad, A.K. (2020). A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews, 119, 109560. DOI: 10.1016/j.rser.2019.109560
  28. Rasmussen, J.F.B. & Hagen, A. (2011). The effect of H2S on the performance of SOFCs using methane containing fuel. Fuel Cell, 10, pp. 1135 – 1142. HAL Id: hal-00576976
  29. Salehi A., Mousavi, S.M., Fasihfar, A. & Ravanbakhsh, M. (2019). Energy, exergy, and environmental (3E) assessments of an integrated molten carbonate fuel cell (MCFC), Stirling engine and organic Rankine cycle (ORC) cogeneration system fed by a biomass-fueled gasifier. I. J. of Hydrogen Energy, 44, pp. 31488-31505. DOI: 10.1016/j.ijhydene.2019.10.038
  30. Skorek J. & Kalina J. (2005). Gas cogeneration systems; Wydawnictwo Naukowo-Techniczne; Warszawa, 2005 r. (in Polish)
  31. Sipilä, K., Pursiheimo, E., Savola, T., Fogelholm, C.J., Keppo, I. & Pekka A. (2005). Small Scale Biomass CHP Plant and District Heating. Vtt Tiedotteita . Research Notes 2301, Valopaino Oy, Helsinki, 2005.
  32. Ściążko, M. & Nowak, W. (2017). Municipal waste gasification technologies. Nowa Energia 1. technologie_zgazowania_odpadow_komunalnych_1.pdf (
  33. Thilak, N., Iniyan, R.S. & Goic, R. (2011). A review of renewable energy based cogeneration technologies. Renewable and Sustainable Energy Reviews, 15, pp. 3640–3648. DOI: 10.1016/j.rser.2011.06.003
  34. Uebbinga, M., Liisa, M., Rihko-Struckmanna, K. & Sundmachera, K. (2019). Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies. Applied Energy, 233–234, pp. 271–282. DOI: 10.1016/j.apenergy.2018.10.014
  35. Wielgosiński, G. (2020). Thermal waste conversion, Nowa Energia; Racibórz 2020 r. (in Polish)
  36. Wongchanapai, S., Iwai, H., Saito, M. & Yoshida, H. (2012). Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system. Journal of Power Sources, 216, pp. 314 – 322. DOI: 10.1016/j.jpowsour.2012.05.098
  37. Zhang W., Croiset, E., Douglas, P.L., Fowler, M.W & Entchev, E. (2005). Simulation of a tubular solid oxide fuel cells stack using Aspen PlusTM unit operation models. Energy Conversion and Management, 46, pp. 181 – 196. DOI: 10.1016/j.enconman.2004.03.002
Go to article

Authors and Affiliations

Arkadiusz Primus
Tadeusz Chmielniak
Czesława Rosik-Dulewska

  2. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Power Engineering and Turbomachinery, Poland
  3. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex


The paper presents the results of the analysis of the content of selected heavy metals in used engine oils collected in car service stations during oil change. The main purpose of the research was to determine the difference in heavy metal content (Cr, Cu, Fe, Ni, Pb, Zn, Hg, Cd) depending on the engine type and oil change interval. The analysis comprised 80 samples of used engine oils obtained from passenger cars. The content of heavy metals was tested with use of the HDMaxine analyzer, operating on the basis of HDXRF (High-Definition X-Ray Fluorescence). Upon analyzing the differences in the average content of the examined elements, depending on the type of engine, it can be concluded that in oils coming from diesel engines the following elements showed a higher concentration – Cr (three times), Fe (1/3 times ), Ni (two times), Pb (1/2 times), whereas in oils coming from gasoline engines, only the average Cu content was higher (¾ times). Zinc had a comparable level of concentration. The multi-factor analysis of variance showed that in diesel engines the levels of Fe, Cr, Pb and Ni are statistically significantly different than in the reference group of gasoline engines. The study findings suggest that, depending on the engine type, the content of selected heavy metal elements in used oils varies. Therefore, to ensure proper handling of waste oils and reduce environmental risk, selective collection of used oils depending on the engine type may definitely be considered.
Go to article


  1. Bogacki, J. P. & Al-Hazmi, H. (2017). Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes. Archives of Environmental Protection, 43(3), pp. 24–31, DOI: 10.1515/aep-2017-0024
  2. Boughton, B. & Horvath, A. (2004). Environmental Assessment of Used Oil Man-agement Methods. Environmental Science & Technology, 38(2), pp. 353–358, DOI: 10.1021/es034236p
  3. Cassap, M. (2008). The analysis of used lubrication oils by inductively coupled plas-ma spectrometry for predictive maintenance. Spectroscopy Europe, 20(1), pp. 17–20,
  4. Delistraty, D. & Stone, A. (2007). Dioxins, metals, and fish toxicity in ash residue from space heaters burning used motor oil. Chemosphere, 68(5), pp. 907–914,
  5. Elnajjar, E., Al Omari, S. A. B., Hamdan, M. O., Ghannam, M. & Selim, M. Y. E. (2019). Characteristics of external furnace combustion of used lube oil with different percentages of diethyl ether additives burned with liquefied petroleum gas. Biofuels. Scopus, DOI: 10.1080/17597269.2019.1608035
  6. Hamawand, I., Yusaf, T. & Rafat, S. (2013). Recycling of Waste Engine Oils Using a New Washing Agent. Energies, 6(2), pp. 1023–1049, DOI: 10.3390/en6021023
  7. Hsu, Y.-L. & Liu, C.-C. (2011). Evaluation and selection of regeneration of waste lu-bricating oil technology. Environmental Monitoring and Assessment, 176(1), pp. 197–212, DOI: 10.1007/s10661-010-1576-3
  8. Jafari, A. J. & Hassanpour, M. (2015). Analysis and comparison of used lubricants, regenerative technologies in the world. Resources, Conservation and Recycling, 103, pp. 179–191, DOI: 10.1016/j.resconrec.2015.07.026
  9. Kabata-Pendias, A. & Pendias, H. (1999). Biochemistry of Trace Elements. PWN –Polish Scientific Publishers, Warszawa. (in Polish),
  10. Kamal, A. & Khan, F. (2009). Effect of extraction and adsorption on re-refining of used lubricating oil. Oil & Gas Science and Technology-Revue de l’IFP, 64(2), pp. 191–197,
  11. Kashif, S.-R., Zaheer, A., Arooj, F. & Farooq, Z. (2018). Comparison of heavy metals in fresh and used engine oil. Petroleum Science and Technology, 36(18), pp. 1478–1481, DOI: 10.1080/10916466.2018.1496105
  12. Klojzy-Karczmarczyk, B. (2013). Analysis of long-term research on mercury content in the soils in the immediate surroundings of the southern ring road of Krakow. Rocznik Ochrona Srodowiska, 15, pp. 1053–1069,
  13. Kryłów, M., Kwaśny, J. A. & Balcerzak, W. (2018). Oily wastewater treatment using a zirconia ceramic membrane – a literature review. Archives of Environmental Protection, 44(3), pp. 3–10, DOI: 10.24425/aep.2018.122293
  14. Kupareva, A., Mäki-Arvela, P. & Murzin, D. Yu. (2013). Technology for rerefining used lube oils applied in Europe: a review. Journal of Chemical Technology & Biotechnology, 88(10), pp. 1780–1793, DOI: 10.1002/jctb.4137
  15. Lam, S. S., Liew, R. K., Jusoh, A., Chong, C. T., Ani, F. N. & Chase, H. A. (2016). Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renewa-ble and Sustainable Energy Reviews, 53, pp. 741–753, DOI: 10.1016/j.rser.2015.09.005
  16. Lynch, T. R. (2007). Process chemistry of lubricant base stocks. CRC Press,
  17. Magiera, J. (2006). Re-refining used oil. WN-T, Warszawa. (in Polish),
  18. Magiera, J. & Głuszek, A. (2009). Used-oils - the rules of collection and ecological utilization. Polish Journal of Environmental Studies, 18(3A), pp. 230–235,
  19. Morkunas, I., Woźniak, A., Mai, V. C., Rucińska-Sobkowiak, R. & Jeandet, P. (2018). The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules, 23(9), DOI: 10.3390/molecules23092320
  20. Nerin, C., Domeño, C., Ignacio Garcia, J. & del Alamo, A. (1999). Distribution of Pb, V, Cr, Ni, Cd, Cu and Fe in particles formed from the combustion of waste oils. Chemosphere, 38(7), pp. 1533–1540, DOI:10.1016/S0045-6535(98)00373-7
  21. Nerı́n, C., Domeño, C., Moliner, R., Lázaro, M. J., Suelves, I. & Valderrama, J. (2000). Behaviour of different industrial waste oils in a pyrolysis process: metals distribution and valuable products. Journal of Analytical and Applied Pyrolysis, 55(2), pp. 171–183, DOI: 10.1016/S0165-2370(99)00097-2
  22. Nukman, Sipahutar, R., Taufikurrahman, Asmadi, & Surya, I. (2018). Used lubricating oil as a fuel for smelting waste aluminum. ARPN Journal of Engineering and Applied Sciences, 13(10), pp. 3412–3417. Scopus,
  23. Nwosu, F. O., Olu-Owolabi, B. I., Adebowale, K. O. & Leke, L. (2008). Comparative Investigation of Wear Metals in Virgin and Used Lubricant Oils. Terrestrial and Aquatic Environmental Toxicology, 2(1), pp. 38–43,
  24. Osman, D. I., Attia, S. K. & Taman, A. R. (2018). Recycling of used engine oil by different solvent. Egyptian Journal of Petroleum, 27(2), pp. 221–225, DOI: 10.1016/j.ejpe.2017.05.010
  25. Palkendo, J. A., Kovach, J. & Betts, T. A. (2013). Determination of Wear Metals in Used Motor Oil by Flame Atomic Absorption Spectroscopy. Journal of Chemical Education, 91, pp. 579–582, DOI: 10.1021/ed4004832
  26. Pawlak, Z., Urbaniak, W., Kaldonski, T. & Styp-Rekowski, M. (2010). Energy con-servation through recycling of used oil. Ecological Engineering, 36(12), pp. 1761–1764, DOI: 10.1016/j.ecoleng.2010.08.007
  27. Piecuch, T., Andriyevska, L., Dąbrowski, J., Dąbrowski, T., Juraszka, B. & Kowalczyk, A. (2015). Treatment of Wastewater from Car Service Station. Rocznik Ochrona Środowiska, 17, pp. 814–832,
  28. Pinheiro, C. T., Quina, M. J. & Gando-Ferreira, L. M. (2020). Management of waste lubricant oil in Europe: A circular economy approach. Critical Reviews in Environmental Science and Technology, pp. 1–36, DOI: 10.1080/10643389.2020.1771887
  29. Salem, S., Salem, A. & Babaei, A. A. (2015). Application of Iranian nano-porous Ca-bentonite for recovery of waste lubricant oil by distillation and adsorption techniques. Journal of Industrial and Engineering Chemistry, 23, pp. 154–162, DOI: 10.1016/j.jiec.2014.08.009
  30. Sanchez-Hernandez, A. M., Martin-Sanchez, N., Sanchez-Montero, M. J., Izquierdo, C. & Salvador, F. (2020). Different options to upgrade engine oils by gasification with steam and supercritical water. The Journal of Supercritical Fluids, 164, pp. 104912, DOI: 10.1016/j.supflu.2020.104912
  31. Śpiewak, R. & Piętowska, J. (2006). Nickel-allergen unique. From the structure of the atom to legal regulations. Alergol. Immunol, 3, pp. 3–4,
  32. Srivastava, V., Sarkar, A., Singh, S., Singh, P., de Araujo, A. S. F. & Singh, R. P. (2017). Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Frontiers in Environmental Science, 5, pp. 64, DOI: 10.3389/fenvs.2017.00064
  33. Stout, S. A., Litman, E. & Blue, D. (2018). Metal concentrations in used engine oils: Relevance to site assessments of soils. Environmental Forensics, 19(3), pp. 191–205,
  34. Swartjes, F. A. (2011). Introduction to Contaminated Site Management. [In] F. A. Swartjes (Ed.), Dealing with Contaminated Sites: From Theory towards Practical Application (pp. 3–89). Springer Netherlands, DOI: 10.1007/978-90-481-9757-6_1
  35. Tóth, G., Hermann, T., Da Silva, M. & Montanarella, L. (2016). Heavy metals in ag-ricultural soils of the European Union with implications for food safety. Environment International, 88, pp. 299–309,
  36. US Department of Energy. (2006). Used oil re-refining study to address energy policy act of 2005, section 1838,. Office of Fossil Energy,
  37. Vazquez-Duhalt, R. (1989). Environmental impact of used motor oil. Science of the Total Environment, 79(1), pp. 1–23,
  38. Vwioko, D. E., Anoliefo, G. O. & Fashemi, S. D. (2006). Metal concentration in plant tissues of Ricinus communis L. (Castor oil) grown in soil contaminated with spent lubricating oil. Journal of Applied Sciences and Environmental Management, 10(3), pp. 127–134, DOI: 10.4314/jasem.v10i3.17331
  39. Wolak, A., Zając, G. & Gołębiowski, W. (2019). Determination of the content of metals in used lubricating oils using AAS. Petroleum Science and Technology, 37(1), pp. 93–102, DOI: 10.1080/10916466.2018.1511584
  40. Zając, G., Szyszlak-Bargłowicz, J., Słowik, T., Kuranc, A. & Kamińska, A. (2015). Designation of Chosen Heavy Metals in Used Engine Oils Using the XRF Method. Polish Journal of Environmental Studies, 24(5), pp. 2277–2283, DOI: 10.15244/pjoes/58781
Go to article

Authors and Affiliations

Joanna Szyszlak-Bargłowicz
Grzegorz Zając
Artur Wolak

  1. University of Life Sciences in Lublin, Poland
  2. University of Life Sciences in Lublin
  3. Cracow University of Economics, Poland
Download PDF Download RIS Download Bibtex


The aim of this study was to determine the influence of reclamation on selected soil water properties in soils developed from lignite fly ash, deposited as a dry landfill, twenty years after forest reclamation was initiated. Five soil profiles, classified as technogenic soils (Technosols) within the fly ash disposal site of the Adamów (central Poland) power plant, were selected for this study. Disturbed and undisturbed samples (V=100 cm3) were collected from depths of 5–15 cm and 30–60 in each soil profile. The following physical properties were determined: particle size distribution, particle density, bulk density, soil moisture, hygroscopic water content, and the soil-water potential. Readily available water (RAW; difference of water content at pF=2.0 and at pF=3.7) and total available water (TAW; difference of water content at pF=2.0 and at pF=4.2) were calculated based on soil moisture tension (pF) values. The following chemical properties were determined: soil reaction, total organic carbon, total nitrogen content, carbonate content. Statistical analyses were conducted using the GenStat 18 statistical software package. The soils under study were characterized by very low bulk density, high total porosity, high field water capacity and maximum hygroscopicity. The RAW/TAW ratio values indicate very effective water retention in the soils, thereby ensuring a satisfactory water supply to the plants. However, statistical analysis did not show any clear trends in variability of any determined properties. The small differences in observed outcomes probably resulted from the original variability of the fly ash deposited on the studied landfill. Obtained results show the strong similarity of fly ash derived soils and Andosols in respect of physical and soil-water properties
Go to article


  1. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash, Prog Energ Combust, 36, 3, pp. 327-363, DOI: 10.1016/j.pecs.2009.11.003
  2. Antonkiewicz, J. (2010). Physicochemical properties of industrial waste from landfill, Rocz Glebozn - Soil Sci Ann, 61, 3, pp. 3-12. (in Polish)
  3. Bender, J. (1995). Reclamation of post-mining areas in Poland, Zesz Probl Post Nauk Roln, 418, 1, pp. 75-86. (in Polish)
  4. Bielińska, E.J. & Futa, B. (2009). Organic matter effect on biochemical transformations in anthropogenic soils in power plant ash dumping ground, Rocz Glebozn - Soil Sci Ann, 60, pp. 318-326. (in Polish)
  5. Campbell, D.J., Fox, W.E., Aitken, R.L, & Bell, L.C. (1983). Physical characteristic of sands amended with fly ash, Aust J Soil Res, 21, 2, pp.147-154, DOI:10.1071/SR9830147
  6. Dorel, L., Roger-Estrade, J., Manichon, H. & Delvaux, B. (2000). Porosity and soil water properties of Carribean volcanic ash soils, Soil Use Manage, 16, pp. 133-140, DOI: 10.1111/j.1475-2743.2000.tb00188.x
  7. Gajewski, P., Kaczmarek, Z., Owczarzak, W., Mocek, A. & Glina, B. (2015). Selected water and physical properties of soils located in the vicinity of proposed opencast lignite mine ”Drzewce” (middle Poland), Soil Sci Ann, 66, 2, pp. 75-81, DOI: 10.1515/ssa-2015-0022
  8. Gangloff, W. J., Ghodrati, M., Sims, J.T. & Vasilis, B.L. (2000). Impact of fly ash amendment and incorporation method on hydraulic properties of a sandy soil, Water Air Soil Polut, 19, pp. 231-245, DOI: 10.1023/A:1005150807037
  9. Gilewska, M. (2004). Biological reclamation of power plant lignite ash dump sites, Rocz Glebozn - Soil Sci Ann, 55, 2, pp. 103-110. (in Polish)
  10. Gilewska, M. (2006). Utilization of wastes in reclamation of post mining soils and ash dump sites, Rocz Glebozn - Soil Sci Ann, 57, 1/2, pp. 75-81. (in Polish)
  11. Gilewska, M. & Otremba, K. (2010). Impact of planting technique on reclamation of disposal site of power station incineration ash, Zesz Nauk Uniw Ziel, Inż Środ, 17, 137, pp. 86-93. (in Polish)
  12. Gilewska, M., Otremba, K. & Kozłowski, M. (2020). Physical and chemical properties of ash from thermal power station combusting lignite. A case study from central Poland, J Elem, 25, 1, 279-295. DOI: 10.5601/jelem.2019.24.4.1886
  13. Gupta, A.K., Dwivedi, S., Sinhi, S., Tripathi, R.D., Rai, U.N. & Singh, S.N. (2007). Metal accumulation and plant growth performance of Phaseolus vulgaris grown in fly ash amended soil. Bioresource Technol, 98, pp. 3404–3407. DOI:10.1016/j.biortech.2006.08.016
  14. Hartman, P., Fleige, H. & Horn, R. (2010). Water repellency of fly ash-enriched forest soils from eastern Germany, Eur J Soil Sci, 61, pp. 1070-1078, DOI: 10.1111/j.1365-2389.2010.01296x
  15. Haynes, R.J. (2009). Reclamation and revegetation of fly ash disposal sites – challenges and research, J Environ Manag, 90, pp. 43-53, DOI:10.1016/j.jenvman.2008.07.003
  16. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps, FAO, Rome 2015.
  17. Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O. & Schad, P. (2006). Guidelines for Soil Description, FAO, Rome 2006.
  18. Jala, S. & Goyal, D. (2006). Fly ash as a soil ameliorant for improving crop production: a review, Biores Technol, 97, pp. 1136-1147, DOI:10.1016/j.biortech.2004.09.004
  19. Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł. & Waroszewski, J. (2019). Polish Soil Classification, 6th edition – principles, classification scheme and correlations, Soil Sci Ann, 70, 2, pp. 71-97, DOI:10.2478/ssa-2019-0009
  20. Kaczmarek, Z. (2011). Selected physical and water properties of mineral arable soils situated within the range of the predicted draining cone of the “Tomisławice” lignite opencast mine, Rocz Glebozn - Soil Sci Ann, 62, 2, pp. 154-164. (in Polish)
  21. Kaczmarek, Z., Gajewski, P., Owczarzak W., Mocek, A. & Glina B. (2015). Physical and water properties of selected heavy soils of various origins, Soil Sci Ann, 66, 4, pp. 191-197, DOI: 10.1515/ssa-2015-0036
  22. Kaczmarek, Z., Gajewski, P., Owczarzak, W., Glina, B. & Woźniak T. (2017). Physical and water properties of selected soils located in the area of predicted depression cone of “Tomisławice” lignite opencast mine (middle Poland), Polish J Soil Sci, 50, 2, pp. 167-176, DOI: 10.17951/pjss.2017.50.2.167
  23. Kavouridis, K. (2008). Lignite industry in Greece within a world context: Mining, energy supply and environment, Energy Policy, 36, 4, pp. 1257-1272, DOI:10.1016/j.enpol.2007.11. 017
  24. Klose, S., Koch, J., Baucker, E. & Makeschin, E. (2001). Indicative properties of fly ash affected forest soil in Northeastern Germany, J Plant Nutr Soil Sci, 164, pp. 561-568, DOI: 10.1002/1522-2624(200110)164:5561::AID-JPLN561>3.0.CO;2-9
  25. Klute, A. (1986). Water retention: Laboratory methods, in: Klute, A. (Ed.). Methods of Soil Analysis Part 1 Physical and Mineralogical Methods, ASA and SSSA, Madison Wi, pp. 635-662.
  26. Konstantinov, A.O., Novoselov, A.A. & Loiko, S.V., 2018. Special features of soil development within overgrowing fly ash deposit sites of the solid fuel power plant, Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya, 43, pp. 6–24. DOI: 10.17223/19988591/43/1
  27. Konstantinov, A., Novoselov, A., Konstantinova, E., Loiko, S., Kurasova, A. & Minkina, T. (2020). Composition and properties of soils developed within the ash disposal areas originated from peat combustion (Tyumen, Russia), Soil Sci. Ann., 71, 1, pp. 3–14, DOI: 10.37501/soil sa/121487
  28. Krzaklewski, W., Pietrzykowski, M. & Woś, B. (2012). Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench), Ecological Enginering, 49, pp. 35-40, DOI: 10.1016/j.ecoleng.2012.08.026
  29. Maciak, F., Liwski, S. & Biernacka, E. (1976). Agricultural reclamation of lignite and hard coal waste landfills (ash). Part III. The course of soil formation processes in ash dumps under the influence of grass and papilionaceous vegetation, Rocz Glebozn - Soil Sci Ann, 27, 4, pp. 189-209. (in Polish)
  30. Maiti, S.K. & Jaiswal, S. (2008). Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India, Environmental Monitoring and Assessment, 136, pp. 355–370, DOI: 10.1007/s10661-007-9691-5
  31. Meravi, N. & Prajapati, S.K. (2019). Reclamation of fly ash dykes using naturally growing plant species, Proceedings of the International Academy of Ecology and Environmental Sciences, 9, 4, pp. 137-148.
  32. Mocek, A. (1989). Possibilities for rational management of chemically contaminated soils in industrial sanitary protection zones, Dissertation, Rocz AR Poznań, Rozpr Nauk, 185. (in Polish)
  33. Mocek-Płóciniak, A. (2018). The physicochemical and microbiochemical properties of soils developing in landfills with ash and slag from power plants, Dissertation, Wyd UPP, Rozpr Nauk, 499. (in Polish)
  34. Mohr, H. M. & Evans, G. M. (2009). Forecasting coal production until 2100, Fuel, 88, 11, pp. 2059-2067, DOI:10.1016/j.fuel.2009.01.032
  35. Neall, V.E. (2000). Volcanic soils, in: Verheye, W.H. (Ed.). Encyclopedia of land use, land cover and soil sciences, Soils and Soil Sciences (Part 2), 7, pp. 27-34, Eolss Publisher Co. Ltd./UNESCO, Oxford 2000.
  36. Pietrzykowski, M., Woś, B., Pająk, M., Wanic, T., Krzaklewski, W. & Chodak, M. (2018). Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10 years of the experiment, Environ Sci and Pollut R, 25, pp. 17091–17099, DOI: 10.1007/s11356-018-1892-7
  37. Rosik-Dulewska, C. (2015). Basics of waste management, PWN, Warszawa 2015.
  38. Rosik-Dulewska, C., Krawczyńska, U. & Ciesielczuk, T. (2008). Leaching of PAHs from fly ash – sludge blends, Archives of Environmental Protection, 34, 3, pp. 41–47.
  39. Sokol, E.V., Maksimova, N.V., Volkova, N.I., Nigmatulina, E.N. & Frenkel, A.E. (2000). Hollow silicate microspheres from fly ashes of the Chelyabinsk brown coals (south Urals, Russia). Fuel Process. Technol., 67 (1), pp. 35–52. DOI: 10.1016/S0378-3820(00)00084-9
  40. Soil Conservation Service, (2004). Soil Survey laboratory methods manual, in: Soil Survey Invest Raport No 42, US Dept Agric Washington DC, pp. 105-195.
  41. Soil Survey Manual by Soil Survey Division Staff (2017). US Department of Agriculture, Handbook No. 18, Washington 2017.
  42. Stachowski, P., Oliskiewicz-Krzywicka, A. & Kozaczyk, P. (2013). Estimation of the Meteorological Conditions in the Area of Postmining Grounds of the Konin Region, Rocz Ochr Sr, 15, pp. 1834-1861.
  43. Strączyńska, S., Strączyński, S. & Gazdowicz, W. (2004). The influence of cover vegetation on morphological characteristics and some properties of embankment formation of furnace discards dump, Rocz Glebozn – Soil Sci Ann, 55, 2, pp. 397–404. (in Polish)
  44. Strzyszcz, Z. (2004). Assessment of the suitability and principles for the application of various wastes for the reclamation of waste dumps and areas degraded by industrial activities, Prace i Studia, Zabrze 2004.
  45. Systematyka Gleb Polski (2019). Polskie Towarzystwo Gleboznawcze, Komisja Genezy, Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław – Warszawa, pp. 235.
  46. Uehara, G. (2005). Volcanic soils, [In] Hillel, D. (Ed). Encyclopedia of Soils in the Environment, Elsevier, pp. 225-232,
  47. Ukwattage, L., Ranjith, P.G. & Bouazza, M. (2013). The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon), Fuel, 109, pp. 400-408, DOI:10.1016/fuel.2013.02.016
  48. Uzarowicz, Ł. & Zagórski., Z. (2015). Mineralogy and chemical composition of technogenic soils (Technosols) developed from fly ash and bottom ash from selected thermal power stations in Poland, Soil Sci Ann, 66, 2, pp. 82-91, DOI: 10.1515/ssa-2015-0023
  49. Uzarowicz Ł., Zagórski Z., Mendak E., Bartmiński P., Szara E., Kondras M., Oktaba L., Turek A. & Rogoziński R. (2017). Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis, Catena, 157C, pp. 75-89, DOI: 10.1016/j.catena.2017.05.010
  50. Uzarowicz, Ł., Skiba, M., Leue, M., Zagórski, Z., Gąsiński, A. & Trzciński, J. (2018a). Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution, Catena, 162C, pp. 255-269, DOI: 10.1016/j.catena.2017.11.005
  51. Uzarowicz, Ł., Kwasowski, W., Śpiewak, O. & Świtoniak, M. (2018b). Indicators of pedogenesis of Technosol developed in an ash settling pond at the Bełchatów thermal power station (central Poland), Soil Sci Ann, 69, 1, pp. 49-59, DOI: 10.2478/ssa-2018-0006
  52. Vassilev, S.V. & Vassileva, C.G. (1996). Mineralogy of combustion wastes from coal-fired power stations, Fuel Process Technol, 47, 3, pp. 261-280, DOI: 10.1016/0378-3820(96)01016-8
  53. Weber, J., Strączyńska, S., Kocowicz, A., Gilewska, M., Bogacz, A., Gwiżdż, M. & Dębicka, M. (2015). Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation, Catena, 13, pp: 250-254, DOI: 10.1016/j.catena.2015.05.016
  54. World Coal Association (2019). Coal use & environment, (30.08.2020).
  55. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J., Ge, L.Q. & Xia, M.S. (2015). A comprehensive review on the applications of coal fly ash, Earth Sci Rev, 4, pp. 105-121, DOI: 10.1016/j.earscirev.2014.11.016
  56. Zikeli, S., Jahn, R. & Kastler, M. (2002). Initial soil development in lignite ash landfills and settling ponds in Saxony-Anhalt, Germany, J Plant Nutr Soil Sc, 165, pp. 530–536, DOI: 10.1002/1522-2624(200208)165:4530::AID-JPLN530>3.0.CO;2-J
  57. Zikeli, S., Kastler, M. & Jahn, R. (2004). Cation exchange properties of soils derived from lignite ashes, J Plant Nutr Soil Sc, 167, 4, pp. 439-448, DOI: 10.1002/jpln.200421361
  58. Żołnierz, L., Weber, J., Gilewska, M., Strączyńska, S. & Pruchniewicz, D. (2016). The spontaneous development of undestory vegetation on reclaimed and afforested post mine excavation field with fly ash, Catena, 136, pp. 84-90, DOI: 10.1016/j.catena.2015.07.013
Go to article

Authors and Affiliations

Zbigniew Kaczmarek
Agnieszka Mocek-Płóciniak
Piotr Gajewski
Łukasz Mendyk
Jan Bocianowski

  1. Poznań University of Life Sciences, Poznań, Poland
Download PDF Download RIS Download Bibtex


Air quality in Warsaw is mainly affected by two classes of internal polluting sources: transportation and municipal sector emissions, apart from external pollution inflow. Warsaw authorities prepared strategies of mitigating emissions coming from both these sectors. In this study we analyze effects of the implementation of these strategies by modeling air pollution in Warsaw using several mitigation scenarios. The applied model, operating on a homogeneous discretization grid, forecasts the annual average concentrations of individual pollutants and the related population health risk. The results reveal that the measures planned by the authorities will cause almost 50% reduction of the residents’ exposure to NOx pollution and almost 23% reduction of the exposure to CO pollution due to the transport emissions, while the residents’ exposure reductions due to the municipal sector are 10% for PM10, 15% for PM2.5, and 26% for BaP. The relatively smaller reductions due to municipal sector are connected with high transboundary inflow of pollutants (38% for PM10, 45% for PM2.5, 36% for BaP, and 45% for CO). The implementation of the discussed strategies will reduce the annual mean concentrations of NOx and PM2.5 below the limits of the Ambient Air Quality Directive. Despite the lower exposure reduction, the abatement of municipal sector emissions results in a very significant reduction in health risks, in particular, in the attributable mortality and the DALY index. This is due to the dominant share of municipal pollution (PM2.5 in particular) in the related health effects.
Go to article


  1. Bebkiewicz, K., Chłopek, Z., Lasocki, J., Szczepański, K. & Zimakowska-Laskowska, M. (2020). The inventory of pollutants hazardous to the health of living organisms, emitted by road transport in Poland between 1990 and 2017, Sustainability, 12, pp. 1–2, 5387, DOI: 10.3390/su12135387
  2. Berkowicz, R., Winther, M. & Ketzel, M. (2006). Traffic pollution modelling and emission data. Environmental Modelling & Software, 21, pp. 454–460. DOI: 10.1016/j.envsoft.2004.06.013
  3. Buchholz, S., Krein, A., Junk, J., Heinemann, G. & Hoffmann, L. (2013). Simulation of Urban-Scale Air Pollution Patterns in Luxembourg: Contributing Sources and Emission Sce-narios. Environmental Modeling & Assessment, 18, pp. 271–283, DOI: 10.1007/s10666-012-9351-1
  4. Calori, G., Clemente, M., De Maria, R., Finardi, S., Lollobrigida, F., Tinarelli, G. (2006). Air quality integrated modelling in Turin urban area. Environmental Modelling & Software, 21, pp. 468–476, DOI:10.1016/j.envsoft.2004.06.009
  5. Costa, S., Ferreira, J., Silveira, C., Costa, C., Lopes, D., Revals, H., Borrego, C., Robeling, P., Miranda, A.I., Texeira, J.P. (2014). Integrating Health on Air Quality Assessment - Review Report on Health Risks of Two Major European Outdoor Air Pollutants: PM and NO2. Journal of Toxicology and Environmental Health, Part B, 17(6), pp. 307–340. DOI: 10.1080/10937404.2014.946164
  6. Degraeuwe, B., Thunis, P., Clappier, A., Weiss, M., Lefebvre, W., Janssen, S., Vranckx, S. (2017). Impact of passenger car NOx emissions on urban NO2 pollution – Scenario analysis for 8 European cities. Atmospheric Environment, 171, pp. 330–337, DOI: 10.1016/j.atmosenv.2017.10.040
  7. Degraeuwe, B., Pisoni, E., Peduzzi, E., De Meij, A., Monforti-Ferrario, F., Bodis, K., Mascherpa, A., Astorga-Llorens, M., Thunis, P and Vignati, E. (2019). Urban NO2 Atlas (EUR 29943 EN), Publications Office of the European Union, Luxembourg.
  8. EC (2008). AAQD, 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.
  9. EC (2015). Urban air pollution – what are the main sources across the world?
  10. EC (2016). SHERPA: a computational model for better air quality in urban areas.
  11. European Commission Report.
  12. EC (2019). Air quality: traffic measures could effectively reduce NO2 concentrations by 40% in cities.
  13. EEA (2018). Air quality in Europe — 2018 report. EEA Report, No 12/2018.
  14. EEA (2019). Air quality in Europe — 2019 report. EEA Report, No 10/2019
  15. Holnicki, P., Kałuszko, A., Stankiewicz, K. (2016). Particulate matter air pollution in an urban area. A case study. Operations Research and Decisions, 3, pp. 43–56. DOI: 10.5277/ord160303
  16. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K., & Trapp, W. (2017a) Air quality modeling for Warsaw agglomeration. Archives of Environmental Protection, 43, pp. 48–64, DOI: 10.1515/aep-2017-0005
  17. Holnicki, P., Tainio, M., Kałuszko, A., Nahorski, Z. (2017b). Burden of mortality and disease attributable to multiple air pollutants in Warsaw, Poland. International Journal of Environmental Research and Public Health, 14, 1359, DOI:10.3390/ijerph14111359
  18. Holnicki, P., Kałuszko, A., Nahorski, Z., Tainio, M. (2018). Intra-urban variability of the intake fraction from multiple emission sources. Atmospheric Pollution Research, 9, pp. 1184–1193, DOI: 10.1016/j.apr.2018.05.003
  19. Juda-Rezler, K., Reizer. M., Maciejewska, K., Błaszczak, B., Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of the Total Environment, 713, 136729 pp. 1–15. DOI: 10.1016/j.scitotenv.2020.136729
  20. Karagulian, F., Belis, C.A., Dora, C.F.C., Prüss-Ustün, A.M., Bonjour, S., Adair-Rohani, H., Amann, M. (2015). Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, pp. 475–483, DOI: 10.1016/j.atmosenv.2015.08.087
  21. Kiesewetter, G., Borken-Kleefeld, J., Schöpp, W., Heyes, C., Thunis, P., Bessagnet. B., Terrenoire, E., Gsella, A., and Amann, M. (2014). Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation. Atmospheric Chemistry and Physics, 14, pp. 813–829. DOI: 10.5194/acp-14-813-2014
  22. Mediavilla-Sahagún, A., ApSimon, H.M. (2006). Urban scale integrated assessment for London: Which emission reduction strategies are more effective in attaining prescribed PM10 air quality standards by 2005? Environmental Modelling & Software, 21, pp. 501–513, DOI:10.1016/j.envsoft.2004.06.010
  23. Pisoni, E., Thunis, P., Clappier, A. (2019). Application of the SHERPA source-receptor relationships, based on the EMEP MSC-W model, for the assessment of air quality policy scenarios. Atmospheric Environment, X4, 100047, pp. 1–11. DOI: 10.1016/j.aeaoa.2019.100047
  24. Połednik, B., Piotrowicz, A., Pawłowski, L., Guz, Ł. (2018). Traffic-related particle emissions and exposure on an urban road. Archives of Environmental Protection, 44, no. 2, pp. 83–93, DOI: 10.24425/119706
  25. Rith, M., Fillone, A.M., Biona, J.B.M.M. (2020). Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southern Asia – A case study of Metro Manila. Applied Energy, 275, 115240, DOI: 10.1016/j.apenergy.2020.115240
  26. Tainio, M. (2015). Burden of disease caused by local transport in Warsaw, Poland. Journal of Transport & Health, 2, pp. 423–433, DOI: 10.1016/j.jth.2015.06.005
  27. Thunis, P., Clappier, A., Tarrason, L., Cuvelier, C., Monteiro, A., Pisoni, E., Wesseling, J., Belis, C.A., Pirovano, G., Janssen, S., Guerreiro, C., Peduzzi, E. (2019). Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches. Environment International, 130, pp. 1-12, DOI: 10.1016/j.envint.2019.05.019
  28. Thunis, P., Degraeuwe, B., Pisoni, E., Ferrari, F., Clappier, A. (2016). On the design and assessment of regional air quality plans: The SHERPA approach. Journal of Environmental Management, 183, pp. 952-958, DOI: 10.1016/j.jenvman.2016.09.049
  29. WHO (2015). Database on source apportionment studies for particulate matter in the air (PM10 and PM2.5).
  30. WHO (2018). Ambient (outdoor) air pollution.
  31. WIOŚ (2012). Environment Quality in Mazovian Voivodship in the year 2012. Voivodship Inspectorate of Environment Protection. Report for the year 2012. (in Polish).
  32. Dieselnet_LD (2019). 15 JUNE 2020
  33. Instalreporter (2013). 25 JAN 2018 (in Polish).
  34. Interia (2019).,nId,4268597 26 DEC 2019 (in Polish).
  35. SMOGLAB (2016). 20 OCT 2019 (in Polish).
  36. Transportpolicy (2018). 10 DEC 2018.
  37. UM (2020). 26 FEB 2020 (in Polish).
Go to article

Authors and Affiliations

Piotr Holnicki
Andrzej Kałuszko
Zbigniew Nahorski

  1. Systems Research Institute, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex


The results of the first limnological studies of the Kuźnica Warężyńska anthropogenic reservoir, by flooding the sand mine excavation, in 2005, are presented. Measurements of water temperature and the concentration of oxygen dissolved in water were made every month, from April to December, every 1 meter deep from the surface to the bottom (22m). Kuźnica Warężyńska anthropogenic lake was classified according to Olszewski and Patalas as dimictic, eumictic, stratified, stable, and extremely limnic. In terms of the share of the littoral zone in the total area, the reservoir is classified as grade II according to Dołgoff, where the pelagic zone is similar to the littoral zone. After 14 years of the reservoir's existence, during the summer stagnation period, the oxygen in the hypolimnion is completely depleted, from the 10th meter deep to the bottom, 22m. The analysis of the vertical distribution of the regression coefficient for the relationship between water temperature and the concentration of dissolved oxygen in water indicates the influence of the oxygen-free groundwater supplying the reservoir as a factor that may, in addition to the decomposition of organic matter, initiate anaerobic processes in the bottom water layer of the reservoir. When circulation ceases, the bottom eruption of oxygen-depleted groundwater is, during the summer and winter stagnation, a factor that shapes the anaerobic environment in the bottom layers of water early, initiating the internal enrichment process. Hydrological conditions, morphometry and thermal-oxygen relations of the Kuźnica Warężyńska reservoir are favorable for undertaking technical measures - changing the method of draining water from the surface to the bottom - to protect the quality of water resources.
Go to article


  1. Adrian, R., O’Reilly, C. M., Zagarese H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D.,Van Donk, E., Weyhenmeyer, G. A. & Winder, M., (2009). Lakes as sentinels of climate change. Limnology and Oceanography, 54, 6, 2, pp. 2283–2297. DOI: 10.4319/lo.2009.54.6_part_2.2283
  2. Anishchenko, O. V., Glushchenko, L. A., Dubowskaya, O. P., Zuev, I.V., Ageev, A.V. & Ivanov, E.A. (2015), Morphometry and metal concentrations in water and bottom sediments of mountain lakes in Ergaki Natural Park, Western Sayan Mountains. Water Resources, vo. 42, Issue 5, pp. 670-682. DOI: 10.1134/S0097807815050036
  3. Biedka, P. (2014). Influence of the summer thermal stratification duration on the concentration of nutrients in lake waters, Annual Set The Environmental Protection, Rocznik Ochrona Środowiska, Vo. 16, pp. 470-485, ISSN 1506-218 (in Polish).
  4. Biedka, P. (2013) Influence of temperature changes on the course of processes related to eutrophication of lakes., Ekonomia i Środowisko, 2 (45), pp. 242-254. (in Polish).
  5. Bührer, H. & Ambühl, H. (2001). Lake Lucerne, Switzerland, a Long Term Study of 1961-1992. Aquatic Sciences 63: pp. 1-25. DOI: 10.1007/s00027-001-8043-8
  6. Jańczak, J. & Maślanka, W. (2006). Cases of occurrence of secondary metalimnia in some lakes of the Ełk Lakeland. Limnological Review, 6, pp. 123-128.
  7. Dobiesz, N. E. & Lester, N. P. (2009). Changes in mid-summer water temperature and clarity across the Great Lakes between 1968 and 2002. Journal of Great Lakes Research, 35, 3, pp. 371–384. DOI: 10.1016/j.jglr.2009.05.002
  8. Dołgoff, G.J. (1948). Water reservoir morphology as a factor of macrophyte overgrowth and water blooms. Leningrad 1948. (in Russian).|
  9. Dunalska, J., D. Górniak, B. Jaworska, E.E. & Gaiser, (2012). Effect of temperature on organic matter transformation in a different ambient nutrient availability. Ecological Engineering, 49, pp. 27-34. DOI: 10.1016/j.ecoleng.2012.08.023
  10. Dunalska, J. (2003). Impact of Limited Water Flow in a Pipeline on the Thermnal and Oxygen conditions in a Lake Restored by Hypolimnetic Withdrawal Method. Polish Journal of Environmental Studies, 12(4), pp. 409-415.
  11. Garbacz, J.K., Cieściński, J., Ciechański, J., Dąbkowski, R. & Cichowska, J. (2018). Terma land oxygen conditions in Charzykowskie Lake in 2014 – 2016. Journal of Polish Hyperbaric Medicine and Technology Society, 62(1), pp. 85-96, ISSN: 1 734-7009 eISSN: 2084-0535 DOI: 10.2478/phr-2018-0007 1(62) (in Polish).
  12. Skowron, R. (2008). Water thermal conditions during winter stagnation in the selected lakes in Poland. Limnological Review, 8 (3), pp. 119-128. DOI: 10.1515/limre-2017-0004
  13. Gierszewski, P., Miler, K. & Kaszubski, M. (2015). Features of the thermal and chemical stratification of the Ostrowite Lake water, in the year 2015. Journal of Education, Health and Sport. 5(12), pp. 217-229. ISSN 2391-8306. DOI 10.5281/zenodo.35354
  14. Kajak, Z. (1998) Hydrobiology – Limnology – inland water ecosystems. PWN Warszawa, 1998. (in Polish).
  15. Kintisch, E. (2015). Earth’s lakes are warming faster than its air: First ever global survey reveals summer lake temperatures rising at an alarming rate. Science, 350, 6267, 1449. DOI: 10.1126/science.350.6267.1449
  16. Kostecki, M. (2014). Restoration of the anthropogenic water reservoir Pławniowice, by hypolimnion withdrawal method – limnological study. (in Polish). Works&Studies Prace i Studia IPIŚ PAN Zabrze, No.84, pp. 1-221.
  17. Kostecki, M. (2014). Changes in oxygen conditions in a stratifying anthropogenic water reservoir as a result of restoration with hypolimnetic withdrawal method (on the basis of the Pławniowice reservoir example). Archives of Environmnetal Protection 2, pp. 53-63, DOI: 10.2478/aep-2014-0015
  18. Kostecki, M. (2013). Difference in ice cover in the anthropogenic reservoir of Pławniowice in the years 1986-2012. Archives of Environmnetal Protection, 4, pp. 3-14. DOI: 10.2478/aep-2013-0035
  19. Kostecki, M (2001). The limnological characteristic of the Pławniowice dam-reservoir (Upper Silesia, Poland) – Thermal and oxygen conditions after 23 years of exploitation. Archives of Environmental Protection, 27(2), pp. 97-124.
  20. Kostecki, M. (1994). Limnological research of the Middle Iraq lakes. Part III. Thermal an oxygen conditions and Basic indicators of water quality of the Tharthar Lake. Archiwum Ochrony Środowiska. 1-2, pp. 69-92, (in Polish).
  21. Kvambekk, Å. S. & Melvold, K. (2010). Long-term trends in water temperature and ice cover in the subalpine lake. Øvre Heimdalsvatn, and nearbylakes and rivers, hydrobiologia, 642(1), pp. 47–60. DOI: 10.1007/s10750-010-0158-2
  22. MacCallum, S. N. & Merchant, C. J. (2012). Surface water temperature observations of large lakes by optima estimation. Canadian Journal of Remote Sensing, 38(1), pp. 25–45. DOI: 10.5589/m12-010
  23. Marszelewski, W., Błoniarz, W. & Pestka, J. (2006). Seasonal changes in the concentrations of dissolved oxygen in the lakes of the “Bory Tucholskie” National Park. Limnological Review, 6, pp. 193-200.
  24. Sheela, A. Moses, Letha, Janaki, Sabu, Joseph, J. Justus, J. & Sheeja R. V. (2011). Influence of lake morfometry and water quality. Environmental Monitoring and Assessment, 182(1-4), pp. 443-454. DOI: 10.1007/s10661-011-1888-y
  25. Olszewski, P. (1959). Grades of intensity of wind impact on lakes, Zesz. Nauk. WSR Olsztyn, 4, pp. 111-132. (in Polish).
  26. Patalas, K. (1960) Thermal and oxygen conditions and transparency of water in 44 lakes of Węgorzewo District. Roczniki Nauk Rolniczych, Tom 77-B-1, pp. 105 – 216, (in Polish).
  27. Patalas, K. (1960): Mixing of water as a factor determining the intensity of matter flow in morphologically different lakes near Węgorzewo. Roczniki Nauk Rolniczych, 77(B-1), pp. 223-242, (in Polish).
  28. Pełechata, A., Pełechaty, M. & Pukacz, A. (2015). Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake. Aquatic Botany, 124, pp. 10–18. DOI: 10.1016/j.aquabot.2015.03.001
  29. Rzętała, M. (2008). Functioning of water reservoirs and the course of limnic processes under conditions of varied anthropopresion a case study of Upper Silesian Region. Wyd. Prace Naukowe Uniwersytetu Śląskiego, Nr 2643, Katowice 2008.(in Polish).
  30. Rzętała, M. (2007). Limnic water pollution of selected post-sand water reservoirs of Upper Silesian Region against a background of their economical use. Limnological Review 7(2), pp. 111-116.
  31. Skowron, R. & Piasecki, A. (2014): Water temperature and its diversity in the deepest lakes of the Tuchola Forest and the Kashubian and Brodnickie Lakelands. Bulletin of Geography – Physical Geography Series, 7, pp. 105–119. DOI: 10.2478/bgeo-2014-0005
  32. Stefanidis, K. & Papastergiadou, E. (2012). Relationship between lake morphometry, water quality, and aquatic macrophytes, in greek lakes. Fresenius Environmental Bulletin 21(10), pp. 3018 – 3026.
  33. Swinton, M. W., Eichler, L. W., Farrell, J. L. & Boylen, C. W. (2015). Evidence for water temperature increase in Lake George, NY: Impact on growing season duration and degree days. Lake and Reservoir Management, 31(3), pp. 241–253. DOI: 10.1080/10402381.2015.1067660
  34. Terasmaa, J. & Punning, J-M. (2006). Sedimentation dynamics in a small dimictic lake in northern Estonia. Proc. Estonian Acad. Sci. Biol. Ecol. 55(3), pp. 228 - 242.
  35. Zhang, Y. (2015). Effect of climate warming on lake thermal and dissolved oxygen stratifications:A review. Advances in Water Science, 26, 1, pp. 130–139. DOI: 10.14042/j.cnki.32.1309.2015.01.017
Go to article

Authors and Affiliations

Maciej Kostecki

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to:

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, ( (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.

Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution and reproduction in any medium provided the article is properly cited.

© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.

The manuscripts should be submitted on-line using the Editorial System available at

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges

The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.


All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.

All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.

Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more