Applied sciences

Archives of Foundry Engineering

Content

Archives of Foundry Engineering | 2023 | vol. 23 | No 3

Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of tests carried out on ausferrite carbide matrix alloyed ductile cast iron. The ausferrite was obtained via addition of Cu and Mo alloying elements. This eliminated heat treatment from the alloy production cycle. The article presents results of tests of the quality of the obtained material. Emphasis was put on metallographic analysis using light and scanning microscopy. Works also included chemical composition tests and EDS analysis. Strength tests were executed in an accredited laboratory. It is possible to create a raw ausferrite carbide matrix without subjecting an alloy to heat treatment. However, it turned out that quality parameters of cast iron were insufficient. The obtained material hardness was 515 HB, while Rm strength and A5 ductility were very low. The low tensile strength of the analyzed alloy resulted from the presence of degenerate graphite secretion (of flake or vermicular shape) in the cast iron. The tests also demonstrated that the alloy was prone to shrinkage-related porosity, which further weakened the material. Alloys made of alloyed ductile iron of ausferrite matrix micro-structure are very attractive due to elimination of the heat treatment process. However, their production process and chemical composition must be optimized.
Go to article

Bibliography

[1] Ahmed, M., Riedel, E., Kovalko, M., Volochko, A., Bähr, R. & Nofal, A. (2022). Ultrafine ductile and austempered ductile irons by solidification in ultrasonic field. International Journal of Metalcasting. 16(3), 1463-1477. DOI: 10.1007/s40962-021-00683-8.
[2] Benam, A.S. (2015). Effect of alloying elements on austempered ductile iron (ADI) properties and its process: review. China Foundry. 12(1), 54-70.
[3] Uyar, A., Sahin, O., Nalcaci, B., & Kilicli. V. (2022). Effect of austempering times on the microstructures and mechanical properties of dual-matrix structure austempered ductile iron (DMS-ADI). International Journal of Metalcasting. 16(1), 407-418. DOI: 10.1007/s40962-021-00617-4.
[4] Lefevre, J. & Hayrynen. K.L. (2013). Austempered materials for powertrain applications. Journal of Materials Engineering and Performance. 22(7), 1914-1922. DOI: 10.1007/s11665-013-0557-4.
[5] Tyrała, E., Górny, M., Kawalec, M., Muszyńska, A. & Lopez, H.F. (2019). Evaluation of volume fraction of austenite in austempering process of austempered ductile iron. Metals. 9(8), 1-10. DOI: 10.3390/met9080893.
[6] Fraś, E., Górny, M., Tyrała, E. & Lopez. H. (2012). Effect of nodule count on austenitising and austempering kinetics of ductile iron castings and mechanical properties of thin walled iron castings. Materials Science and Technology. 28(12), 1391-1396. DOI: 10.1179/1743284712Y.0000000088.
[7] Ibrahim, M.M., Negm, A.M., Mohamed, S.S. & Ibrahim. K.M. (2022). Fatigue properties and simulation of thin wall ADI and IADI castings. International Journal of Metalcasting. 16(4), 1693-1708. DOI: 10.1007/s40962-021-00711-7.
[8] Gumienny, G. & Kacprzyk. B. (2018). Copper in ausferritic compacted graphite iron. Archives of Foundry Engineering. 18(1), 162-166. DOI: 10.24425/118831.
[9] Abdullah, B., Alias, S. K., Jaffar, A., Rashid, A.A., Ramli, A. (2010). Mechanical properties and microstructure analysis of 0.5% niobium alloyed ductile iron under austempered process in salt bath treatment. International Conference on Mechanical and Electrical Technology, (pp. 610-614). DOI: 10.1109/ICMET.2010.5598431.
[10] Akinribide, O.J., Ogundare, O.D., Oluwafemi, O.M., Ebisike, K., Nageri, A.K., Akinwamide, S.O., Gamaoun, F. & Olubambi, P.A. (2022). A review on heat treatment of cast iron: phase evolution and mechanical characterization. Materials. 15(20), 1-38. DOI: 10.3390/ma15207109. [11] Samaddar, S., Das, T., Chowdhury, A.K., & Singh, M. (2018). Manufacturing of engineering components with Austempered ductile iron - A review. Materials Today: Proceedings. 5(11), 2561525624. DOI: 10.1016/j.matpr.2018.11.001.
[12] Stachowiak, A., Wieczorek, A.N., Nuckowski, P., Staszuk, M. & Kowalski, M. (2022). Effect of spheroidal ausferritic cast iron structure on tribocorrosion resistance. Tribology International. 173. DOI: 10.1016/j.triboint.2022.107688.
[13] Myszka, D. & Wieczorek, A. (2015). Effect of phenomena accompanying wear in dry corundum abrasive on the properties and microstructure of austempered ductile iron with different chemical composition. Archives of Metallurgy and Materials. 60(1), 483-490. DOI: 10.1515/amm-2015-0078.
[14] Pimentel, A.S.O., Guesser, W.L., Portella, P.D., Woydt, M. & Burbank. J. (2019). Slip-rolling behavior of ductile and austempered ductile iron containing niobium or chromium. Materials Performance and Characterization. 8(1), 402-418. DOI: 10.1520/MPC20180188.
[15] Machado, H.D., Aristizabal-Sierra, R., Garcia-Mateo, C. & Toda-Caraballo, I. (2020). Effect of the starting microstructure in the formation of austenite at the intercritical range in ductile iron alloyed with nickel and copper. International Journal of Metalcasting. 14(3), 836-845. DOI: 10.1007/s40962-020-00450-1.
[16] Janowak, J.F. & Gundlach. R.B. (1985). Approaching austempered ductile iron properties by controlled cooling in the foundry. Journal of Heat Treating. 4(1), 25-31. DOI: 10.1007/BF02835486.
[17] Gumienny, G. & Kurowska, B. (2018). Alternative technology of obtaining ausferrite in the matrix of spheroidal cast iron. Transactions of the Foundry Research Institute. 58(1), 13-29. DOI: 10.7356/iod.2018.02.
[18] Gumienny, G., Kacprzyk, B., Mrzygłód, B. & Regulski. K. (2022). Data-driven model selection for compacted graphite iron microstructure prediction. Coatings. 12(11). DOI: 10.3390/coatings12111676.
[19] Tenaglia, N.E., Pedro, D.I., Boeri, R.E. & Basso. A.D. (2020). Influence of silicon content on mechanical properties of IADI obtained from as cast microstructures. International Journal of Cast Metals Research. 33(2-3), 72-79. DOI: 10.1080/13640461.2020.1756082.
[20] Méndez, S., De La Torre, U., González-Martínez, R. & Súarez. R. (2017). Advanced properties of ausferritic ductile iron obtained in as-cast conditions. International Journal of Metalcasting. 11(1), 116-122. DOI: 10.1007/s40962-016-0092-9.
[21] Kashani, S.M. & Boutorabi. S. (2009). As-cast acicular ductile aluminum cast iron. Journal of Iron and Steel Research International. 16(6), 23-28. DOI: 10.1016/S1006-706X(10)60022-2.
[22] Ferry, M. & Xu. W. (2004). Microstructural and crystallographic features of ausferrite in as-cast gray iron. Materials Characterization. 53(1), 43-49. DOI: 10.1016/j.matchar.2004.07.008.
[23] Stawarz, M. & Nuckowski. P. M. (2022). Corrosion behavior of simo cast iron under controlled conditions. Materials. 15(9), 1-14. DOI: 10.3390/ma15093225.
[24] Stawarz, M. (2018). Crystallization process of silicon molybdenum cast iron. Archives of Foundry Engineering. 18(2), 100-104. DOI: 10.24425/122509.
[25] Vaško, A., Belan, J. & Tillová. E. (2018). Effect of copper and molybdenum on microstructure and fatigue properties of nodular cast irons. Manufacturing Technology. 18(6), 1049-1052. DOI: 10.21062/ujep/222.2018/a/1213-2489/mt/18/6/1048.
[26] Silman, G.I., Kamynin, V.V. & Tarasov. A.A. (2003). Effect of copper on structure formation in cast iron. Metal Science and Heat Treatment. 45(7-8), 254-258. DOI: 10.1023/A:1027320116132.
[27] Gumienny, G., Kacprzyk, B. & Gawroński, J. (2017). Effect of copper on the crystallization process, microstructure and selected properties of CGI. Archives of Foundry Engineering. 17(1), 51-56. DOI: 10.1515/afe-2017-0010.
[28] Vaško, A. (2017). Fatigue properties of nodular cast iron at low frequency cyclic loading. Archives of Metallurgy and Materials. 62(4), 2205-2210. DOI: 10.1515/amm-2017-0325.
[29] Stawarz, M. & Nuckowski. P.M. (2020). Effect of Mo addition on the chemical corrosion process of SiMo cast iron. Materials. 13(7), 1-10. DOI: 10.3390/ma13071745.
[30] Stawarz, M. (2017). SiMo ductile iron crystallization process. Archives of Foundry Engineering. 17(1), 147-152. DOI: 10.1515/afe-2017-0027.
[31] Zych, J., Myszka, M. & Kaźnica, N. (2019). Control of selected properties of „Vari-morph” (VM) cast iron by means of the graphite form influence, described by the mean shape indicator. Archives of Foundry Engineering. 19(3), 43-48. DOI: 10.24425/afe.2019.127137.

Go to article

Authors and Affiliations

M. Stawarz
1
ORCID: ORCID
M. Lenert
1
K. Piasecki
1
ORCID: ORCID

  1. Department of Foundry Engineering, Silesian University of Technology, Towarowa 7 St., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The quality of the castings depends, among other influences, on the quality of the moulding mixture used. The silica sands used are characterized by high thermal expansion compared to other sands. The tendency to dilatation of the moulding mixture can be influenced by the choice of the granulometric composition of the basic sand and the grain size. The aim of this work is to present the influence of grain distribution of foundry silica sand BG 21 from Biala Góra (Poland) and the degree of sorting (unsorted, monofraction, polyfraction) on the degree of thermal dilatation of the sand and thus on the resulting quality of the casting and susceptibility to foundry defects. For the purpose of measuring thermal dilatation, clay wash analysis was performed, sieve analysis of the sand was carried out, and individual sand fractions were carefully sorted. The measurements confirmed a higher thermal expansion in the case of monofractional sand grading, up to 51.8 %. Therefore, a higher risk of foundry stress-strain defects, such as veining, can be assumed.
Go to article

Bibliography

[1] Czerwinski, F. (2017). Modern aspects of liquid metal engineering. Metallurgical and Materials Transactions B. 48(1), 367-393. DOI: 10.1007/s11663-016-0807-6.
[2] Brůna, M. & Galčík, M. (2021). Casting quality improvement by gating system optimization. Archives of Foundry Engineering. 21(1), 132-136. https://doi.org/10.24425/afe.2021.136089.
[3] Monroe, R. (2005). Porosity in castings. AFS Transactions. 113, 519-546.
[4] Kowalski, J.S. (2010). Thermal aspects of temperature transformation in silica sand. Archives of Foundry Engineering. 10(3), 111-114. ISSN (1897-3310).
[5] Jelínek, P. (2004). Binder systems of foundry moulding mixtures – chemistry of foundry binders. (1st ed.). Ostrava. ISBN: 80-239-2188-6. (in Czech).
[6] Svidró, J., Svidró J. T., & Diószegi, A. (2020). The role of purity level in foundry silica sand on its thermal properties. Journal of Physics: Conference Series. 1527(1), 012039, 1-8. DOI 10.1088/1742-6596/1527/1/012039.
[7] Chao, Ch. & Lu, H. (2002). Stress-induced β→ α-cristobalite phase transformation in (Na2O+Al2O3)-codoped silica. Materials Science and Engineering: A. 328(1-2), 267-276. DOI: 10.1016/S0921-5093(01)01703-8.
[8] Hrubovčáková, M., Vasková, I., Benková, M. & Conev, M. (2016). Opening material as the possibility of elimination veining in foundries. Archives of Foundry Engineering. 16(3), 157-161. DOI: 10.1515/afe-2016-0070.
[9] Beňo, J., Adamusová, K., Merta, V., Bajer, T. (2019). Influence of silica sand on surface casting quality. Archives of Foundry Engineering. 19(2), 5-8. DOI: 10.24425/afe.2019.127107.
[10] Thiel, J., Ziegler, M., Dziekonski, P., Joyce, S. (2007). Investigation into the technical limitations of silica sand due to thermal expansion. Transactions of the American Foundry Society. 115, 383-400.

Go to article

Authors and Affiliations

M. Bašistová
1
ORCID: ORCID
P. Lichý
1
ORCID: ORCID

  1. VSB-Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Metallurgical Technologies, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

When used for sand casting, foundry sand is stressed in several ways. These stresses, thermal and mechanical, compromise the grain integrity, resulting in size reduction and the production of small particles to the point where the sand is no longer viable for sand casting. This study evaluates the crushability of chromite sand, a crucial characteristic for determining how resistant sand is to size reduction by crushing. To replicate the heat and mechanical strain that sand is subjected to during the industrial sand-casting process, a sinter furnace and rod mill were employed. After nine minutes of heat and mechanical stress application, the crushing ratio, which was used to gauge the crushability of chromite sand, ranged from 1.72 to 1.92 for all samples. There were differences in the rate at which fine particles were produced among the samples, with sample E producing the highest proportion of fine particles in the same length of time. Understanding the properties that control the crushability performance of chromite sand will enable foundries to buy chromite sand with higher recycling yield, reducing the environmental impact of waste foundry sand and eliminating the risk to the workforce's pulmonary health in line with the current industry standards. Foundries will also be able to optimize the current industrial process while continually pushing for innovative foundry technologies and materials.
Go to article

Bibliography


[1] Campbell, J. (2015). Complete Casting Handbook. UK: Second ed.. Butterworth-Heinemann.
[2] Güngen, A.C., Aydemir, Y., Çoban, H., Düzenli, H. & Tasdemir, C. (2016). Lung cancer in Patients Diagnosed with Silicosis Should be Investigated. Respiratory Medicine Case Reports. 18(1), 93-95. DOI: 10.1016/j.rmcr.2016.04.011.
[3] Dai, Y., Ma, Q.Y., X.H. Li, X.H., Zhang, X., Hu, F.P., Zhang, Y. & Xie, W.D. (2017). The research on characterization of crushability for foundry sand particles. Archives of Foundry Engineering. 17(4), 231-235. DOI: 10.1515/afe-2017-0161.
[4] Khan, M.M., Mahajani, S.M., Jadhav, G.N., Vishwakarma, R., Malgaonkar, V. & Mandre, S. (2021). Mechanical and thermal methods for reclamation of waste foundry sand. Journal of Environmental Management. 279(1), 111628. https://doi.org/10.1016/j.jenvman.2020.111628.
[5] Dańko, J.S., Dańko, R. & Holtzer, M. (2003). Reclamation of used sand in foundry production. Metalurgija. 42(3), 173-177. ISSN 0543-5846.
[6] Ghormley, S., Williams, R. & Dvorak, B. (2020). Foundry sand source reduction options: Life cycle assessment evaluation. Environments. 7(9), 66, 1-15. https://doi.org/10.3390/environments7090066.
[7] Das, S.K.. & Das, A. (2022). A critical state based viscoplastic model for crushable granular materials. Soils and Foundations. 62(1), 1-16. https://doi.org/10.1016/j.sandf.2021.101093.
[8] Kabasele, J.K. (2022). Investigation of South African Foundry Chromite sand Crushability, Masters thesis. Johannesburg: University of Johannesburg
[9] Kabasele, J.K. & Nyembwe, K.D. (2021). Assessment of local chromite sand as ‘green’ refractory raw materials for sand casting applications. South African Journal of Industrial Engineering. 32(2), 65-74. http://dx.doi.org/10.7166/32-3-2615.

Go to article

Authors and Affiliations

J.K. Kabasele
1
ORCID: ORCID
K.D. Nyembwe
1
ORCID: ORCID
H. Polzin
2

  1. Department of Metallurgy, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg, South Africa
  2. Peak Deutschland GmbH, Dresdner Straße 58, 01683 Nossen, Germany
Download PDF Download RIS Download Bibtex

Abstract

Aluminum alloys are widely used in the industry thanks to its many advantages such as light weight and high strength. The use of this material in the market is increasing day by day with the developing technology. Due to the high energy inputs in the primary production, the use of secondary ingots by recycling from scrap material are more advantageous. However, the liquid metal quality is quite important in the use of secondary aluminum. It is believed that the quality of recycled aluminum is low, for this purpose, many liquid metal cleaning methods and test methods are used in the industry to assess the melt cleanliness level. In this study, it is aimed to examine the liquid metal quality in castings with varying temperature using K mold. A206 alloy was used, and the test parameters were selected as: (i) at 725 °C, 750 °C and 775 °C casting temperatures, (ii) different hydrogen levels. The hydrogen level was adjusted as low, medium and high with degassing, as-cast, and upgassing of the melt, respectively. The liquid metal quality of the cast samples was examined by the K mold technique. When the results were examined, it was determined that metal K values and the number of inclusions were high at the as-cast and up-gas liquid with increasing casting temperatures. It has been understood that the K mold technique is a practical method for the determination of liquid metal quality, if there is no reduced pressure test machine available at the foundry floor.
Go to article

Authors and Affiliations

A. Tigli
1 2
ORCID: ORCID
M. Tokatli
3
E. Uslu
3
ORCID: ORCID
M. Colak
3
D. Dispinar
1 4
ORCID: ORCID

  1. Istanbul Technical University, Turkey
  2. Sinop University, Turkey
  3. Bayburt University, Turkey
  4. Foseco, Netherlands
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented are results of a research on effectiveness of absorbing electromagnetic waves at frequency 2.45 GHz by unhardened sodium silicate base sands (SSBS) prepared of high-silica base sand and a PLA (Polylactide) 3D-prited (3DP) mould walls. Measurements of power loss of microwave radiation (P in) expressed by a total of absorbed power (P abs), output power (P out) and reflected power (P ref) were carried-out on a stand of semiautomatic microwave slot line for determining balance of microwave power emitted into selected multimaterial systems. Values of microwave power loss in the rectangular waveguide filled with unhardened moulding sands and prepared by fused deposition modelling (FDM) 5 mm polylactide (PLA) walls with grid infill density from 25% to c.a. 100% served for determining effectiveness of microwave heating. Balance of microwave power loss is of technological importance for microwave manufacture of high-quality casting sand moulds and cores in possibility of use 3D-printed mould tools and core boxes. It was found that apparent density of SSBS placed in a waveguide with PLA walls influences parameters of power output (P out) and power reflected (P ref). The PLA wall position and grid infill density were identified to have a limited effect on effectiveness of absorbing microwaves (P abs).
Go to article

Authors and Affiliations

M. Stachowicz
1
ORCID: ORCID

  1. Wroclaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

To further improve the mechanical properties of carbon nanotubes (CNTs) modified aluminum alloy (ZL105), the first principle was used to build the atomic structure of the alloy system and the alloy system was simulated by the VASP. After that, the heat treatment process of the cast aluminium alloy material with CNTs to enhance the alloy performance by the orthogonal experiment. The results of the research show that: (1) The energy status of the alloy system could be changed by adding the C atoms, but it did not affect the formation and structural stability of the alloy system, and the strong bond compounds formed by C atoms with other elements inside the solid solution structure can significantly affect the material properties. (2) The time of solid solution has the greatest influence on the performance of material that was modified by CNTs. The solution temperature and aging temperature were lower strength affection, and the aging time is the lowest affection. This paper provides a new research method of combining the atomic simulation with the casting experiment, which can provide the theoretical calculations to reduce the experiment times for the casting materials’ performance improvement.
Go to article

Authors and Affiliations

Ziqi Zhang
1
Zhilin Pan
1
ORCID: ORCID
Rong Li
1
ORCID: ORCID
Qi Zeng
2
ORCID: ORCID
Yong Liu
3
ORCID: ORCID
Quan Wu
1

  1. School of Mechanical & Electrical Engineering, Guizhou Normal University, China
  2. Guiyang Huaheng Mechanical Manufacture CO., LTD, China
  3. Guizhou University, China
Download PDF Download RIS Download Bibtex

Abstract

A wide variety of water-soluble cores are widely used in hollow composite castings with internal cavities, curved channels, and undercuts. Among them, the cores made by adding binders of inorganic salts in the form of aqueous solutions have excellent solubility in water. However, excellent collapsibility is often accompanied by poor moisture absorption resistance. In this study, a water-soluble core with moderate strength and moisture absorption resistance was prepared by hot pressing and sintering the core sand mixture of sand, bentonite, and composite salts, and a tee tube specimen was cast. The experimental results showed that the cores with KCl-K2CO3 as binder could obtain strength of more than 0.9 MPa and still maintain 0.3 MPa at 80±5% relative humidity for 6 hours; the subsequent sintering process can significantly improve the resistance to moisture absorption of the hot pressed cores (0.6 MPa after 24 hours of storage at 85±5% relative humidity); the water-soluble core prepared by the post-treatment can be used to cast tee pipe castings with a smooth inner surface and no porosity defects, and it is easy to remove the core.
Go to article

Authors and Affiliations

Xiaona Yang
1
Long Zhang
1
Xing Jin
2
Jun Hong
3
Songlin Ran
2
Fei Zhou
3

  1. School of Metallurgical Engineering, Anhui University of Technology, China
  2. Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling, Anhui University of Technology, China
  3. Technical Department, Anhui Highly Precision Casting Co., Ltd, China
Download PDF Download RIS Download Bibtex

Abstract

Dokra casting is famous for its Artistic value to the world but it is also sophisticated engineering. The technique is almost 4500 years old. It is practiced by the tribal artisans of India. It is a clay moulded wax-based thin-walled investment casting technique where liquid metal was poured into the red hot mould. Dimensional accuracy is always preferable for consumers of any product. Distortion is one of the barriers to achieving the accurate dimension for this type of casting especially for the bending parts. The cause and nature of the distortion for this type of casting must be analyzed to design a product with nominal tolerance and dimensional accuracy.
Go to article

Bibliography

[1] Bhattacharya, S. (2011). Dhokra art and artists of bikna: problems and prospects. Chitrolekha International Magazine on Art and Design. 1(2),10-3.
[2] Pattnaik, S., Karunakar, D.B. & Jha, P.K. (2012). Developments in investment casting process—a review. Journal of Materials Processing Technology. 212(11), 2332-48. DOI: 10.1016/j.jmatprotec.2012.06.003.
[3] Jones, S. & Yuan, C. (2003). Advances in shell moulding for investment casting. Journal of Materials Processing Technology. Apr 20, 135(2-3), 258-265. DOI: 10.1016/S0924-0136(02)00907-X.
[4] Singh, S. & Singh, R. (2016). Precision investment casting: A state of art review and future trends. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 230(12), 2143-2164. https://doi.org/10.1177/0954405415597844.
[5] Mukhtarkhanov, M., Perveen, A. & Talamona, D. (2020). Application of stereolithography based 3D printing technology in investment casting. Micromachines. 11(10), 946. https://doi.org/10.3390/mi11100946.
[6] Vyas, A.V. & Sutaria, M.P. (2022). Investment castings of magnesium alloys: a road map and challenges. Archives of Foundry Engineering. 22(4), 19-23. DOI: 10.24425/afe.2022.140247.
[7] Zhu, X., Wang, F., Ma, D. & Bührig-Polaczek, A. (2020). Dimensional tolerance of casting in the bridgman furnace based on 3D printing techniques. Metals. 10(3), 299. https://doi.org/10.3390/met10030299.
[8] Cheah, C.M., Chua, C.K., Lee, C.W., Feng, C. & Totong, K. (2005). Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. The International Journal of Advanced Manufacturing Technology. 25(3), 308-320. DOI: 10.1007/s00170-003-1840-6.
[9] Donghong, W., Yu, J., Yang, C., Hao, X., Zhang, L. & Peng, Y. (2022). Dimensional control of ring-to-ring casting with a data-driven approach during investment casting. The International Journal of Advanced Manufacturing Technology. 119(1), 691-704. DOI: 10.1007/s00170-021-07539-9.
[10] Liu, Y.Z., Cui, G.M., Zeng, J.M., Gan, W.K. & Lu, JB. (2014). Prediction and prevention of distortion for the thin-walled aluminum investment casting. Advanced Materials Research. 915-916, 1049-1053. https://doi.org/10.4028/www.scientific.net/AMR.915-916.1049.
[11] Yarlagadda, P.K. & Hock, T.S. (2003). Statistical analysis on accuracy of wax patterns used in investment casting process. Journal of Materials Processing Technology. 138(1-3), 75-81. DOI: 10.1016/S0924-0136(03)00052-9.
[12] Neff, D., Ferguson, B.L., Londrico, D., Li, Z. & Sims, J.M. (2020). Analysis of permanent mold distortion in aluminum casting. International Journal of Metalcasting. 14(1), 3-11. https://doi.org/10.1007/s40962-019-00337-w.
[13] Karsten, O., Schimanski, K, Von Hehl, A. & Zoch, HW. (2011). Challenges and solutions in distortion engineering of an aluminium die casting component. Materials Science Forum. 690, 443-446. https://doi.org/10.4028/www.scientific.net/MSF.690.443.
[14] Zych, J. & Snopkiewicz, T. (2020). A New Laser-Registered View of the Shrinkage Kinetics of Foundry Alloys. Archives of Foundry Engineering. 20(3), 41-46. ISSN (1897-3310).
[15] Ignaszak, Z. (2018). Discussion on the methodology and apparatus for hot distortion studies. Archives of Foundry Engineering. 18(2), 141-145. ISSN (1897-3310).
[16] Khuengpukheiw, R., Veerapadungphol, S., Kunla, V. & Saikaew, C. (2022). Influence of sawdust ash addition on molding sand properties and quality of iron castings. Archives of Foundry Engineering. 22(4), 53-64. DOI: 10.24425/afe.2022.143950.
[17] Mukherjee, D.A. (2016). A comparative study of dokra metal craft technology and harappan metal craft technology. Heritage: Journal of Multidisciplinary Studies in Archaeology.4,757-68. ISSN (2347-5463).
[18] Mondal, A., Ghosal, S., Datta, P.K. (2005). An engineering approach to the manufacturing practice of the traditional investment casting process of indian sub-continent. Proceedings of the International Conference on Mechanical Engineering 2005 (ICME2005) 28- 30 December 2005, Dhaka, Bangladesh, ICME05-AM-43 (pp. 1-5).
[19] Mandal, B., Chattopadhyay, P.K. & Datta, P.K. (2008). Characterization of a Pala-Sena, High-Tin Bronze bowl from Bengal, India. SAS Bulletin. 31(3), 12-17.
[20] Mandal, B. & Datta, P.K. (2010). Hot mould casting process of ancient east India and Bangladesh. China Foundry. 7(2), 171-177. ISSN (1672-6421).
[21] Mandal, B. & Datta, P. K. (2010). Understanding alloy design principles and cast metal technology in hot molds for medieval Bengal. Indian Journal of History of Science, 101-140.
[22] Roy, S., Pramanick, A.K. & Datta, P.K. (2021). Quality analysis of tribal casting products by topsis for different gating system. IOP Conference Series: Materials Science and Engineering. 1080(1), 012014, 1-5. DOI: 10.1088/1757-899X/1080/1/012014.
[23] Sarkar, S., Baranwal, R.K., Biswas, C., Majumdar, G. & Haider, J. (2019). Optimization of process parameters for electroless Ni–Co–P coating deposition to maximize micro-hardness. Materials Research Express. 6(4), 046415, 1-13. DOI: 10.1088/2053-1591/aafc47.
[24] Aghamiri, S.M., Oono, N., Ukai, S., Kasada, R., Noto, H., Hishinuma, Y. & Muroga, T. (2019). Brass-texture induced grain structure evolution in room temperature rolled ODS copper. Materials Science and Engineering: A. 749, 118-28. https://doi.org/10.1016/j.msea.2019.02.019. [25] Atay, H.Y., Uslu, G., Kahmaz, Y., Atay, Ö. (2020). Investigations of microstructure and mechanical properties of brass alloys produced by sand casting method at different casting temperatures. IOP Conference Series: Materials Science and Engineering. 726(1), 012018, 1-8. DOI: 10.1088/1757-899X/726/1/012018.
[26] Mindivan, H., Çimenoǧlu, H. & Kayali, E.S. (2003). Microstructures and wear properties of brass synchroniser rings. Wear. 254(5-6), 532-537. https://doi.org/10.1016/S0043-1648(03)00023-1.
[27] Atsumi, H., Imai, H., Li, S.F., Kousaka. Y., Kojima, A., & Kondoh. K. (2010). Microstructure and mechanical properties of high strength brass alloy with some elements. In Materials Science Forum. 654-656(771), 2552-2555. https://doi.org/10.4028/www.scientific.net/MSF.654-656.2552.
[28] Chakraborty, A.K. (2014). Phase transformation of kaolinite clay, 1st ed., (pp.-21-26) Springer: New York, New Delhi. DOI 10.1007/978-81-322-1154-9.
[29] Roy, S., Pramanick, A.K. & Datta, P.K. (2023). Negative shrinkage of thin-walled investment brass castings. Archives of Foundry Engineering. 23(1), 17-24. DOI: 10.24425/afe.2023.144275.
[30] Roy, S., Pramanick, A.K. & Datta, P.K. (2020). Precise filling time calculation of thin-walled investment casting in hot mold. Journal of the Brazilian Society of Mechanical Science and Engineering. 42(10), 552, 1-11. https://doi.org/10.1007/s40430-020-02634-6.

Go to article

Authors and Affiliations

R. Mandal
1
S. Roy
2
ORCID: ORCID
S. Sarkar
1
T. Mandal
3
A.K. Pramanick
2
G. Majumdar
1

  1. Mechanical Engineering Department, Jadavpur University, India
  2. Metallurgical and Material Engineering Department, Jadavpur University, India
  3. Metallurgy and Materials Engineering, IIEST Shibpur, India
Download PDF Download RIS Download Bibtex

Abstract

A statistical approach was conducted to investigate effect of independent factors of the mixing time compactability and bentonite percentage on dependent variables of permeability, compression and tensile strength of sand mould properties. Using statistical method save time in estimating the dependent variables that affect the moulding properties of green sand and the optimal levels of each factor that produce the desired results.
The results yielded indicate that there are variations in the effects of these factors and their interactions on different properties of green sand. The outcomes obtained a range of permeability values, with the highest and lowest numbers being 125 and 84. The sand exhibited high values of tensile and compressive strength measuring at 0.33N/cm2 and 17.67N/cm2. Conversely it demonstrated low levels of tensile and compressive strength reaching 0.14N/cm2 and 9.32N/cm2.
These results suggest that the moulding factors and their interactions have an important role in determining properties of the green sand. ANOVA was used to assess effect of various factors on different properties of the green sand. The results obtained suggest that compactability factor play a significant effect on permeability, the mixing time or bentonite factor has a significant effect on the compressive strength and mixing time or compactability factor has a significant impact on the tensile strength with a significance level lower than 5%. It is found that neither the mixing time nor the amount of bentonite used in the green sand mix has a significant impact on its permeability. Compactability of the green sand does not has a significant effect on the compressive strength. Bentonite used in green sand mix does not have a significant impact on its tensile strength.
Go to article

Bibliography

[1] Chate, M.G.R. Patel, M.G.C. Parappagoudar, M.B. & Deshpande, A.S. (2017). Modeling and optimization of Phenol Formaldehyde Resin sand mould system. Archives of Foundry Engineering. 17(2), 162-170. DOI: https://doi.org/10.1515/afe-2017-0069.
[2] Saikaew, C. & Wiengwiset, S. (2012).Optimization of molding sand composition for quality improvement of iron castings. Applied Clay Science. 67-68, 26-31. https://doi.org/10.1016/j.clay.2012.07.005.
[3] Beňo, J. Poręba, M. & Bajer, T. (2021). Application of non-silica sands for high quality castings. Archives of Metallurgy and Materials. 66(1), 25-30. DOI: 10.24425/amm.2021.134754.
[4] Abdulamer, D. & Kadauw, A. (2019). Development of mathematical relationships for calculating material-dependent flowability of green molding sand. Journal of Materials Engineering and Performance. 28(7), 3994-4001. https://doi.org/10.1007/s11665-019-04089-w.
[5] Rundman, K.B. (2000). Metal casting. Department of Material Science and Engineering Michigan Technology University.
[6] Anwar, N., Sappinen, T., Jalava, K., & Orkas, J, (2021). Comparative experimental study of sand and binder for flowability and casting mold quality. Advanced Powder Technology. 32(6), 1902-1910, https://doi.org/10.1016/j.apt.2021.03.040.
[7] Ihom, A.P., Olubajo, O.O. (2002). Investigation of bende ameki clay foundry properties and its suitability as a binder for sand casting, NMS proceedings 19th AGM.
[8] Ihom, A.P. Yaro, S.A. & Aigbodion, V.S. (2006). Application of multiple regression - model to the study of foundry clay bonded sand mixtures. JICCOTECH. 2, 161-168.
[9] Abdulamer, D. (2021). Investigation of flowability of the green sand mould by remote control of portable flowability sensor. Archives of Materials Science and Engineering. 112(2), 70-76, DOI: https://doi.org/10.5604/01.3001.0015.6289.
[10] Abdulamer, D. & Kadauw, A. (2021). Simulation of the moulding process of bentonite-bonded green sand, Archives of Foundry Engineering. 21(1), 67-73. DOI 10.24425/afe.2021.136080.
[11] Jain, R.K. (2009). Production Technology. Delhi: Khana Publishers.
[12] Ihom, A.P. (2012). Foundry Raw Materials for Sand Casting and Testing Procedures. Nigeria: A2P2 Transcendent Publishers.
[13] Ihom, A.P., Agunsoye, J., Anbua, E.E. & Bam, A. (2009). The use of statistical approach for modeling and studying the effect of ramming on the mould parameters of Yola natural sand. Nigerian Journal of Engineering. 16(1), 186-192.
[14] Kothari, C.R., Garg, G. (2014). Research Methodology: Methods and Techniques. New Delhi: New Age International (P) Ltd., Publishers.
[15] Fatoba, O.S., Adesina, O.S., Farotade, G.A. & Adediran, A.A. (2017). Modelling and optimization of laser alloyed AISI 422 stainless steel using taguchi approach and response surface model (RSM). Current Journal of Applied Science and Technology, 23(3), 1-19. DOI: 10.9734/CJAST/2017/24512.
[16] Abdulamer, D. (2023). Impact of the different moulding parameters on properties of the green sand mould. Archives of Foundry Engineering. 23(2), 5-9. DOI: 10.24425/afe.2023.144288

Go to article

Authors and Affiliations

Dheya Abdulamer
1
ORCID: ORCID

  1. University of Technology, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Convection caused by gravity and forced flow are present during casting. The effect of forced convection generated by a rotating magnetic field on the microstructure and precipitating phases in eutectic and hypoeutectic AlSiMn alloys was studied in solidification by a low cooling rate and low temperature gradient. The chemical composition of alloys was selected to allow joint growth or independent growth of occurring α-Al, α-Al15Si2Mn4 phases and Al-Si eutectics. Electromagnetic stirring caused instead of equiaxed dendrites mainly rosettes, changed the AlSi eutectic spacing, decreased the specific surface Sv and increased secondary dendrite arm spacing λ2 of α-Al, and modified the solidification time. Forced flow caused complex modification of pre-eutectic and inter-eutectic Mn-phases (Al15Si2Mn4) depending on the alloy composition. By high Mn content, in eutectic and hypoeutectic alloys, stirring caused reduction in the number density and a decrease in the overall dimension of pre-eutectic Mn-phases. Also across cylindrical sample, specific location of occurring phases by stirring was observed. No separation effect of Mn-phases by melt flow was observed. The study provided an understanding of the forced convection effect on individual precipitates and gave insight of what modifications can occur in the microstructure of castings made of technical alloys with complex composition.
Go to article

Bibliography

[1] Mondolfo, L.F. (1976). Aluminium alloys: structure and properties. Butterworths & Co.: London, UK.
[2] Glazoff, M.V., Zolotorevsky, V.S., Belov, N.A. (2007). Casting aluminum alloys. Elsevier Science Pub Co.: Amsterdam, The Netherlands. ISBN-10:0080453708, ISBN-13:978-0080453705. https://doi.org/10.1016/B978-0-08-045370-5.X5001-9.
[3] Mikolajczak P., Ratke L. (2014). Three dimensional morphology of mn rich intermetallics in AlSi alloys investigated with X-Ray tomography. Materials Science Forum - Solidification and Gravity SolGrav VI., Miskolc. 790-791, 335-340. https://doi.org/10.4028/ www.scientific.net/MSF.790-791.335
[4] Flemings, M. (1991). Behavior of metal alloys in the semisolid state. Metallurgical. Transaction. B. 22, 269-293. https://doi.org/10.1007/BF02651227.
[5] Modigell, M., Pola, A. & Tocci, M. (2018). Rheological characterization of semi-solid metals: a review. Metals. 8(4), 245, 1-23. https://doi.org/10.3390/met8040245.
[6] Nafisi, S., Ghomashchi, R. (2016). Semi-Solid Processing of Aluminum Alloys. Springer: Berlin, Germany. ISBN: 978-3-319-40333-5, DOI: 10.1007/978-3-319-40335-9.
[7] Beil, W.L., Brollo, G.L. & Zoqui, E.J. (2021). A continuous casting device with electromagnetic stirring for production of ssm feedstock using Al-Si alloys. Materials Research. 24(3). https://doi.org/10.1590/1980-5373-MR-2020-0584.
[8] Pacheco, M.G. (2017). Electromagnetic processing of molten light alloys reinforced by micro/nanoparticles. Ph.D. Thesis, Universite Grenoble Alpes UGA, Grenoble, France, 13 March.
[9] Lazaro-Nebreda, J., Patel, J.B. & Fan, Z. (2021). Improved degassing efficiency and mechanical properties of A356 aluminum alloy castings by high shear melt conditioning (HSMC) technology. Journal of Materials Processing Technology. 294, 117146, 1-12. https://doi.org/10.1016/j.jmatprotec.2021.117146.
[10] Li, M., Murakami, Y., Matsui, I., Omura, N. & Tada, S. (2018). Imposition time dependent microstructure formation in 7150 aluminum alloy solidified by an electromagnetic stirring technique. Materials Transactions. 59(10), 1603-1609. https://doi.org/10.2320/matertrans.M2017357.
[11] Jin, C.K. (2018). Microstructure of semi-solid billets produced by electromagnetic stirring and behavior of primary particles during the indirect forming process. Metals. 8(4), 271, 1-15. https://doi.org/10.3390/met8040271.
[12] Mikolajczak, P., Janiszewski, J., Jackowski, J. (2019). Construction of the facility for aluminium alloys electromagnetic stirring during casting. In Gapiński B., Szostak M., Ivanov V. (Eds.). Advances in manufacturing II. Vol. 4. Mechanical Engineering (pp. 164-175). Cham, Switzerland, Springer. https://doi.org/10.1007/978-3-030-16943-5_15.
[13] Mikolajczak, P. (2023). Distribution and morphology of α-Al, Si and Fe-Rich phases in Al–Si–Fe alloys under an electromagnetic field. Materials. 16(9), 3304, 1-31. https://doi.org/10.3390/ma16093304.
[14] Mikolajczak, P. (2017). Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. Metals. 7(3), 89, 1-16. https://doi.org/10.3390/met7030089.
[15] Mikolajczak, P. (2021). Effect of rotating magnetic field on microstructure in AlCuSi alloys. Metals. 11(11), 1804, 1-23. https://doi.org/10.3390/met11111804.
[16] Mikolajczak, P., Genau, A. & Ratke, L. (2017). mushy zone morphology calculation with application of CALPHAD technique. Metals. 7(9), 363, 1-19. https://doi.org/10.3390/met7090363.
[17] Mikolajczak, P., Genau, A., Janiszewski, J. & Ratke, L. (2017). Thermo-Calc prediction of mushy zone in AlSiFeMn alloys. Metals. 7(11), 506, 1-21. https://doi.org/10.3390/met7110506.
[18] Belov, N.A., Aksenov, A.A., Eskin, D.G. (2002). iron in aluminium alloys—impurity and alloying element. 1st ed., Taylor and Francis Group: London, UK,. https://doi.org/10.1201/9781482265019.
[19] Shabestari, S.G. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys. Materials Science and Engineering: A. 383, 289-298. https://doi.org/10.1016/j.msea.2004.06.022.
[20] Thermo-Calc 4.1—Software package from Thermo-Calc Software AB. Stockholm. Sweden. Retrieved 5 May 2023 from: www.thermocalc.se.
[21] Das, A., Ji, S. & Fan, Z. (2002). Morphological development of solidification structures under forced fluid flow: A Monte Carlo simulation. Acta Materialia. 50(18), 4571-4585. https://doi.org/10.1016/S1359-6454(02)00305-1.
[22] Li, T., Lin, X. & Huang, W. (2006). Morphological evolution during solidification under stirring. Acta Materialia. 54(18), 4815-4824. https://doi.org/10.1016/j.actamat.2006.06.013.
[23] Martinez. R.A. & Flemings, M.C. (2005). Evolution of particle morphology in semisolid processing. Metallurgical and Materials Transactins A. 36, 2205-2210. https://doi.org/10.1007/s11661-005-0339-1.
[24] Niroumand, B. & Xia, K. (2000). 3D study of the structure of primary crystals in a rheocast Al-Cu alloy. Materials Science and Engineering: A. 283(1-2), 70-75.
[25] Mendoza, R., Alkemper, J., Voorhees, P. (2003). The morphological evolution of dendritic microstructures during coarsening. Metallurgical and Materials Transactions A. 34, 481-489. https://doi.org/10.1007/s11661-003-0084-2.
[26] Kurz, W.D. Fisher, (1992). Fundamentals of Solidification. Trans Tech Public: Bäch, Switzerland, 85-90.
[27] Dantzig, J.A., Rappaz, M. (2009). Solidification. EPFL Press: Lausanne, Switzerland. ISBN 9780849382383.
[28] Stefanescu, D. (2009). Science and Engineering of Casting and Solidification. Springer: Boston, MA, USA. ISBN 978-0-387-74609-8. https://doi.org/10.1007/b135947.
[29] Wang, C.Y. & Beckermann, C. (1996). Equiaxed dendritic solidification with convection: Part II. numerical simulations for an Al-4 Wt Pct Cu Alloy. Metallurgical and Materials Transactions A. 27A, 2765-2783. https://doi.org/10.1007/BF02652370.
[30] Kattamis, T.Z., Flemings, M.C. (1965). Dendrite morphology. Microsegregation and Homogenization of low alloy steel. Transactions of the Metallurgical Society of AIME. 233(5), 992-999.
[31] Rappaz, M. & Boettinger, W. (1999). On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Materialia. 47(11), 3205-3219. https://doi.org/10.1016/S1359-6454(99)00188-3.
[32] Bouchard, D. & Kirkaldy, J.S. (1997). Prediction of dendrite arm spacing in unsteady- and steady-state heat flow. Metallurgical and Materials Transactions B. 28, 651-663. https://doi.org/10.1007/s11663-997-0039-x.
[33] Mortensen, A. (1991). On the rate of dendrite arm coarsening. Metallurgical Transactions A. 22, 569-574. https://doi.org/10.1007/BF02656824.
[34] Voorhees, P.W. & Glicksman, M.E. (1984). Ostwald ripening during liquid phase sintering—Effect of volume fraction on coarsening kinetics. Metallurgical Transactions A. 15, 1081-1088. https://doi.org/10.1007/BF02644701.
[35] Ferreira, A.F., Castro, J.A., Ferreira, L.O. (2017). Predicting secondary-dendrite arm spacing of the Al-4.5wt%Cu alloy during unidirectional solidification. Materials Research. 20(1), 68-75. https://doi.org/10.1590/1980-5373-MR-2015-0150.
[36] Mullis, A.M. (2003). The effects of fluid flow on the secondary arm coarsening during dendritic solidification. Journal of Materials Science. 38, 2517-2523. https://doi.org/10.1023/A:1023977723475.
[37] Steinbach, S. & Ratke, L. (2007). The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metallurgical and Materials Transactions A. 38, 1388-1394. https://doi.org/10.1007/s11661-007-9162-1.
[38] Ratke, L. & Thieringer, W.K. (1985). The influence of particle motion on ostwald ripening in liquids. Acta Matallurgica. 33, 1793-1802. https://doi.org/10.1016/0001-6160(85)90003-3.
[39] Kasperovich, G., Genau, A., Ratke, L. (2011). Mushy zone coarsening in an AlCu30 alloy accelerated by a rotating magnetic field. Metallurgical and Materials Transactions A. 42, 1657-1666. https://doi.org/10.1007/s11661-010-0542-6.
[40] Diepers, H.J., Beckerman, C. & Steinbach, I. (1999). Simulation of convection and ripening in a binary alloy mush using the phase field method. Acta Materialia. 47(13), 3663-3678. https://doi.org/10.1016/S1359-6454(99)00239-6.
[41] Marsh, S.P. & Glicksman, M.E. (1996). Overview of geometric effects on coarsening of mushy zones. Metallurgical and Materials Transactions A. 27, 557-567. https://doi.org/10.1007/BF02648946.
[42] Loué, W.R. & Suéry, M. (1995). Microstructural evolution during partial remelting of AlSi7Mg alloys. Materials Science and Engineering: A. 203(1-2), 1-13. https://doi.org/10.1016/0921-5093(95)09861-5.
[43] Jackson, K.A. & Hunt, J.D. (1966). Lamellar and rod eutectic growth. Transactions of the Metallurgical Society of AIME. 236, 1129-1142.
[44] Sous, S. (2000). Instationäre Erstarrung Eutektischer Al-Si Legierungen. Ph.D. Thesis, RWTH, Aachen, Germany,
[45] Ren Z. & Junze J. (1992). Formation of a separated eutectic in Al-Si eutectic alloy. Journal of Materials Science. 27, 4663-4666. https://doi.org/10.1007/BF01166003.
[46] Mikolajczak, P. & Ratke, L. (2015). Thermodynamic assessment of mushy zone in directional solidification. Archives of foundry Engineering. 15(4), 101-109. DOI: 10.1515/afe-2015-0088.
[47] Fang, X., Shao, G., Liu, Y.Q. & Fan, Z. (2007). Effects of intensive forced melt convection on the mechanical properties of Fe containing Al-Si based alloys. Material Science and Engineering: A. 445-446, 65-72. https://doi.org/10.1016/j.msea.2006.09.038.
[48] Nafisi, S., Emad, D., Shehata, T. & Ghomashchi, R. (2006). Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy. Materials Science and Engineering A. 432(1-2), 71-83. https://doi.org/10.1016/j.msea.2006.05.076.
[49] Steinbach, S., Euskirchen, N., Witusiewicz, V., Sturz, L. & Ratke, L. (2007). Fluid flow effects on intermetallic phases in Al-cast alloys. Transactions of Indian Institute of Metals. 60(2), 137-141.
[50] Mikolajczak, P. & Ratke, L. (2013). Effect of stirring induced by rotating magnetic field on β-Al5FeSi intermetallic phases during directional solidification in AlSi alloys. International Journal of Cast Metals Research. 26, 339-353. https://doi.org/10.1179/1743133613Y.0000000069. [51] Mikolajczak, P. & Ratke, L. (2011). Intermetallic phases and microstructure in AlSi alloys influenced by fluid flow. Supplemental Proceedings: General Paper Selections. 3, 825- 832. DOI: 10.1002/9781118062173.ch104 .

Go to article

Authors and Affiliations

P. Mikolajczak
1
ORCID: ORCID

  1. Poznan University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The current trend in the preparation of green sand mixtures emphasizes the acceleration of the mixing process while maintaining the quality of the mixture. This requirement results in the necessity of determining the optimal conditions for mixing the mixture with a given mixer. This work aims to determine the optimal mixing conditions for the newly introduced eddy mixer LM-3e from the company Multiserw-Morek in the sand laboratory at the Department of Metallurgical Technologies, Faculty of Materials and Technology, VŠB - Technical University of Ostrava. The main monitored properties of mixtures will be green compressive strength and moisture of the mixture. The measured properties of the mixture mixed on the eddy mixer will be compared with the properties of the mixture mixed on the existing LM-2e wheel mixer. The result of the experiment confirmed that the eddy mixer is suitable for the preparation of a mixture of the same quality as the wheel mixer but with a significantly reduced mixing time.
Go to article

Bibliography

[1] Pastierovičová, L., Kuchariková, L., Tillová, E., Chalupová, M. & Pastirčák, R. (2022). Quality of automotive sand casting with different wall thickness from progressive secondary alloy. Production Engineering Archives. 28(2), 172-177. https://doi.org/10.30657/pea.2022.28.20.
[2] Kamińska, J., Stachowicz, M., Puzio, S. et al. (2023). Studies of mechanical and technological parameters and evaluation of the role of lustrous carbon carriers in green moulding sands with hybrid bentonite. Archivives of Civil and Mechanical Engineering. 23, 11, 1-19. https://doi.org/10.1007/s43452-022-00550-1.
[3] Radkovský, F., Gawronová, M., Merta, V., Lichý, P., Kroupová, I., Nguyenová, I., Kielar, Š., Folta, M., Bradáč, J., Kocich, R. (2022). Effect of the composition of hybrid sands on the change in thermal expansion. Materials. 15(17), 6180, 1-15. https://doi.org/10.3390/ma15176180.
[4] Troy, E. C. et al. (1971). A mulling index applied to sand-water-bentonite. AFS Transactions. 79, 213-224.
[5] Gawronová, M., Kielar, Š. & Lichý, P. (2022). Mulling and its effect on the properties of sand-water-bentonite moulding mixture. Archives of Foundry Engineering. 22(3), 107-112. DOI: 10.24425/afe.2022.140243.
[6] Multiserw-Morek. Catalogue of moulding and core mass testing equipment. Propagation catalogue. Retrieved January 20, 2023, from http://multiserw-morek.pl/!data/attachments/odlewnictwo_pl_a4_24str.pdf. (in Polish).
[7] Silica sand Biała Góra. Sand Team. Technical sheet. Holubice. Retrieved January 20, 2023 from: https://www.sandteam.cz/wp-content/uploads/2022/09/Biala_Gora_v6.pdf (in Czech).
[8] Keramost. Activated bentonite. Product Safety data sheet. Retrieved January 20, 2023 from: https://www.keramost.cz/dokumenty/sds-bentonite-activated-en.pdf.

Go to article

Authors and Affiliations

Š. Kielar
1
M. Bašistová
1
ORCID: ORCID
P. Lichy
1
ORCID: ORCID

  1. VSB - Technical University of Ostrava Faculty of Materials Science and Technology, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research conducted in the field of crystallization and microstructure of duplex alloy cast steel GX2CrNiMoCuN 25-6-3-3 grade. The material for research was the above-mentioned cast steel with a chemical composition compliant with the relevant PN-EN 10283 standard, but melted at the lowest standard allowable concentration of alloying additives (some in short supply and expensive), i.e. Cr, Ni, Mn, Mo, Cu and N. The analysis of the crystallization process was performed based on the DTA (Derivative Thermal Analysis) method for a stepped casting with a thickness of individual steps of 10, 20, 40 and 60 mm. The influence of wall thickness was also taken into account in the cast steel microstructure testing, both in the as-cast state and after solution heat treatment. The phase composition of the cast steel microstructure was determined by using an optical microscope and X-ray phase analysis. The analysis of test results shows that the crystallization of tested cast steel uses the ferritic mechanism, while austenite is formed as a result of solid state transformation. The cast steel under analysis in the as-cast state tends to precipitate the undesirable σ-type Fe-Cr intermetallic phase in the microstructure, regardless of its wall thickness. However, the casting wall thickness in the as-cast state affects the austenite grain size, i.e. the thicker the casting wall, the wider the γ phase grains. The above-mentioned defects of the tested duplex alloy cast steel microstructure can be effectively eliminated by subjecting it to heat treatment of type hyperquenching.
Go to article

Bibliography

[1] Chojecki, A., Telejko, I. (2003). The foundry engineering of cast steel. Kraków: Akapit. (in Polish).
[2] Perzyk, M., Waszkiewicz, S., Kaczorowski, M., Jopkiewicz, A. (2004). Foundry engineering. Warszawa: WNT. (in Polish).
[3] Gunn, R. (1997). Duplex stainless steels - microstructure, properties and applications. Cambridge: Woodhead Publishing.
[4] Stradomski, G. (2016). Influence of the sigma phase morphology on shaping the properties of steel and duplex cast steel. Częstochowa: Publishers of Czestochowa University of Technology. (in Polish).
[5] Voronenko, B. (1997). Austenitic-ferritic stainless steels: A state-of-the-art review. Metal Science and Heat Treatment. 39(10), 428-437. https://doi.org/10.1007/BF02484228.
[6] Kalandyk, B. (2011). Characteristics of microstructure and properties of castings made from ferritic-austenitic steel. Katowice – Gliwice: AFE. (in Polish).
[7] Stradomski, G. (2017). The analysis of AISI A3 type ferritic-austenitic cast steel crystallization mechanism. Archives of Foundry Engineering. 17(3), 229-233. https://doi.org/10.1515/afe-2017-0120.
[8] Šenberger, J., Pernica, V., Kaňa, V. & Záděra, A. (2018). Prediction of ferrite content in austenitic Cr-Ni steel castings during production. Archives of Foundry Engineering. 18(3), 91-94. https://doi.org/10.24425/123608.
[9] Kaňa, V., Pernica, V., Záděra, A. & Krutiš, V. (2019). Comparison of methods for determining the ferrite content in duplex cast steels. Archives of Foundry Engineering. 19(2), 85-90. https://doi.org/10.24425/afe.2019.127121.
[10] Yamamoto, R., Yakuwa, H., Miyasaka, M. & Hara, N. (2019). Effects of the α/γ-phase ratio on the corrosion behavior of cast duplex stainless steel. Corrosion. 76(9), 815-825. https://doi.org/10.5006/3464.
[11] Jurczyk, P., Wróbel, T. & Baron, C. (2021). The influence of hyperquenching temperature on microstructure and mechanical properties of alloy cast steel GX2CrNiMoCuN 25-6-3-3. Archives of Metallurgy and Materials. 66(1), 73-80. https://doi.org/10.24425/amm.2021.134761.
[12] Kalandyk, B., Zapała, R. & Pałka, P. (2022). Effect of isothermal holding at 750 °C and 900 °C on microstructure and properties of cast duplex stainless steel containing 24% Cr-5% Ni-2.5% Mo-2.5% Cu. Materials. 15(23), 1-17. https://doi.org/10.3390/ma15238569.
[13] Wróbel, T., Jurczyk, P., Baron, C. & Jezierski, J. (2023). Search for the optimal soaking temperature for hyperquenching of the GX2CrNiMoCuN 25-6-3-3 duplex cast steel. International Journal of Metalcasting. https://doi.org/10.1007/s40962-023-01020-x. (in print).
[14] Głownia, J. & Banaś, J. (1997). Effect of modification and segregation on the delta-ferrite morphology and corrosion resistance of cast duplex steel. Metallurgy and Foundry Engineering. 23(2), 261-267.

Go to article

Authors and Affiliations

T. Wróbel
1
ORCID: ORCID
P. Jurczyk
1
ORCID: ORCID
C. Baron
1
ORCID: ORCID
P. Nuckowski
2
ORCID: ORCID

  1. Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland
  2. Silesian University of Technology, Materials Research Laboratory, Konarskiego 18a, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper analyses the possibility of applying thermal barrier coatings (TBCs) onto a substrate made of the AlSi7Mg alloy, intended for, among other things, internal combustion engine components. Engine components made of aluminum-silicon alloys, especially pistons and valve heads, are exposed to high temperature, pressure and thermal shock resulting from the combustion of the fuel-air mixture. These factors cause degradation of these components and can lead to damage. To minimize the risk of damage to engine components caused by heat stress, one way is to apply TBCs. Applying TBCs coatings to engine components improves their durability, increases power output and reduces fuel consumption. The research scope includes the application of an Al2O3-TiO3 coating via the APS (Air Plasma Spraying or Atmospheric Plasma Spraying) method onto a substrate of the AlSi7Mg alloy, analysis of the microstructure and chemical composition of the substrate and coating material, and assessment of the quality of the coating's bond with the AlSi7Mg alloy substrate using the scratch test method.
Go to article

Bibliography

[1] Chen, C., Sun, C., Wang, W., Qi, M., Han, W., Li, Y., Liu, X., Yang, F., Gou, L. & Guo, Z. (2022). Microstructure and mechanical properties of in-situ TiB2/AlSi7Mg composite via powder metallurgy and hot extrusion. Journal of Materials Research and Technology. 19, 1282-1292. https://doi.org/10.1016/j.jmrt.2022.05.117.
[2] Rambabu, P., Eswara Prasad, N., Kutumbarao, V.V., Wanhill, R.J.H. (2017). Aluminium Alloys for Aerospace Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_2.
[3] Sonsino, C.M. & Franz, R. (2017). Multiaxial fatigue assessment for automotive safety components of cast aluminium EN AC-42000 T6 (G-AlSi7Mg0. 3 T6) under constant and variable amplitude loading. International Journal of Fatigue. 100(2), 489-501. https://doi.org/10.1016/j.ijfatigue.2016.10.027.
[4] Dolata, A.J., Dyzia, M., Jaworska, L. & Putyra, P. (2016). Cast hybrid composites designated for air compressor pistons. Archives of Metallurgy and Materials. 61(2A), 705-708. http://dx.doi.org/10.1515%2Famm-2016-0120.
[5] Siadkowska, K. & Czyż, Z. (2019). Selecting a material for an aircraft diesel engine block. Combustion Engines. 58(3), 4-8. DOI: http://dx.doi.org/10.19206/CE-2019-301.
[6] Floweday, G., Petrov, S., Tait, R.B. & Press, J. (2011). Thermo-mechanical fatigue damage and failure of modern high performance diesel pistons. Engineering Failure Analysis. 18(7), 1664-1674. https://doi.org/10.1016/j.engfailanal.2011.02.002.
[7] Azadi, M., Mafi, A., Roozban, M. & Moghaddam, F. (2012). Failure analysis of a cracked gasoline engine cylinder head. Journal of Failure Analysis and Prevention. 12, 286-294. https://doi.org/10.1007/s11668-012-9560-6.
[8] Krstic, B., Rasuo, B., Trifkovic, D., Radisavljevic, I., Rajic, Z. & Dinulovic, M. (2013). Failure analysis of an aircraft engine cylinder head. Engineering Failure Analysis. 32, 1-15. https://doi.org/10.1016/j.engfailanal.2013.03.004.
[9] Jing, G.X., Zhang, M.X., Qu, S., Pang, J.C., Fu, C.M., Dong, C., Li, S. X., Xu, C.G. & Zhang, Z.F. (2018). Investigation into diesel engine cylinder head failure. Engineering Failure Analysis. 90, 36-46. https://doi.org/10.1016/j.engfailanal.2018.03.008.
[10] Sharma, P., Dwivedi, V.K. & Kumar, D. (2021). A review on thermal barrier coatings (TBC) usage and effect on internal combustion engine. Advances in Fluid and Thermal Engineering: Select Proceedings of FLAME 2020, 77-85. https://doi.org/10.1007/978-981-16-0159-0_8.
[11] Dhomne, S. & Mahalle, A.M. (2019). Thermal barrier coating materials for SI engine. Journal of materials research and technology. 8(1), 1532-1537. https://doi.org/10.1016 /j.jmrt.2018.08.002.
[12] Gürbüz, H. (2022). Experimental investigation of the effects of ethanol‐diesel mixture on the performance and emissions of the thermal barrier coated diesel engine. Environmental Progress & Sustainable Energy. 41(1), e13718. https://doi.org/10.1002/ep.13718.

Go to article

Authors and Affiliations

Marek Mróz
ORCID: ORCID
Patryk Rąb
ORCID: ORCID

Download PDF Download RIS Download Bibtex

Abstract

The studied silicon bronze (CuSi3Zn3Mn1) is characterised by good strength and corrosion resistance due to the alloying elements that are present in it (Si, Zn, Mn, Fe). This study analysed the casting process in green sand moulding, gravity die casting, and centrifugal casting with a horizontal axis of rotation. The influences of Ni and Zr alloying additives as well as the casting technology that was used were evaluated on the alloy’s microstructure and mechanical properties. The results of the conducted research are presented in the form of the influence of the technology (GS, GZ, GM) and the content of the introduced alloy additives on the mechanical parameters (UTS, A10, and Proof Stress, BHN).
The analysis of the tests that were carried out made it possible to determine which of the studied casting technologies had the best mechanical properties. Microstructure of metal poured into metal mould was finer than that which was cast into moulding compound. Mechanical properties of castings made in moulding compound were lower than those that were cast into metal moulds. Increased nickel content affected the BHN parameter.
Go to article

Bibliography

[1] Nnakwo, K. C., Mbah, C. N. & Nnuka, E. E. (2019). Influence of trace additions of titanium on grain characteristics, conductivity and mechanical properties of copper-silicon-titanium alloys. Heliyon. 5(10), e02471, 1-7. DOI: 10.1016/j.heliyon.2019.e02471.
[2] Rzadkosz, S., Kranc, M., Garbacz-Klempka, A., Kozana, J. & Piękoś, M. (2015). Refining processes in the copper casting technology. Metalurgija. 54(1), 259-262.
[3] Wesołowski, K. (1966). Metaloznawstwo. tom III. Warszawa: Państwowe Wydawnictwo Techniczne.
[4] Prowans, S. (1988). Metaloznawstwo. Warszawa: Państwowe Wydawnictwo Naukowe.
[5] Goto, I.; Aso, S., Ohguchi, Ki., Kurosawa, K., Suzuki, H., Hayashi, H. & Shionoya, J. (2019). Deformation behavior of pure copper castings with as-cast surfaces for electrical parts. Journal of Materials Engineering and Performance. 28, 3835-3843. DOI: 10.1007/s11665-019-3865-5.
[6] Bydałek, A.W. & Najman, K. (2006). The reduction melting conduction of Cu-Si slloys. Archives of Foundry. 6(22), 107-110. (in Polish).
[7] Davis, J.R. (Ed.) (2001). Copper and copper alloys. ASM International.
[8] Rowley, M. T. (1984). Casting copper-base alloys. Illinois: American Foundrymen´s Society.
[9] Rzadkosz, S. (2013). Foundry of copper and copper alloys. Kraków: Akapit. (in Polish).
[10] Garbacz-Klempka, A., Kozana, J., Piękoś, M., Papaj, P., Papaj, M. & Perek-Nowak, M. (2018). Influence of modification in centrifugal casting on microstructure and mechanical properties of silicon bronzes. Archives of Foundry Engineering. 3(18), 11-18. DOI: 10.24425/123594.
[11] Romankiewicz, R., Romankiewicz, F. (2016). Research into oxide inclusions in silicon bronze CuSi3Zn3MnFe with the use of X-ray microanalysis. Metallurgy and Foundry Engineering. 42(1), 41-46. DOI: 10.7494/mafe.2016.42.1.41
[12] Tokarski, M. (1985). Metaloznawstwo metali i stopów nieżelaznych w zarysie. Katowice: Wydawnictwo Śląsk.
[13] Kosowski, A. (1996) Metaloznawstwo stopów odlewniczych. Kraków: Wydawnictwo AGH.
[14] Nnakwo, K. C., Osakwe, F. O., Ugwuanyi, B.C., Oghenekowho, P. A., Okeke, I.U. & Maduka, E. A. (2021) Grain characteristics, electrical conductivity, and hardness of Zn-doped Cu–3Si alloys system. SN Applied Sciences. 3(11), 829, 1-10. DOI: 10.1007/s42452-021-04784-1. [15] Adamski, Cz. (1953). Casting bronzes and silicon brasses - technology and application. Warszawa: Państwowe Wydawnictwo Techniczne. (in Polish).
[16] Guharaja, S., Noorul Haq, A. & Karuppannan, K. M. (2006). Optimization of green sand casting process parameters by using Taguchi’s method. The International Journal of Advanced Manufacturing Technology. 30, 1040-1048. DOI: 10.1007/s00170-005-0146-2.
[17] Hirigo, T.H. & Singh, B. (2019). Design and analysis of sand casting process of mill roller. The International Journal of Advanced Manufacturing Technology. 105, 2183-2214. DOI: 10.1007/s00170-019-04270-4.
[18] Sadarang, J., Nayak, R.K. & Panigrahi, I. (2021). Challenges and Future Prospective of Alternative Materials to Silica Sand for Green Sand Mould Casting: A Review. Transactions of the Indian Institute of Metals. 74, 2939-2952. DOI: 10.1007/s12666-021-02370-y.
[19] Shamasundar, S. & Gopalakrishna V. (2004). Gravity die casting. process die design and process optimisation. esi-group, retrieved July 3, 2023 from https://www.esi-group.com/resources/gravity-die-casting-process-die-design-and-process-optimisation.
[20] Halvaee, A. & Talebi, A. (2001). Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy. Journal of Materials Processing Technology. 118(1-3), 122-126. DOI: 10.1016/S0924-0136(01)00904-9.
[21] Malhotra, V. & Kumar Y. (2016). Study of process parameters of gravity die casting defects. International Journal of Mechanical Engineering and Technology (IJMET). 7(2), March-April, 208-211.
[22] Balout, B. & Litwin, J. (2012). Mathematical modeling of particle segregation during centrifugal casting of metal matrix composites. Journal of Materials Engineering and Performance. 21, 450.462. DOI: 10.1007/s11665-011-9873-8.
[23] Wang, X., Chen, R., Wang, Q., Wang, S., Li, Y., Su, Y., Xia, Y., Zhou, G., Li, G. & Qu, Y. (2022). Influence of casting temperature and mold preheating temperature on centrifugal casting by numerical simulation. Journal of Materials Engineering and Performance. 32(15), 6786-3809. https://doi.org/10.1007/s11665-022-07608-4.
[24] Predein, V. V., Zhilin, S. G. & Komarov, O. N. (2022). Promising methods for forming the structure and properties of metal obtained by crystallization under the action of centrifugal forces. Metallurgist. 65(11-12), 1311-1323. https://doi.org/10.1007/s11015-022-01277-3.
[25] Sen, S., Muralidhara B. K., & Mukunda, P. G. (2020). Study of flow behaviour in vertical centrifugal casting. Materials Today: Proceedings. 24(2), 1392-1399. DOI: 10.1016/ j.matpr.2020.04.457.
[26] Keerthi Prasad, K.S., Murali, M.S. & Mukunda, P.G. (2010). Analysis of fluid flow in centrifugal casting. Frontiers of Materials Science in China. 4, 103-110. DOI: 10.1007/s11706-010-0005-4.
[27] Wang, X., Chen, R., Wang, Q., Wang S., Li, Y., Xia, Y., Zhou, G., Li, G. & Qu, Y. (2023). Influence of rotation speed and filling time on centrifugal casting through numerical simulation. International Journal of Metalcasting. 17(2), 1326-1339. DOI: 10.1007/s40962-022-00841-6. [28] Wołczyński, W., Ivanova, A. A. & Kwapisiński, P. (2019). On consonance between a mathematical method for the CET prediction and constrained / unconstrained solidification. Procedia Manufacturing. 30, 459-466. DOI: 10.1016/j.promfg.2019.02.065.
[29] Kwapisiński, P. & Wołczyński, W. (2023). Control of the CET localization in continuously cast copper and copper alloys’ ingots. Archives of Foundry Engineering. 23(2), 91-99. DOI: 10.24425/afe.2023.144303.
[30] Wołczyński, W., Lipnicki, Z., Bydałek, A.W. & Ivanova, A. (2016). Structural zones in large static ingot. forecasts for continuously cast brass ingot. Archives of Foundry Engineering. 16(3), 141-146. DOI: 10.1515/afe-2016-0067.

Go to article

Authors and Affiliations

D. Witasiak
1
A. Garbacz-Klempka
1
ORCID: ORCID
M. Papaj
P. Papaj
M. Piękoś
1
ORCID: ORCID
J. Kozana
1
ORCID: ORCID
M. Maj
1
M. Perek-Nowak
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an attempt to produce aluminum matrix composites reinforced with short carbon fibers by precision casting in a chamber with a pressure lower than atmospheric pressure. The composite casting process was preceded by tests related to the preparation of the reinforcement. This is related to the specificity of the precision casting process, in which the mold for shaping the castings is fired at a temperature of 720°C before pouring. Before the mold burns, the reinforcement must be inside, while the carbon fiber decomposes in the atmosphere at 396°C. In the experiment, the reinforcement in the form was secured with flake graphite and quartz sand. The performed firing procedure turned out to be effective. The obtained composite castings were evaluated in terms of the degree of alloy saturation and the displacement of carbon fibers. As a result of the conducted tests, it was found that as a result of unfavorable arrangement of fibers in the CF preform, the flow of metal may be blocked and porosity may appear in the casting.
Go to article

Bibliography

[1] Kumar, A., Lal, S. & Kumar, S. (2013). Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method. Journal of Materials Research and Technology. 2(3), 250 - 254. https://doi.org/10.1016/j.jmrt.2013.03.015.
[2] Kumar, A., Vichare., O., Debnath, K. & Paswan, M. (2021). Fabrication methods of metal matrix composites (MMCs). Materialstoday: Proceedings. 46(15), 6840-6846. https://doi.org/10.1016/j.matpr.2021.04.432.
[3] Zyska, A., Konopka, Z., & Łągiewka, M, (2020). Impact strength of squeeze casting AlSi13Cu2-CF composite. Archives of Foundry Engineering. 20(2), 49-52. DOI: 10.24425/afe.2020.131301.
[4] Previtali, B., Pocci, D. & Taccardo, C. (2008). Application of traditional investment casting process to aluminium matrix composites. Composites Part A: Applied Science and Manufacturing. 39(10), 1606-1617. https://doi.org/10.1016/j.compositesa.2008.07.001.
[5] Pazhani, A., Venkatraman, M., Xavior, A. Moganraj, M., Batako, A., Paulsamy, J., Jayaseelan, J., Anbalagan, A. & Bavan, S.J. (2023). Synthesis and characterisation of graphene-reinforced AA 2014 MMC using squeeze casting method for lightweight aerospace structural applications. Materials & Design. 230, 111990. https://doi.org/10.1016/j.matdes.2023.111990.
[6] Buchanan, E.K., Sgobba, S., Celuch D.M., Gomez, P.F., Onnela, A., Rose P., Postema, H., Pentella, M., Lacombe, G., Thomas, B., de Langlade, R. & Paquin, Y. (2023). Assessment of two advanced aluminium-based metal matrix composites for application to high energy physics detectors. Materials. 16(1), 268, 1-17. https://doi.org/10.3390/ ma16010268.
[7] Krishnan, R., Pandiaraj, S., Muthusamy, S., Panchal, H., Alsoufi, S.M., Ibrahim, M.M.A. & Elsheikh, A. (2022). Biodegradable magnesium metal matrix composites for biomedical implants: synthesis, mechanical performance, and corrosion behawior a review. Journal of Materials Research and Technology. 20, 650-670. https://doi.org/10.1016/j.jmrt.2022.06.178.
[8] Dmitruk, A., Żak, A., Naplocha, K., Dudziński, W. & Morgiel, J. (2018). Development of pore-free Ti-Al-C MAX/Al-Si MMC composite materials manufactured by squeeze casting infiltration. Materials Characterization. 146, 182-188. https://doi.org/10.1016/j.matchar.2018.10.005.
[9] Gawdzińska, K., Chybowski, L., Przetakiewicz, W. & Laskowski R. (2017). Application of FMEA in the quality estimation of metal matrix composite castings produced by squeeze infiltration. Archives of Metallurgy and Materials. 62(4), 2171-2182. DOI: 10.1515/amm-2017-0320.
[10] Mahaviradhan, N., Sivaganesan, S., Sravya, P.N. & Parthiban, A. (2021). Experimental investigation on mechanical properties of carbon fiber reinforced aluminum metal matrix composite. Materialstoday: Proceedings. 39(1), 743-747. https://doi.org/10.1016/j.matpr.2020.09.443.
[11] Szymański, M., Przestacki, D. & Szymański, P. (2022). Tool wear and surface roughness in turning of metal matrix composite built of Al2O3 sinter saturated by aluminum alloy in vacuum condition. Materials. 15(23), 8375, 1-17. https://doi.org/10.3390/ma15238375.
[12] Jian-jun Sha, Zhao-zhao Lu, Ru-yi Sha, Yu-fei Zu, Ji-xiang Dai, Yu-qiang Xian, Wei Zhang, Ding Cui, Cong-lin Yan. (2021). Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites bysqueeze melt infiltration technique. Transactions of Nonferrous Metals Society of China. 31(2), 317-330. https://doi.org/10.1016/S1003-6326(21)65498-5.
[13] Constantin, H., Harper, L., Kenned, R.A. (2018). Pressure-assisted infiltration of molten metals into non-rigid, porous carbon fibre structures. Journal of Materials Processing Technology. 255, 66-75. https://doi.org/10.1016/j.jmatprotec.2017.11.059.
[14] Shirvanimoghaddam, K., Hamim, U.S., Akbari, K.M., Fakhrhoseini, M.S., Khayyam, H., Pakseresht, H.A., Ghasali, W., Zabet, M., Munir, S.K., Jia, S., Davim, P.J. & Naebe, M. (2017). Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing. 92, 70-96. https://doi.org/10.1016/j.compositesa.2016.10.032.
[15] Piasecki, A., Paczos, P., Tuliński, M., Kotkowiak, M., Popławski, M., Jakubowicz, M., Boncel, S., Marek, A., Buchwald, T., Gapiński, B., Terzyk, P.A., Korczeniewski, E. & Wieczorowski, M. (2023). Microstructure, mechanical properties and tribological behavior of Cu-nano TiO2-MWCNTs composite sintered materials. Wear. 522, 204834-1-204834-16. https://doi.org/10.1016/j.wear.2023.204834.
[16] Ślosarczyk, A., Klapiszewska, I., Parus, A., Balicki, S., Kornaus, K., Gapiński, B., Wieczorowski, M., Wilk, A.K., Jesionowski, T., Klapiszewski, ł. (2023). Antimicrobial action and chemical and physical properties of CuO doped engineered cementitious composites. Scientific Reports. 13(1), 10404-1-10404-16. https://doi.org/10.1038/s41598-023-37673-1.
[17] Sika, R., Rogalewicz, M., Popielarski, P., Czarnecka, D., Gawdzińska, K., Przestacki, D. & Szymański, P. (2020). Decision Support System in the Field of Defects Assessment in the Metal Matrix Composites Castings. Materials. 13(16), 3552, 1-27. https://doi.org/10.3390/ma13163552.
[18] Ma, Y., Kang, Z., Lei, X., Chen, X., Gou, C., Kang, Z. & Wang, S. (2023). Coupling effect of critical properties shift and capillary pressure on confined fluids: A simulation study in tight reservoirs. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e15675.
[19] Anson, P.J., Drew, L.A.R. & Gruzleski, E.J. (1999). The surface tension of molten aluminum and Al-Si-Mg alloy under vacuum and hydrogen atmospheres. Metallurgical and Materials Transactions B. 30, 1027-1032. https://doi.org/10.1007/s11663-999-0108-4.
[20] Bainbridge, F.I. & Taylor, A.J. (2013). The surface tension of pure aluminum and aluminum alloys. Metallurgical and Materials Transactions A. 44, 3901-3909. https://doi.org/10.1007/s11661-013-1696-9.
[21] Molina, M.J., Voytovych, R., Louis, E. & Eustathopoulos, N. (2007). The surface tension of liquid aluminium in high vacuum: The role of surface condition. International Journal of Adhesion and Adhesives. 27(5), 394-401. https://doi.org/10.1016/j.ijadhadh.2006.09.006.
[22] Bao, S., Tang, K., Kvithyld, A., Engh, T. & Tangstad, M. (2012). Wetting of pure aluminium on graphite, SiC and Al2O3 in aluminium filtration. Transactions of Nonferrous Metals Society of China. 22(8), 1930-1938. https://doi.org/10.1016/S1003-6326(11)61410-6.

Go to article

Authors and Affiliations

P. Szymański
1
ORCID: ORCID

  1. Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

A comparative analysis of brasses alloys, namely lead-free CuZn (CB771) and lead containing CuZn (CB770), was conducted in this article. The results of the comparative analysis and experimental investigations aimed to provide comprehensive knowledge about the thermophysical properties and solidification characteristics of these alloys. Thermodynamic simulations using Thermo-Calc software and modifications in the chemical composition of the CB771 alloy were employed to approximate its characteristics to those of the lead containing CuZn alloy. Thermal-derivative analysis of the alloys and a technological trial were carried out to determine their solidification characteristics, fluidity, and reproducibility. The casting trials were conducted under identical conditions, and the results were compared for a comprehensive analysis. Additionally, a solidification process simulation was performed using MagmaSoft software to match the thermophysical properties. The aim of this research was to achieve maximum consistency between the simulation results and experimental investigations.
Go to article

Bibliography

[1] Zoghipour, N., Tascioglu, E., Celik, F. & Kaynak, Y. (2022) - The influence of edge radius and lead content on machining performance of brass alloys. Procedia CIRP. 112, 274-279. https://doi.org/10.1016/j.procir.2022.09.084 .
[2] Hansen, A. (2019). Bleifreier rotguss als armaturen-undinstallationswerkstoff in der trinkwasserinstallation. METALL Forschung. 73(11), 452-455.
[3] Stavroulakis, P., Toulfatzis, A., Pantazopoulos, G. & Paipetis, A. (2022). Machinable leaded and eco-friendly brass alloys for high performance manufacturing processes: a critical review. Metals. 12(2), 246, 1-31. https://doi.org/10.3390/met12020246.
[4] Schultheiss, F., Johansson, D., Bushlya, V., Zhou, J., Nilsson, K. & Ståhl, J-E. (2017). Comparative study on the machinability of lead-free brass. Journal of Cleaner Production. 149, 366-377. https://doi.org/10.1016/ j.jclepro.2017.02.098.
[5] Johansson, J., Alm, P., M’Saoubi, R., Malmberg, P., Ståhl, J-E. & Bushlya, V. (2022). On the function of lead (Pb) in machining brass alloys. Journal of Advanced Manufacturing Technology. 120, 7263-7275. https://doi.org/10.1007/s00170-022-09205-0.
[6] Acceptance of metallic materials used for products in contact with drinking water, 4MS Common Approach Part B “4MS Common Composition List” Retrieved July, 12, 2022 from http://www.umweltbundesamt.de/en/topics/water/drinking-water/distributing-drinking-water/guidelines-evaluation-criteria.
[7] Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption, Dz.U.L 435/1 of 23.12.2020.
[8] Podrzucki, C. (1991). Cast iron. STOP. (in Polish).
[9] Cholewa, M., Suchoń, J., Kondracki, M. & Jura, Z. (2009). Method of thermal derivative gradient analysis (TDGA). Archives of Foundry Engineering. 9(4), 241-245. ISSN (1897-3310).
[10] Bruna, M. & Sladek, A. (2011). Hydrogen analysis and effect of filtration on final quality of castings from aluminium alloy AlSi7Mg0,3. Archives of Foundry Engineering. 11(1), 5-10.
[11] Ignaszak, Z. (2007). Validation problems of virtual prototyping systems used in foundry for technology optimization of ductile iron castings. Advances in Integrated Design and Manufacturing in Mechanical Engineering II, Springer, 57-79. https://doi.org/10.1007/978-1-4020-6761-7_4.
[12] Fajkiel, A., Dudek, P., Walczak, W. & Zawadzki, P. (2007). Improvement of quality of a gravity die casting made from aluminum bronze be application of numerical simulation. Archives of Foundry Engineering. 7(2), 11-14. ISSN (1897-3310).
[13] Persson, P-E., Ignaszak, Z., Fransson, H., Kropotkin, V., Andersson, R. & Kump, A. (2019). increasing precision and yield in casting production by simulation of the solidification process based on realistic material data evaluated from thermal analysis (Using the ATAS MetStar System). Archives of Foundry Engineering. 19(1), 117-126. DOI: 10.24425/afe.2019.127104.
[14] Ignaszak, Z. & Wojciechowski, J. (2020). Analysis and validation of database in computer aided design of jewellery casting. Archives of Foundry Engineering. 20(1), 9-16. DOI: 10.24425/afe.2020.131275.

Go to article

Authors and Affiliations

Grzegorz Radzioch
1 2
Dariusz Bartocha
1
ORCID: ORCID
Marcin Kondracki
1
ORCID: ORCID

  1. Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Str. 44-100 Gliwice, Poland
  2. Joint Doctoral School, Silesian University of Technology, 2A Akademicka Str. 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The subject of the work are modern composite materials with increased wear resistance intended for elements of machines operating in difficult conditions in the construction and mining industries. The study determined the effect of zone reinforcement of GX120Mn13 cast steel with macroparticles (Al 2O 3+ZrO 2) on the corrosion resistance and abrasion wear of the composite thus obtained. SEM studies have shown that at interface between two phases, and more precisely on the surface of particles (Al 2O 3+ZrO 2) a durable diffusion layers are formed. During the corrosion tests, no significant differences were found between the obtained parameters defining the corrosion processes of GX120Mn13 cast steel and GX120Mn13 with particles (Al 2O 3+ZrO 2) composite. No intergranular corrosion was observed in the matrix of the composite material, nor traces of pitting corrosion at both phases interface. This is very important in terms of tested material’s service life. Reinforcement of cast steel with particles (Al 2O 3+ZrO 2) resulted in a very significant improvement in the abrasion resistance of the composite – by about 70%. After corrosion tests, both materials were subjected to further operational investigations. These examinations consisted in determining the impact of corrosion processes on the durability of the composite in terms of abrasion. The obtained results indicate that corrosion processes did not significantly deteriorate the wear resistance of both the cast steel and the composite.
Go to article

Bibliography

[1] Uetz, H. (1986). Abrasion and Erosion. Munich–Vienna: Carl Hanser Verlag Publ.
[2] Hebda, M., Wachal, A. (1980). Trybology. Warsaw: Scientific and Technical Publ (in Polish).
[3] Kalandyk, B., Zapała, R., Kasińska, J. & Madej, M. (2021). Evaluation of microstructure and tribological propertiesof GX120Mn13 and GX120MnCr18-2 cast steels. Archives of Foundry Engineering. 21(4), 67-76. DOI: 10.24425/afe.2021.138681.
[4] Marcus, P. (2017). Corrosion mechanisms in theory and practice. London–New York: CRC Press.
[5] Podrzucki, C. (1991). Cast iron. Structure, properties, application. vol. 2. Krakow: ZG STOP Publ (in Polish).
[6] Kaczmar, J., Janus, A., Samsonowicz, Z. (1998). Influence of technological parameters on the production of selected parts of machines reinforced with ceramic fibers. Report of Institute of Machine and Automation Technology, Wroclaw University of Science and Technology, Series SPR, 35 (in Polish). [7] Kurzawa, A., Kaczmar, J.W. & Janus, A. (2008). Selected mechanical properties of aluminum composite materials reinforced with SiC particles. Archives of Foundry Engineering. 8(2), 99-102.
[8] Kaczmar, J.W. & Kurzawa, A. (2012). The effect of α-alumina particles on the properties of EN AC-44200 Al alloy based composite materials. Journal of Achievements in Materials and Manufacturing Engineering. 55(1), 39-44.
[9] Jach, K., Pietrzak K., Wajler, A., Sidorowicz, A. & Brykała, U. (2013). Application of ceramic preforms to the manufacturing of ceramic – metal composites. Archives of Metallurgy and Materials, 58(4), 1425-1428. DOI: 10.2478/amm-2013-0188.
[10] Gawroński, J., Szajnar, J. & Wróbel, P. (2004). Study on theoretical bases of receiving composite alloy layers on surface of cast steel castings. Journal of Materials Processing Technology. 157, 679-682. DOI: 10.1016/j.jmatprotec.2004.07.153.
[11] Szajnar, J., Walasek, A., & Baron, C. (2013). Tribological and corrosive properties of the parts of machines with surface alloy layer. Archives of Metallurgy and Materials. 58(3), 931-936. DOI: 10.2478/amm-2013-0104.
[12] Hryniewicz, T., Rokosz, K. (2010). Theoretical basis and practical aspects of corrosion. Koszalin: Publ. House of Koszalin University of Technology (in Polish).
[13] Medyński, D. & Chęcmanowski, J. (2022). Corrosion resistance of L120G13 steel castings zone-Reinforced with Al2O3. Materials. 15(12), 4090, 1-14. https://doi.org/10.3390/ma15124090.
[14] Song, Y., Jiang, G., Chen, Y., Zhao, P. & Tian, Y. (2017). Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Scientific Reports. 7, 6865, 1-13. https://doi.org/10.1038/s41598-017-07245-1.

Go to article

Authors and Affiliations

Daniel Medyński
1
ORCID: ORCID

  1. Witelon Collegium State University, Poland

Instructions for authors

Submission


To submit the article, please use the Editorial System provided here:

https://www.editorialsystem.com/afe


Papers submitted in any other way will not be accepted.



The Journal does not have submission charges.


The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.


Bank account details:


Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748


Instructions for the preparation of an Archives of Foundry Engineering Paper

Publication Ethics Policy


Publication Ethics Policy

The standards of expected ethical behavior for all parties involved in publishing in the Archives of Foundry Engineering journal: the author, the journal editor and editorial board, the peer reviewers and the publisher are listed below.

All the articles submitted for publication in Archives of Foundry Engineering are peer reviewed for authenticity, ethical issues and usefulness as per Review Procedure document.

Duties of Editors
1. Monitoring the ethical standards: Editorial Board monitors the ethical standards of the submitted manuscripts and takes all possible measures against any publication malpractices.
2. Fair play: Submitted manuscripts are evaluated for their scientific content without regard to race, gender, sexual orientation, religious beliefs, citizenship, political ideology or any other issues that is a personal or human right.
3. Publication decisions: The Editor in Chief is responsible for deciding which of the submitted articles should or should not be published. The decision to accept or reject the article is based on its importance, originality, clarity, and its relevance to the scope of the journal and is made after the review process.
4. Confidentiality: The Editor in Chief and the members of the Editorial Board t ensure that all materials submitted to the journal remain confidential during the review process. They must not disclose any information about a submitted manuscript to anyone other than the parties involved in the publishing process i.e., authors, reviewers, potential reviewers, other editorial advisers, and the publisher.
5. Disclosure and conflict of interest: Unpublished materials disclosed in the submitted manuscript must not be used by the Editor and the Editorial Board in their own research without written consent of authors. Editors always precludes business needs from compromising intellectual and ethical standards.
6. Maintain the integrity of the academic record: The editors will guard the integrity of the published academic record by issuing corrections and retractions when needed and pursuing suspected or alleged research and publication misconduct. Plagiarism and fraudulent data is not acceptable. Editorial Board always be willing to publish corrections, clarifications, retractions and apologies when needed.

Retractions of the articles: the Editor in Chief will consider retracting a publication if:
- there are clear evidences that the findings are unreliable, either as a result of misconduct (e.g. data fabrication) or honest error (e.g. miscalculation or experimental error)
- the findings have previously been published elsewhere without proper cross-referencing, permission or justification (cases of redundant publication)
- it constitutes plagiarism or reports unethical research.
Notice of the retraction will be linked to the retracted article (by including the title and authors in the retraction heading), clearly identifies the retracted article and state who is retracting the article. Retraction notices should always mention the reason(s) for retraction to distinguish honest error from misconduct.
Retracted articles will not be removed from printed copies of the journal nor from electronic archives but their retracted status will be indicated as clearly as possible.

Duties of Authors
1. Reporting standards: Authors of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. The paper should contain sufficient details and references to permit others to replicate the work. The fabrication of results and making of fraudulent or inaccurate statements constitute unethical behavior and will cause rejection or retraction of a manuscript or a published article.
2. Originality and plagiarism: Authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others they need to be cited or quoted. Plagiarism and fraudulent data is not acceptable.
3. Data access retention: Authors may be asked to provide the raw data for editorial review, should be prepared to provide public access to such data, and should be prepared to retain such data for a reasonable time after publication of their paper.
4. Multiple or concurrent publication: Authors should not in general publish a manuscript describing essentially the same research in more than one journal. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable.
5. Authorship of the manuscript: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the report study. All those who have made contributions should be listed as co-authors. The corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included in the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.
6. Acknowledgement of sources: The proper acknowledgment of the work of others must always be given. The authors should cite publications that have been influential in determining the scope of the reported work.
7. Fundamental errors in published works: When the author discovers a significant error or inaccuracy in his/her own published work, it is the author’s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Duties of Reviewers
1. Contribution to editorial decisions: Peer reviews assist the editor in making editorial decisions and may also help authors to improve their manuscript.
2. Promptness: Any selected reviewer who feels unqualified to review the research reported in a manuscript or knows that its timely review will be impossible should notify the editor and excuse himself/herself from the review process.
3. Confidentiality: All manuscript received for review must be treated as confidential documents. They must not be shown to or discussed with others except those authorized by the editor.
4. Standards of objectivity: Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Reviewers should express their views clearly with appropriate supporting arguments.
5. Acknowledgement of sources: Reviewers should identify the relevant published work that has not been cited by authors. Any substantial similarity or overlap between the manuscript under consideration and any other published paper should be reported to the editor.
6. Disclosure and conflict of Interest: Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider evaluating manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relations with any of the authors, companies, or institutions involved in writing a paper.

Peer-review Procedure


Review Procedure


The Review Procedure for articles submitted to the Archives of Foundry Engineering agrees with the recommendations of the Ministry of Science and Higher Education published in a booklet: ‘Dobre praktyki w procedurach recenzyjnych w nauce’ (MNiSW, Dobre praktyki w procedurach recenzyjnych w nauce, Warszawa 2011).

Papers submitted to the Editorial System are primarily screened by editors with respect to scope, formal issues and used template. Texts with obvious errors (formatting other than requested, missing references, evidently low scientific quality) will be rejected at this stage or will be sent for the adjustments.

Once verified each article is checked by the anti-plagiarism system Cross Check powered by iThenticate®. After the positive response, the article is moved into: Initially verified manuscripts. When the similarity level is too high, the article will be rejected. There is no strict rule (i.e., percentage of the similarity), and it is always subject to the Editor’s decision.
Initially verified manuscripts are then sent to at least four independent referees outside the author’s institution and at least two of them outside of Poland, who:

have no conflict of interests with the author,
are not in professional relationships with the author,
are competent in a given discipline and have at least a doctorate degree and respective
scientific achievements,
have a good reputation as reviewers.


The review form is available online at the Journal’s Editorial System and contains the following sections:

1. Article number and title in the Editorial System

2. The statement of the Reviewer (to choose the right options):

I declare that I have not guessed the identity of the Author. I declare that I have guessed the identity of the Author, but there is no conflict of interest

3. Detailed evaluation of the manuscript against other researches published to this point:

Do you think that the paper title corresponds with its contents?
Yes No
Do you think that the abstract expresses the paper contents well?
Yes No
Are the results or methods presented in the paper novel?
Yes No
Do the author(s) state clearly what they have achieved?
Yes No
Do you find the terminology employed proper?
Yes No
Do you find the bibliography representative and up-to-date?
Yes No
Do you find all necessary illustrations and tables?
Yes No
Do you think that the paper will be of interest to the journal readers?
Yes No

4. Reviewer conclusion

Accept without changes
Accept after changes suggested by reviewer.
Rate manuscript once again after major changes and another review
Reject


5. Information for Editors (not visible for authors).

6. Information for Authors


Reviewing is carried out in the double blind process (authors and reviewers do not know each other’s names).

The appointed reviewers obtain summary of the text and it is his/her decision upon accepting/rejecting the paper for review within a given time period 21 days.

The reviewers are obliged to keep opinions about the paper confidential and to not use knowledge about it before publication.

The reviewers send their review to the Archives of Foundry Engineering by Editorial System. The review is archived in the system.

Editors do not accept reviews, which do not conform to merit and formal rules of scientific reviewing like short positive or negative remarks not supported by a close scrutiny or definitely critical reviews with positive final conclusion. The reviewer’s remarks are sent to the author. He/she has to consider all remarks and revise the text accordingly.

The author of the text has the right to comment on the conclusions in case he/she does not agree with them. He/she can request the article withdrawal at any step of the article processing.

The Editor-in-Chief (supported by members of the Editorial Board) decides on publication based on remarks and conclusions presented by the reviewers, author’s comments and the final version of the manuscript.

The final Editor’s decision can be as follows:
Accept without changes
Reject


The rules for acceptance or rejection of the paper and the review form are available on the Web page of the AFE publisher.

Once a year Editorial Office publishes present list of cooperating reviewers.
Reviewing is free of charge.
All articles, including those rejected and withdrawn, are archived in the Editorial System.

Reviewers

List of Reviewers 2022

Shailee Acharya - S. V. I. T Vasad, India
Vivek Ayar - Birla Vishvakarma Mahavidyalaya Vallabh Vidyanagar, India
Mohammad Azadi - Semnan University, Iran
Azwinur Azwinur - Politeknik Negeri Lhokseumawe, Indonesia
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Iwona Bednarczyk - Silesian University of Technology, Gliwice, Poland
Artur Bobrowski - AGH University of Science and Technology, Kraków
Poland Łukasz Bohdal - Koszalin University of Technology, Koszalin Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Joanna Borowiecka-Jamrozek- The Kielce University of Technology, Poland
Debashish Bose - Metso Outotec India Private Limited, Vadodara, India
Andriy Burbelko - AGH University of Science and Technology, Kraków
Poland Ganesh Chate - KLS Gogte Institute of Technology, India
Murat Çolak - Bayburt University, Turkey
Adam Cwudziński - Politechnika Częstochowska, Częstochowa, Poland
Derya Dispinar- Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Gdynia, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Flora Faleschini - University of Padova, Italy
Imre Felde - Obuda University, Hungary
Róbert Findorák - Technical University of Košice, Slovak Republic
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Marek Góral - Rzeszow University of Technology, Poland
Barbara Grzegorczyk - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Ozen Gursoy - University of Padova, Italy
Gábor Gyarmati - University of Miskolc, Hungary
Jakub Hajkowski - Poznan University of Technology, Poland
Marek Hawryluk - Wroclaw University of Science and Technology, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Poland
Dario Iljkić - University of Rijeka, Croatia
Magdalena Jabłońska - Silesian University of Technology, Gliwice, Poland
Nalepa Jakub - Silesian University of Technology, Gliwice, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Aneta Jakubus - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Łukasz Jamrozowicz - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - AGH University of Science and Technology, Kraków, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Marcin Kondracki - Silesian University of Technology, Gliwice Poland
Vitaliy Korendiy - Lviv Polytechnic National University, Lviv, Ukraine
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Malgorzata Lagiewka - Politechnika Czestochowska, Częstochowa, Poland
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Jingkun Li - University of Science and Technology Beijing, China
Petr Lichy - Technical University Ostrava, Czech Republic
Y.C. Lin - Central South University, China
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Ewa Majchrzak - Silesian University of Technology, Gliwice, Poland
Barnali Maji - NIT-Durgapur: National Institute of Technology, Durgapur, India
Pawel Malinowski - AGH University of Science and Technology, Kraków, Poland
Marek Matejka - University of Zilina, Slovak Republic
Bohdan Mochnacki - Technical University of Occupational Safety Management, Katowice, Poland
Grzegorz Moskal - Silesian University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Silesian University of Technology, Gliwice, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Krzysztof Naplocha - Wrocław University of Science and Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Tomáš Obzina - VSB - Technical University of Ostrava, Czech Republic
Peiman Omranian Mohammadi - Shahid Bahonar University of Kerman, Iran
Zenon Opiekun - Politechnika Rzeszowska, Rzeszów, Poland
Onur Özbek - Duzce University, Turkey
Richard Pastirčák - University of Žilina, Slovak Republic
Miroslawa Pawlyta - Silesian University of Technology, Gliwice, Poland
Jacek Pezda - ATH Bielsko-Biała, Poland
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Jacek Pieprzyca - Silesian University of Technology, Gliwice, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Marcela Pokusová - Slovak Technical University in Bratislava, Slovak Republic
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich, West Midlands, United Kingdom
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University Thailand Amit Sata - MEFGI, Faculty of Engineering, India
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Vasudev Shinde - DKTE' s Textile and Engineering India Robert Sika - Politechnika Poznańska, Poznań, Poland
Bozo Smoljan - University North Croatia, Croatia
Leszek Sowa - Politechnika Częstochowska, Częstochowa, Poland
Sławomir Spadło - Kielce University of Technology, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Grzegorz Stradomski - Czestochowa University of Technology, Poland
Roland Suba - Schaeffler Skalica, spol. s r.o., Slovak Republic
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Jan Szajnar - Silesian University of Technology, Gliwice, Poland
Michal Szucki - TU Bergakademie Freiberg, Germany
Tomasz Szymczak - Lodz University of Technology, Poland
Damian Słota - Silesian University of Technology, Gliwice, Poland
Grzegorz Tęcza - AGH University of Science and Technology, Kraków, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Mirosław Tupaj - Rzeszow University of Technology, Poland
Robert B Tuttle - Western Michigan University United States Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Iveta Vaskova - Technical University of Kosice, Slovak Republic
Dorota Wilk-Kołodziejczyk - AGH University of Science and Technology, Kraków, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Çağlar Yüksel - Atatürk University, Turkey
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Jerzy Zych - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2021

Czesław Baron - Silesian University of Technology, Gliwice, Poland
Imam Basori - State University of Jakarta, Indonesia
Leszek Blacha - Silesian University of Technology, Gliwice
Poland Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Zilina, Slovak Republic
Marcin Brzeziński - AGH University of Science and Technology, Kraków, Poland
Andriy Burbelko - AGH University of Science and Technology, Kraków, Poland
Alexandros Charitos - TU Bergakademie Freiberg, Germany
Ganesh Chate - KLS Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Zhipei Chen - University of Technology, Netherlands
Józef Dańko - AGH University of Science and Technology, Kraków, Poland
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Maciej Dyzia - Silesian University of Technology, Poland
Eray Erzi - Istanbul University, Turkey
Przemysław Fima - Institute of Metallurgy and Materials Science PAN, Kraków, Poland
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Dipak Ghosh - Forace Polymers P Ltd., India
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Gábor Gyarmati - Foundry Institute, University of Miskolc, Hungary
Krzysztof Herbuś - Silesian University of Technology, Gliwice, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Kraków, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Agata Jażdżewska - Gdansk University of Technology, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Centre of Casting Technology, Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Adrian Kampa - Silesian University of Technology, Gliwice, Poland
Wojciech Kapturkiewicz- AGH University of Science and Technology, Kraków, Poland
Tatiana Karkoszka - Silesian University of Technology, Gliwice, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Himanshu Khandelwal - National Institute of Foundry & Forging Technology, Hatia, Ranchi, India
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Grzegorz Kokot - Silesian University of Technology, Gliwice, Poland
Ladislav Kolařík - CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Dariusz Kopyciński - AGH University of Science and Technology, Kraków, Poland
Janusz Kozana - AGH University of Science and Technology, Kraków, Poland
Tomasz Kozieł - AGH University of Science and Technology, Kraków, Poland
Aleksandra Kozłowska - Silesian University of Technology, Gliwice Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Wacław Kuś - Silesian University of Technology, Gliwice, Poland
Jacques Lacaze - University of Toulouse, France
Avinash Lakshmikanthan - Nitte Meenakshi Institute of Technology, India
Jaime Lazaro-Nebreda - Brunel Centre for Advanced Solidification Technology, Brunel University London, United Kingdom
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Maria Maj - AGH University of Science and Technology, Kraków, Poland
Jerzy Mendakiewicz - Silesian University of Technology, Gliwice, Poland
Hanna Myalska-Głowacka - Silesian University of Technology, Gliwice, Poland
Kostiantyn Mykhalenkov - Physics-Technological Institute of Metals and Alloys, National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Mitsuhiro Okayasu - Okayama University, Japan
Agung Pambudi - Sebelas Maret University in Indonesia, Indonesia
Richard Pastirčák - University of Žilina, Slovak Republic
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Seyda Polat - Kocaeli University, Turkey
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Alena Pribulova - Technical University of Košice, Slovak Republic
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich West Midlands, United Kingdom
Iulian Riposan - Politehnica University of Bucharest, Romania
Ferdynand Romankiewicz - Uniwersytet Zielonogórski, Zielona Góra, Poland
Mario Rosso - Politecnico di Torino, Italy
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University, Thailand
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Karthik Shankar - Amrita Vishwa Vidyapeetham , Amritapuri, India
Vasudev Shinde - Shivaji University, Kolhapur, Rajwada, Ichalkaranji, India
Robert Sika - Politechnika Poznańska, Poznań, Poland
Jerzy Sobczak - AGH University of Science and Technology, Kraków, Poland
Sebastian Sobula - AGH University of Science and Technology, Kraków, Poland
Marek Soiński - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Andrzej Studnicki - Silesian University of Technology, Gliwice, Poland
Mayur Sutaria - Charotar University of Science and Technology, CHARUSAT, Gujarat, India
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Sutiyoko Sutiyoko - Manufacturing Polytechnic of Ceper, Klaten, Indonesia
Tomasz Szymczak - Lodz University of Technology, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Jacek Trzaska - Silesian University of Technology, Gliwice, Poland
Robert B Tuttle - Western Michigan University, United States
Muhammet Uludag - Selcuk University, Turkey
Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Tomasz Wrobel - Silesian University of Technology, Gliwice, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Antonin Zadera - Brno University of Technology, Czech Republic
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Bo Zhang - Hunan University of Technology, China
Xiang Zhang - Wuhan University of Science and Technology, China
Eugeniusz Ziółkowski - AGH University of Science and Technology, Kraków, Poland
Sylwia Żymankowska-Kumon - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2020

Shailee Acharya - S. V. I. T Vasad, India
Mohammad Azadi - Semnan University, Iran
Rafał Babilas - Silesian University of Technology, Gliwice, Poland
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Emin Bayraktar - Supmeca/LISMMA-Paris, France
Jaroslav Beňo - VSB-Technical University of Ostrava, Czech Republic
Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Grzegorz Boczkal - AGH University of Science and Technology, Kraków, Poland
Wojciech Borek - Silesian University of Technology, Gliwice, Poland
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Žilina, Slovak Republic
John Campbell - University of Birmingham, United Kingdom
Ganesh Chate - Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Mirosław Cholewa - Silesian University of Technology, Gliwice, Poland
Khanh Dang - Hanoi University of Science and Technology, Viet Nam
Vladislav Deev - Wuhan Textile University, China
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Malwina Dojka - Silesian University of Technology, Gliwice, Poland
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Sergii Gerasin - Pryazovskyi State Technical University, Ukraine
Dipak Ghosh - Forace Polymers Ltd, India
Marcin Górny - AGH University of Science and Technology, Kraków, Poland
Marcin Gołąbczak - Lodz University of Technology, Poland
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Libor Hlavac - VSB Ostrava, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Philippe Jacquet - ECAM, Lyon, France
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Damian Janicki - Silesian University of Technology, Gliwice, Poland
Witold Janik - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - Akademia Górniczo-Hutnicza, Kraków, Poland
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Ladislav Kolařík -Institute of Engineering Technology CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Sergey Konovalov - Samara National Research University, Russia
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Janusz Krawczyk - AGH University of Science and Technology, Kraków, Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Agnieszka Kupiec-Sobczak - Cracow University of Technology, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Aleksander Lisiecki - Silesian University of Technology, Gliwice, Poland
Krzysztof Lukaszkowicz - Silesian University of Technology, Gliwice, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Katarzyna Major-Gabryś - AGH University of Science and Technology, Kraków, Poland
Pavlo Maruschak - Ternopil Ivan Pului National Technical University, Ukraine
Sanjay Mohan - Shri Mata Vaishno Devi University, India
Marek Mróz - Politechnika Rzeszowska, Rzeszów, Poland
Sebastian Mróz - Czestochowa University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Częstochowa, Poland
Konstantin Nikitin - Samara State Technical University, Russia
Daniel Pakuła - Silesian University of Technology, Gliwice, Poland


This page uses 'cookies'. Learn more