Details
Title
Simulation of photovoltaic panel cooling beneath a single nozzle based on a configurations frameworkJournal title
Archives of ThermodynamicsYearbook
2021Volume
vol. 42Issue
No 1Affiliation
Mzad, Hocine : Mechanical Engineering Department, Badji Mokhtar University of Annaba, P.O. Box 12, DZ-23000, Algeria ; Otmani, Abdessalam : Mechanical Engineering Department, Badji Mokhtar University of Annaba, P.O. Box 12, DZ-23000, AlgeriaAuthors
Keywords
photovoltaic panel ; Nozzle ; dispersion ; Comsol ; Glazing ; heat transferDivisions of PAS
Nauki TechniczneCoverage
115-128Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesBibliography
[1] Chokmaviroj S., Wattanapong R., Suchart Y.: Performance of a 500 kWp grid connected photovoltaic system at Mae Hong Son province Thailand. Renew. Energ. 31(2006), 1, 19–28.[2] Omubo-Pepple V.B., Israel-Cookey C., Alaminokuma G.I.: Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity. Eur. J. Sci. Res. 35(2009), 2, 173–180.
[3] Kawamura T., Harada K., Ishihara Y., Todaka T., Oshiro T., Nakamura H., Imataki M.: Analysis of MPPT characteristics in Photovoltaic power system. Sol. Energ. Mat. Sol. C. 47(1997), 1-4, 155–165.
[4] Skoplaki E., Palyvos J.A.: On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 83(2009), 5, 614–624.
[5] Smith M.K., Selbak H., Wamser C.C., Day N.U., Krieske M., Sailor D.J., Rosenstiel T.N.: Water cooling method to improve the performance of fieldmounted, insulated, and concentrating photovoltaic modules. J. Sol. Energ. Eng. 136(2014), 3, 034503.
[6] Tonui J.K., Tripanagnostopoulos Y.: Air-cooled PV/T solar collectors with low cost performance improvements. Sol. Energy 81(2007), 4, 498–511.
[7] Kaiser A.S., Zamora B., Mazón R., García J.R., Vera F.: Experimental study of cooling BIPV modules by forced convection in the air channel. Appl. Energ. 135(2014), 88–97.
[8] Choubineh N., Jannesari H., Kasaeian A.: Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system. Renew.Sust. Energ. Rev. 101(2019), 103–111.
[9] Du B., Hu E., Kolhe M.: Performance Analysis of Water Cooled Concentrated Photovoltaic (CPV) System. Renew. Sust. Energ. Rev. 16(2012), 9, 6732–6736.
[10] Abdolzadeh M., Ameri M.: Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renew. Energ. 34(2009), 1, 91–96.
[11] Bahaidarah H., Subhan A., Gandhidasan P., Rehman S.: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 59(2013), 445–453.
[12] Najafi H., Woodbury K.A.: Optimization of a cooling system based on Peltier effect for photovoltaic cells. Sol. Energy 91(2013), 152–160.
[13] Rahimi M., Sheyda P.V.E., Parsamoghadam M.A., Masahi M.M., Alsairafi A.A.: Design of a self-adjusted jet impingement system for cooling of photovoltaic cells. Energ. Convers. Manage. 83(2014), 48–57.
[14] Nižetic S., Coko D., Yadav A., Grubišic-Cabo F.: Water spray cooling technique applied on a photovoltaic panel: The performance response. Energ. Convers. Manage. 108(2016), 287–296.
[15] Otmani A., Mzad H., Bey K.: A thermal parametric study of non-evaporative spray cooling process. MATEC Web of Conferences 240(2018), 01030.
[16] Otmani A., Mzad H.: Parametric study of non-evaporative spray cooling on aluminum plate: Simulation and analysis. Therm. Sci. 23(2019), 4, S1393–S1402.
[17] Mikielewicz D., Muszynski T., Mikielewicz J.: Model of heat transfer in the stagnation point of rapidly evaporating microjet. Archives of Thermodynamics 33(2012), 1, 139–152.
[18] Rusowicz A., Leszczynski M., Grzebielec A., Laskowski R.: Experimental investigation of single-phase microjet cooling of microelectronics. Archives of Thermodynamics 36(2015), 3, 139–147.
[19] Tebbal M., Mzad H.: An hydrodynamic study of a water jet dispersion beneath liquid sprayers. Forsch. Ingenieurwes. 68(2004), 3, 126–132.
[20] Mzad H., Tebbal M.: Thermal diagnostics of highly heated surfaces using waterspray cooling. Heat Mass Transfer 45(2009), 3, 287–295.
[21] https://www.comsol.com/release/5.2 (accessed: 08 Feb. 2020).
[22] Byron Bird R., Stewart Warren E., Lightfoot Edwin N.: Transport Phenomena. John Wiley & Sons, New York 1966.
[23] White Frank M.: Fluid Mechanics. McGraw-Hill, 1999.
Date
2021.03.31Type
ArticleIdentifier
DOI: 10.24425/ather.2021.136950Source
Archives of Thermodynamics; 2021; vol. 42; No 1; 115-128Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China