Applied sciences

Archives of Environmental Protection

Content

Archives of Environmental Protection | 2025 | 51 | 3

Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to evaluate the spatio-temporal dynamics of water temperature in the Wkra River catchment. Water temperature was monitored using digital recorders across 26 streams located in central Poland and representing small tributaries with variable catchment properties. On the basis of the measurement data collected during the hydrological year 2021, the spatial and seasonal variability of water temperature parameters was analyzed using statistical metrics and principal component analysis. Moreover, selected catchment and channel metrics in various spatial scales were combined with correlation analysis to assess their influence on monthly mean and maximum water temperature values. The results indicate significant spatial variability of water temperature in the Wkra River tributaries, creating a mosaic of thermal habitats. Seasonally, water temperature followed a sinusoidal
pattern, while subdaily dynamics varied seasonally, with the highest values observed in spring and early summer.The mean and maximum water temperature values were related to environmental metrics mainly during the summer half-year; significant positive relationships were documented for the catchment area, whereas negative relationships were observed with channel gradient and riparian shade degree. In winter, only stream orientation demonstrated significant correlations. These findings are relevant in the context of anticipated changes in river thermal regime due to a climate warming effect, as well as setting new research issues; they also provide a unique basis in the context of fisheries management and land practices
Go to article

Bibliography

  1. Bartnik, A. & Tomalski, P. (2018). Diurnal variations of the basic physico-chemical characteristics of a small urban river – the Sokołówka in Łódź – a case study, Acta Scientiarum Polonorum Formatio Circumiectus, 17, 3, pp. 23-38. DOI:10.15576/ASP.FC/2018.17.3.23
  2. Broadmeadow, S.B., Jones, J.G., Langford, T.E.L., Shaw, P.J. & Nisbet, T.R. (2011). The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout, River Research and Applications, 27, 2, pp. 226-237. DOI:10.1002/rra.1354
  3. Caissie, D. (2006). The thermal regime of rivers: a review, Freshwater Biology, 51, 8, pp. 1389-1406. DOI:10.1111/j.1365-2427.2006.01597.x
  4. Ciupa, T. & Suligowski, R. (2024). Land use in catchments of small streams and a hydrological urban heat island–a case study in Kielce city (Poland), Urban Water Journal, 21, 4, pp. 473-482. DOI:10.1080/1573062X.2024.2312504
  5. Dugdale, S.J., Hannah, D.M. & Malcolm, I.A. (2017). River temperature modelling: A review of process-based approaches and future directions, Earth-Science Reviews, 175, pp. 97-113. DOI:10.1016/j.earscirev.2017.10.009
  6. Elliott, J. & Elliott, J.A. (2010). Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change, Journal of Fish Biology, 77, 8, pp. 1793-1817. DOI:10.1111/j.1095-8649.2010.02762.x
  7. Garner, G., Malcolm, I.A., Sadler, J.P. & Hannah, D.M. (2017). The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics, Journal of Hydrology, 553, pp. 471-485. DOI:10.1016/j.jhydrol.2017.03.024
  8. Grabowski, Z.J., Watson, E. & Chang, H. (2016). Using spatially explicit indicators to investigate watershed characteristics and stream temperature relationships, Science of The Total Environment, 551–552, 1, pp. 376–386. DOI:10.1016/j.scitotenv.2016.02.042
  9. Graf, R. & Wrzesiński, D. (2019). Relationship between water temperature of Polish rivers and large-scale atmospheric circulation, Water, 11, 8, 1690. DOI:10.3390/w11081690
  10. Graf, R. & Wrzesiński, D. (2020). Detecting patterns of changes in river water temperature in Poland, Water, 12, 5, 1327. DOI:10.3390/w12051327
  11. Hrachowitz, M., Soulsby, C., Imholt, C., Malcolm, I. A. & Tetzlaff, D. (2010). Thermal regimes in a large upland salmon river: a simple model to identify the influence of landscape controls and climate change on maximum temperatures, Hydrological Processes, 24, 23, pp. 3374-3391. DOI:10.1002/hyp.7756
  12. Imholt, C., Soulsby, C., Malcolm, I.A., Hrachowitz, M., Gibbins, C.N., Langan, S. & Tetzlaff, D. (2013). Inluence of scale on thermal characteristics in a large montane river basin, River Research and Application, 29, 4, pp. 403-419. DOI:10.1002/rra.1608
  13. Isaak, D.J. & Hubert, W.A. (2001) A hypothesis about factors that affect maximum summer stream temperatures across montane landscapes, Journal of the American Water Resources Association, 37, 2, pp. 351-366. DOI:10.1111/j.1752-1688.2001.tb00974.x
  14. Jackson, F.L., Hannah, D.M., Ouellet, V. & Malcolm, I.A. (2021). A deterministic river temperature model to prioritize management of riparian woodlands to reduce summer maximum river temperatures, Hydrological Processes, 35, 8, e14314. DOI:10.1002/hyp.14314
  15. Jackson, F.L., Malcolm, I.A. & Hannah, D.M. (2016). A novel approach for designing large-scale river temperature monitoring networks, Hydrology Research, 47, 3, pp. 569-590. DOI:10.2166/nh.2015.106
  16. Kaczorowska, Z. (1962). Precipitation in Poland over many years, Przegląd Geograficzny IG PAN, 33, pp. 1-112. (in Polish)
  17. Kail, J., Palt, M., Lorenz, A. & Hering, D. (2021). Woody buffer effects on water temperature: The role of spatial configuration and daily temperature fluctuations, Hydrological Processes, 35, 1 e14008. DOI:10.1002/hyp.14008
  18. Kanno, Y., Vokoun, J.C. & Letcher, B.H. (2014). Paired streamair temperature measurements reveal fine-scale thermal heterogeneity within headwater brook trout stream networks, River Research and Applications, 30, 6, pp. 745–755. DOI:10.1002/rra.2677
  19. Łaszewski, M. (2020). The effect of environmental drivers on summer spatial variability of water temperature in Polish lowland watercourses, Environmental Earth Sciences, 79, 244, pp. 1-15. DOI:10.1007/s12665-020-08981-w
  20. Malcolm, L.A., Hannah, D.M., Donaghy, M.J., Soulsby, C. & Youngson, A.F. (2004). The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream, Hydrology and Earth System Sciences, 8, 3, pp. 449-459
  21. Marszelewski, W., Jokiel, P., Pius, B. & Tomalski, P. (2022). River thermal seasons in the Central European Plain and their changes during climate Warming, Journal of Hydrology, 610, 127945. DOI:10.1016/j.jhydrol.2022.127945
  22. Marszelewski, W. & Pius, B. (2016). Long-term changes in temperature of river waters in the transitional zone of the temperate climate: a case study of Polish rivers, Hydrological Sciences Journal, 61, 8, pp. 1430–1442. DOI:10.1080/02626667.2015.1040800
  23. Miętus, M., Owczarek, M. & Filipiak J. (2002). Thermal conditions in the area of the Coast and Pomerania in the light of selected classifications, Materiały Badawcze IMGW, Seria Meteorologia, 36. (in Polish)
  24. Moore, R.D., Spittlehouse, D.L. & Story, A. (2005). Riparian microclimate and stream temperature response to forest harvesting: a review, Journal of the American Water Resources Association, 41, 4, pp. 813-834
  25. Poole, G.C. & Berman, C.H. (2001). Pathways of human influence on water temperature dynamics in stream channels, Environmental Management, 27, 6, pp. 787-802
  26. Solomon, D.J. & Lightfoot, G.W. (2008). The thermal biology of brown trout and Atlantic salmon, Environment Agency Science Report
  27. Sweeney, B. W. & Newbold, J. D. (2014). Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review, JAWRA Journal of the American Water Resources Association, 50, 3, pp. 560-584. DOI:10.1111/jawr.12203
  28. Szarek-Gwiazda, E. & Gwiazda, R. (2022). Impact of flow and damming on water quality of the mountain Raba River (southern Poland) ‒ long-term studies, Archives of Environmental Protection, 48, 1, pp. 31–40. DOI:10.24425/aep.2022.140543
  29. Tomczyk, P. & Wiatkowski, M. (2020). Shaping changes in the ecological status of watercourses within barrages with hydropower schemes – literature review, Archives of Environmental Protection, 46, 4, pp. 78–94. DOI:10.24425/aep.2020.135767
  30. Wrzesiński, D. (2017). Typology of river runoff regime in Poland in the supervised and unsupervised approach, Badania Fizjograficzne, 8, 68, pp. 253-264. DOI:10.14746/bfg.2017.8.19 (in Polish)
  31. Yang, R., Wu, S., Wu, X., Ptak, M., Li, X., Sojka, M., Graf, R., Jiangyu, D. & Zhu, S. (2022). Quantifying the impacts of climate variation, damming, and flow regulation on river thermal dynamics: a case study of the Włocławek Reservoir in the Vistula River, Poland, Environmental Sciences Europe, 34, 1, pp. 1-11. DOI:10.1186/s12302-021-00583-y
  32. Żelazny, M., Rajwa-Kuligiewicz, A., Bojarczuk, A. & Pęksa, Ł. (2018). Water temperature fluctuation patterns in surface waters of the Tatra Mts., Poland. Journal of Hydrology, 564, pp. 824–835. DOI:10.1016/j.jhydrol.2018.07.051
Go to article

Authors and Affiliations

Maksym Andrzej Łaszewski
1
Weronika Skorupa
1
Adrian Bróż
1
Karolina Kapelewska
1
Wiktoria Malinowska
1
Jagoda Wakuła
1

  1. Faculty of Geography and Regional Studies, University of Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The presence of microorganisms in water and wastewater is of significant importance for public health. Bacteria from the Enterobacteriaceae family, such as E. coli and Salmonella sp., pose a serious health risk. Their presence in treated wastewater and drinking water is absolutely unacceptable. The aim of the study was to evaluate the effectiveness of the bactericidal properties of low-temperature atmospheric plasma. The research involved treating water and wastewater samples containing suspended bacteria with plasma for varying durations(ranging from 5 seconds to 30 minutes). The plasma stream was generated using a pulsed atmospheric plasma arc, with air as the working gas. The samples contained both microorganisms that naturally occur in wastewater treatment plants and laboratory-cultured strains (in water). The results showed that low-temperature atmospheric plasma effectively eliminates microorganisms, although the required exposure time depends on microbial origin. Laboratory-cultured bacteria were eliminated within 30 seconds of plasma treatment, whereas naturally occurring wastewater microorganisms required up to 20 minutes for effective inactivation. The efficiency of the process depended on many factors such as contact time and microorganism type . In addition to its strong bactericidal and fungicidal properties, low-temperature atmospheric plasma also impacts physicochemical parameters , including pH and electrical conductivity. However, these changes tend to stabilize within 24 hours, particularly in wastewater samples. Overall, cold plasma presents a promising method for water and wastewater disinfection.
Go to article

Bibliography

  1. Escobar-Muciño, E., Arenas-Hernández, M. M. P. & Luna-Guevara, M. L. (2022). Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of E. coli and Salmonella. In Microorganisms, 10,5. MDPI. DOI:10.3390/microorganisms10050884
  2. Ezugbe, E. O. & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. In Membranes (Vol. 10, Issue 5). MDPI AG. DOI:10.3390/membranes10050089
  3. Fan J., Wu H., Liu R., Meng L. & Sun Y. (2021). Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. Environmental Science and Pollution Research, 28, 3, pp. 2522–2548. DOI:10.1007/s11356-020-11222-z
  4. Jałowiecki, Ł., Borgulat, J., Strugała-Wilczek, A., Jastrzębski, J., Matejczyk, M. & Płaza, G. (2024). Insights into bacterial diversity in industrial post-processing water from underground coal gasification (UCG) process. Archives of Environmental Protection, 50, 2, pp. 32–41. DOI:10.24425/aep.2024.150550
  5. Kadadou, D., Tizani, L., Wadi, V. S., Banat, F., Alsafar, H., Yousef, A. F., Barceló, D. & Hasan, S. W. (2022). Recent advances in the biosensors application for the detection of bacteria and viruses in wastewater. Journal of Environmental Chemical Engineering, 10, 1, Elsevier Ltd. DOI:10.1016/j.jece.2021.107070
  6. Klenivskyi, M., Khun, J., Thonová, L., Vaňková, E. & Scholtz, V. (2024). Portable and affordable cold air plasma source with optimized bactericidal effect. Scientific Reports, 14, 1. DOI:10.1038/s41598-024-66017-w
  7. Kowalska, A., Grobelak, A., Kacprzak, M. & Lyng, K. A. (2021). Methods and tools for environmental technologies risk evaluation: the principal guidelines—a review. International Journal of Environmental Science and Technology, 18, 6, pp. 1683–1694. DOI:10.1007/s13762-020-02979-4
  8. Lin, L., Yang, H. & Xu, X. (2022). Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Frontiers in Environmental Science, 10. DOI:10.3389/fenvs.2022.880246
  9. Lv, X. & Cheng, J. H. (2022). Evaluation of the Effects of Cold Plasma on Cell Membrane Lipids and Oxidative Injury of Salmonella typhimurium. Molecules, 27, 3. DOI:10.3390/molecules27030640
  10. Ma, R. & Jiao, Z. (2022). Inactivation of Fungi and Fungal Toxins by Cold Plasma. Applications of Cold Plasma in Food Safety, pp. 113–166. DOI:10.1007/978-981-16-1827-7_5
  11. Minister of Health of Poland. (2017, December 7). Regulation of the Minister of Health of 7 December 2017 on the quality of water intended for human consumption. Journal of Laws of the Republic of Poland. (in Polish)
  12. Mohseni, P., Ghorbani, A. & Fariborzi, N. (2023). Exploring the potential of cold plasma therapy in treating bacterial infections in veterinary medicine: opportunities and challenges. Frontiers in Veterinary Science, 10. DOI:10.3389/fvets.2023.1240596
  13. Mouele E.S., Massima Tijani J.O., Badmus K.O., Pereao O., Babajide O., Fatoba O.O., Zhang Ch., Shao T., Sosnin E., Tarasenko V., Laatikainen K. & Petrik L.F. (2021). A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. Journal of Environmental Chemical Engineering, 9, 5, 105758. DOI:10.1016/j.jece.2021.105758
  14. Nwabor, O. F., Onyeaka, H., Miri, T., Obileke, K., Anumudu, C. & Hart, A. (2022). A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. Food Engineering Reviews, 14, 4, pp. 535–554. DOI:10.1007/s12393-022-09316-0
  15. Odonkor, S. T. & Mahami, T. (2020). Escherichia coli as a Tool for Disease Risk Assessment of Drinking Water Sources. International Journal of Microbiology, DOI:10.1155/2020/2534130
  16. Wear, S. L., Acuña, V., McDonald, R. & Font, C. (2021). Sewage pollution, declining ecosystem health, and cross-sector collaboration. Biological Conservation, 255. DOI:10.1016/j.biocon.2021.109010
  17. Wei, Q., Yuan, Y., Zhang, J. & Wang, J. (2024). Fungicidal efficiency of DBD cold plasma against Aspergillus niger on dried jujube. Food Microbiology, 121, 104523. DOI:10.1016/j.fm.2024.104523
  18. Wolska, M., Kabsch-Korbutowicz, M., Solipiwko-Pieścik, A., Urbanska-Kozłowska, H. & Ferenc, Z. (2024). Assessing the feasibility of using ultrafiltration to recirculate backwash water in a surface water treatment plant. Archives of Environmental Protection, 50, 2, pp/ 3–13. DOI:10.24425/aep.2024.150547
  19. Wypart-Pawul, A., Neczaj, E. & Grobelak, A. (2023). Advanced oxidation processes for removal of organic micropollutants from wastewater. Desalination And Water Treatment, 305, pp. 114–128. DOI:10.5004/dwt.2023.29665
  20. Wypart-Pawul, A., Neczaj, E., Grosser, A. & Grobelak, A. (2024). Assessment of the effectiveness of atmospheric plasma on the removal of selected pharmaceuticals from water. Desalination and Water Treatment, 320. DOI:10.1016/j.dwt.2024.100600
  21. Yahaya, A. G., Okuyama, T., Kristof, J., Blajan, M. G. & Shimizu, K. (2021). Direct and indirect bactericidal effects of cold atmospheric-pressure microplasma and plasma jet. Molecules, 26, 9. DOI:10.3390/molecules26092523
  22. Yanagimoto, K., Yamagami, T., Uematsu, K. & Haramoto, E. (2020). Characterization of Salmonella isolates from wastewater treatment plant influents to estimate unreported cases and infection sources of salmonellosis. Pathogens, 9, 1. DOI:10.3390/pathogens9010052
  23. Zhu, Z., Bassey, A. P., Huang, T., Zhang, Y., Ali Khan, I., & Huang, M. (2022). The formation, germination, and cold plasma inactivation of bacterial spore. Food Chemistry Advances, 1. DOI:10.1016/j.focha.2022.100056
Go to article

Authors and Affiliations

Aleksandra Wypart-Pawul
1
ORCID: ORCID
Anna Grobelak
1
Wiktoria Noszczyk
1

  1. Częstochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Technologically advanced measuring stations are commonly used to monitor air quality, but their use is not always possible due to technical limitations. The primary aim of this study is to present a step-by-step technical research procedure as an effective method of collecting air contaminants and pollutants in locations unsuitable for standard monitoring stations. The moss bag technique was used, in which mosses were placed in a cylindrical fiberglass mesh and deployed in the field on a specially designed installation. Diamagnetic (plastic) containers were used to collect snow. This innovative approach involves both the scope of the research (natural monitors such as moss and snow, as well as seasonality) and the integration of magnetic and geochemical methods, pollution quantification parameters and meteorological data. Magnetic monitoring allows for a preliminary assessment of air quality in places that are difficult to access and/or located far from the main emission sources. A key advantage of using natural monitors (moss and snow) is the possibility of relatively long exposure times. In the case of studies focused on technogenic magnetic particles and potentially toxic elements, this approach allows for the collection of a larger amount of samples and reduces the need for frequent monitoring, which is necessary when using specialist equipment
Go to article

Bibliography

  1. Alloway, B.J., 1995. Heavy Metals in Soils. Blackie, Glasgow. DOI:10.1007/978-94-007-4470-7.
  2. Błaś, M., Sobik, M. &, Twarowski, R. (2008). Changes of cloud water chemical composition in the Western Sudety Mountains, Poland, Atmospheric Research, 87(3–4), pp. 224-231. DOI:10.1016/j.atmosres.2007.11.004.
  3. Bućko, M.S., Magiera, T., Johanson, B., Petrovský, E. & Pesonen, L.J. (2011). Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses, Environmental Pollution, 159, 5, pp. 1266–1276. DOI:10.1016/j.envpol.2011.01.030.
  4. Calderon-Garciduenas, L., Gonzalez-Maciel, A., Mukherjee, P.S., Reynoso-Robles, R., Perez-Guille, B., Gayosso-Chavez, C., Torres-Jardon, R., Cross, J.V., Ahmed, I.A.M., Karloukovski, V.V. & Maher, B.A. (2019). Combustion- and friction-derived magnetic air pollution nanoparticles in human hearts, Environmental Research, 176, 108567. DOI:10.1016/j.envres.2019.108567.
  5. Chaparro, M.A.E., Chaparro, M.A.E., Castaneda-Miranda, A.G., Marie, D.C., Gargiulo, J. D., Lavornia, J.M., Natal, M. & Böhnel, H.N. (2020). Fine air pollution particles trapped by street tree barks: in situ magnetic biomonitoring, Environmental Pollution, 226, 1, 115229. DOI:10.1016/j.envpol.2020.115229.
  6. Chaparro, M.A.E. (2021). Airborne particle accumulation and loss in pollution-tolerant lichens and its magnetic quantification, Environmental Pollution, 288, 117807. DOI:10.1016/j.envpol.2021.117807.
  7. Chaparro, M.A.E., Fernández, M., Chaparro, M.A.E. & Böhnel, H.N. (2022). Magnetic proxies of continental shelf sediments and their implication for the benthic zone and shrimp fishing activities, Continental Shelf Research, 248, 104845. DOI:10.1016/j.csr.2022.104845.
  8. Cesa, M., Azzalini, G., De Toffol, V., Fontanive, M., Fumagalli, F., Nimis, P. L. & Riva, G. (2009). Moss bags as indicators of trace element contamination in Pre-alpine streams. Plant Biosystems, An International Journal Dealing with All Aspects of Plant Biology, 143, 1, pp. 173–180. DOI:10.1080/11263500802709798.
  9. Chester, R. & Stoner, J. (1973). Pb in Particulates from the Lower Atmosphere of the Eastern Atlantic, Nature, 245, pp. 27–28. DOI:10.1038/245027b0.
  10. de Oliveira, C.R., Do Nascimento Queiroz, C.S., Pinto da Luz, F.C., Porto, S.R. & Rath, S.S. (2016). Bee pollen as a bioindicator of environmental pesticide contamination, Chemosphere, 163, pp. 525–534. DOI:10.1016/j.chemosphere.2016.08.022.
  11. Fabian, K., Reimann, C., McEnroe, S.A. & Willemoes-Wissing, B. (2011). Magnetic properties of terrestrial moss (Hylocomium splendens) along a north-south profile crossing the city of Oslo, Norway. Science of The Total Environment, 409, 11, pp. 2252–2260. DOI:10.1016/j.scitotenv.2011.02.018.
  12. Giordano, S., Adamo, P. , Monaci, F., Pittao, E., Tretiach, M. & Bargagli, R. (2009). Bags with oven-dried moss for the active monitoring of airborne trace elements in urban areas, Environmental Pollution, 157, 10, pp. 2798–2805. DOI:10.1016/j.envpol.2009.04.020.
  13. Harmens, H., Norris, D.A., Steinnes, E., Kubin, E., Piispanen, J., Alber, R., Aleksiayenak, Y., Blum, O., Coşkun, M., Dam, M., De Temmerman, L., Fernández, J.A., Frolova, M., Frontasyeva, M., González-Miqueo, L., Grodzińska, K., Jeran, Z., Korzekwa, S., Krmar, M., Kvietkus, S., Leblond, S., Liiv, S. H., Magnússon, B., Mankovská, R., Pesch, A., Rühling, J.M., Santamaria, W., Schröder, Z., Spiric, I., Suchara, L., Thöni, V., Urumov, L. Yurukova, L. & Zechmeister, H.G. (2010). Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe, Environmental Pollution, 158, 10, pp. 3144–56. DOI:10.1016/j.envpol.2010.06.039.
  14. Hofman, J., Maher, B.A., Muxworthy, A.R., Wuyts, K., Castanheiro, A. & Samson, R. (2017). Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors, Environmental Science & Technology, 51, 12, pp. 6648–6664. DOI:10.1021/acs.est.7b00832.
  15. Hulett, L.D., Weinberger, A.J., Northcutt, K.J. & Ferguson, M. (1980). Chemical species in fly ash from coal-burning power plant, Science, 210, pp. 1356–1358. DOI:10.1126/science.210.4476.1356.
  16. Jordanova, D., Jordanova, N., Barrón, V., Petrov, P. (2018). The signs of past wildfires encoded in the magnetic properties of forest soils, Catena, 171, pp. 265–279. DOI:10.1016/j.catena.2018.07.030.
  17. Jordanova, D., Petrov, P., Hoffmann, V., Gocht, T., Panaiotu, C., Tsacheva, T. & Jordanova, N. (2010). Magnetic signature of different vegetation species in polluted environment, Studia Geophysica et Geodaetica, 54, pp. 417–442. DOI:10.1007/s11200-010-0025-7.
  18. Kłos, A., Ziembik, Z., Rajfur, M., Dołhańczuk-Śródka, A., Bochenek, Z., Bjerke, J.W., Tømmervik, H., Zagajewski, B., Ziółkowski, D., Jerz, D., Zielińska, M., Krems, P., Godyń, P., Marciniak, M. & Świsłowski, P. (2018). Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland, Science of The Total Environment, 627, pp. 438–449. DOI:10.1016/j.scitotenv.2018.01.211.
  19. Łyszczarz, S., Błońska, E. & Lasota, J. (2020). The application of the geo-accumulation index and geostatistical methods to the assessment of forest soil contamination with heavy metals in the Babia Góra National Park (Poland). Archives of Environmental Protection, 46, 3, pp. 69–79. DOI:10.24425/aep.2020.134537.
  20. Maher, B. (2024). Ubiquitous magnetite, Nature Geoscience, 17, 7. DOI:10.1038/s41561-023-01352-7.
  21. Magiera, T., Jabłońska, M., Strzyszcz, Z. & Rachwał, M. (2011). Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts, Atmospheric Environment, 45, pp. 4281–4290. DOI:10.1016/j.atmosenv.2011.04.076.
  22. Magiera, T., Kyzioł-Komosińska, J., Dzieniszewska, A., Wawer, M. & Żogała, B. (2020). Assessment of elements mobility in anthropogenic layer of historical wastes related to glass production in Izera Mountains (SW Poland), Science of The Total Environment, 735, 139526. DOI:10.1016/j.scitotenv.2020.139526.
  23. Magiera, T., Żogała, B., Szuszkiewicz, M., Pierwoła, J. & Szuszkiewicz, M.M. (2019). Combination of different geophysical techniques for the location of historical waste in the Izery Mountains (SW Poland), Science of The Total Environment, pp. 226-238. DOI:10.1016/j.scitotenv.2019.05.180.
  24. Markert, B.A., Breure, A.M. & Zechmeister, H.G. (2003). Chapter 1. Definitions, strategies and principles for bioindication/biomonitoring of the environment, Trace Metals and other Contaminants in the Environment, Elsevier, 6, pp. 3–39. DOI:10.1016/S0927-5215(03)80131-5.
  25. Mazur, A. (2022). Three months of “Cumbre Vieja” – analysis of consequences of volcano eruption, Archives of Environmental Protection, 48, 3, pp. 99–108. DOI:10.24425/aep.2022.142694.
  26. Michczyński, A., Szuszkiewicz, M.M., Gołuchowska, B. & Sikorski, J. (2022). Historical Record of Magnetic and Geochemical Signals in Mountain Peat Bogs: A Case Study of the Black Triangle Region (the Izery Mountains, SW Poland), Water, Air, & Soil Pollution, 233, 127. DOI:10.1007/s11270-022-05593-x.
  27. Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine river, Geojournal, 2, pp. 108–118.
  28. Ojha, G., Appel, E., Wawer, M., Magiera, T. & Hu, S. (2016). Toward a Cost-Efficient Method for Monitoring of Traffic-Derived Pollutants with Quartz Sand Boxes, Water, Air, & Soil Pollution, 227, 173. DOI:10.1007/s11270-016-2858-3.
  29. Petrovský, E., Alcalá, M.D., Criado, J.M., Grygar, T., Kapička, A. & Šubrt, J. (2000). Magnetic properties of magnetite prepared by ball-milling of hematite with iron, Journal of Magnetism and Magnetic Materials, 210, 1-3, pp. 257–273. DOI: 10.1016/S0304-8853(99)00624-1.
  30. Rachwał, M., Penkała, M., Rogula-Kozłowska, W., Wawer-Liszka, M., Łukaszek-Chmielewska, A. & Rakowska, J. (2024). Influence of road surface type on the magnetic susceptibility and elemental composition of road dust, Archives of Environmental Protection, 50, 4, pp. 135–146. DOI:10.24425/aep.2024.152903.
  31. Rachwał, M., Rybak, J. & Rogula-Kozłowska, W. (2018). Magnetic susceptibility of spider webs as a proxy of airborne metal pollution, Environmental Pollution, 234, pp. 543–551. DOI:10.1016/j.envpol.2017.11.088.
  32. Salo, H., Berisha, A.-K. & Mäkinen, J. (2016). Seasonal comparison of moss bag technique against vertical snow samples for monitoring atmospheric pollution, Journal of Environmental Sciences, 41, pp. 128–137. DOI:10.1016/j.jes.2015.04.021.
  33. Salo, H. & Mäkinen, J. (2014). Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland, Atmospheric Environment, 97, 19–27. DOI:10.1016/j. atmosenv.2014.08.003.
  34. Salo, H. & Mäkinen, J. (2019). Comparison of traditional moss bags and synthetic fabric bags in magnetic monitoring of urban air pollution, Ecological Indicators, 104, pp. 559–566. DOI:10.1016/j.ecolind.2019.05.033.
  35. Sambolino, A., Iniguez, E., Herrera, I., Kaufmann, Ana Dinis, M. & Cordeiro, N. (2023). Microplastic ingestion and plastic additive detection in pelagic squid and fish: Implications for bioindicators and plastic tracers in open oceanic food webs, Science of The Total Environment, 894, 164952. DOI:10.1016/j.scitotenv.2023.164952.
  36. Szuszkiewicz, M.M., Łukasik, A., Petrovský, E., Grison, H., Błońska, E., Lasota, J. & Szuszkiewicz, M. (2023). Magneto-chemical characterisation of Saharan dust deposited on snow in Poland, Environmental Research, 216, 2, 114605. DOI: 10.1016/j.envres.2022.114605.
  37. Szuszkiewicz, M.M, Gołuchowska, B. & Szuszkiewicz, M. (in press). Magnetic and geochemical biomonitoring: Black or White Triangle of Europe?
  38. Tomlinson, D.L., Wilson, J.G., Harris, C.R. & Jeffry, D.W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index, Helgolander Meeresunters, 33, pp. 566–575. DOI:10.1007/BF02414780.
  39. Varela, Z., Boquete, M.T., Fernández, J.A., Martínez-Abaigar, J., Núñez-Olivera, E. & Aboal, J.R. (2023). Mythbusters: Unravelling the pollutant uptake processes in mosses for air quality biomonitoring, Ecological Indicators, 148, 110095. DOI:10.1016/j.ecolind.2023.110095.
  40. Wawer, M., Magiera, T., Jabłońska, M., Kowalska J. & Rachwał, M. (2020). Geochemical characteristics of solid particles deposited on experimental plots established for traffic pollution monitoring in different countries, Chemosphere, 260, 127575. DOI:10.1016/j.chemosphere.2020.127575.
  41. Wawer, M., Magiera, T., Ojha, G., Appel, E., Kusza, G., Hu, S. & Basavaiah, N. (2015). Traffic-Related Pollutants in Roadside Soils of Different Countries in Europe and Asia, Water, Air, & Soil Pollution, 226, 216. DOI:10.1007/s11270-015-2483-6.
  42. Winkler, A., Caricchi, C., Guidotti, M., Owczarek, M., Macrì, P., Nazzari, M., Amoroso, A., Di Giosa & A., Listrani, S. (2019). Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome, Italy, Science of The Total Environment, 690, pp. 1355–1368. DOI:10.1016/j.scitotenv.2019.06.526.
  43. Zawadzki, J., Szuszkiewicz, M., Fabijańczyk, P. & Magiera, T. (2016). Geostatistical discrimination between different sources of soil pollutants using a magneto-geochemical data set, Chemosphere 164, 668–676. DOI:10.1016/j.chemosphere.2016.08.145.
Go to article

Authors and Affiliations

Maria Magdalena Szuszkiewicz
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

The adsorption of two heavy metal ions, lead and cadmium, from an aqueous solution was investigated using Kosovo's lignite as the raw material. The material's properties, including nature, functional groups, surface shape, and charge, were investigated using FTIR, XRD, SEM, and pHPZC techniques. The objective of determining parameters such as initial concentration, pH, contact time, adsorbent dosage, and temperature was to understand how these variables influence adsorption. Under optimal conditions (0.125g/50cm3, 30 mg/dm3, 30 min, 200 rpm, and pH 6), Tthe removal efficiency of Pb(II) was 97.22 %, and 90.04% for Cd(II) under optimal conditions (0.125g/50cm3, 30 mg/dm3, 30 min, 200 rpm, and pH 6). To investigate the achievement of equilibrium between lignite and metal ions, two key isotherm models - s, Langmuir and Freundlich -, were applied. Based on the Langmuir isotherm model, the maximum adsorption capacities for lead and cadmium were 55.55 mg/g and 48.78 mg/g, respectively, at 288 K. The best medium for removing metal ions from lignite (desorption) is was found to be 0.5M HCl. Standard enthalpy change, standard entropy change, and Gibbs free energy indicated that the adsorption of heavy metals with onto lignite is a favorable, exothermic, and spontaneous process and is spontaneous. This investigation study shows that this lignite from Kosovo is highly effective in adsorbing lead and cadmium these two heavy metalsfrom aqueous solutions.
Go to article

Bibliography

  1. Boulaiche, W., Belhamdi, B., Hamdi, B. & Trari, M. (2019). Kinetic and Equilibrium Stud-ies of Biosorption of M(II) (M=Cu, Pb, Ni, Zn and Cd) onto Seaweed Posidonia Oce-anica Fibers. Applied Water Science, 9, 173, pp. 1-11. DOI:10.1007/s13201-019-1062-1.
  2. Daci-Ajvazi, M., Thaçi, B., Daci, N. & Gashi, S. (2018). Evaluation of packed adsorption column for lead, cadmium, and zinc removal using different biosorbents. Journal of Environmental Protection and Ecology, 19, 3, pp. 997–1007.
  3. Ezeokonkwo, M. A., Ofor, O. F. & Ani, J. U. (2018). Preparation and Evaluation of Adsor-bents from Coal and Irvingia gabonensis Seed Shell for the Removal of Cd(II) and Pb(II) Ions from Aqueous Solutions. Frontiers in Chemistry, 5, 132, pp. 1-14. DOI:10.3389/fchem.2017.00132.
  4. Fouad, M. B., Abdelghani, B., Aicha, Ch., Belgacem, T. & Djelloul, A. (2022). Comparative study of Pb (II) adsorption from water on used cardboard and powdered activated carbon. Membrane and Water Treatment, 13, 2, pp. 73-83. DOI:10.12989/mwt.2022.13.2.073.
  5. He, X., Jiang, J., Hong, Z., Pan, X., Dong, Y. & Xu, R. (2020). Effect of aluminum modification of rice straw-based biochar on arsenate adsorption. Journal of Soils Sediments, 20, 8, pp. 3073–3082. DOI:10.1007/s11368-020-02595-2.
  6. Jiao, Y., Han, D., Lu, Y., Rong, Y., Fang, L. & Liu, Y. (2017). Characterization of Pine-Sawdust Pyrolytic Char activated by phosphoric acid through microwave irradiation and adsorption property toward CDNB. Desalination and Water Treatment, 77, pp. 247-255. DOI:10.5004/dwt.2017.20780.
  7. Kumar, R., Verma, S., Harwani, G., Paridar, D. & Mishra, S. (2022). Adsorptive and kinetic studies of toxic metal ions from contaminated water by functionalized silica. Mem-brane and Water Treatment, 13, 5, pp. 227-233. DOI:10.12989/mwt.2022.13.5.227.
  8. Kusmierek, K., Sprynskyy, M. & Swiatkowski, A. (2020). Raw lignite as an effective low-cost adsorbent to remove phenol and chlorophenols from aqueous solutions. Separation Science and Technology 55, 1, pp. 1741–1751. DOI: 10.1080/01496395.2019.1607384
  9. Lavado-Meza, C., Fernandez-Pezua, M.C., Gamarra-Gómez, F., Sacari-Sacari, E., Angeles-Suazo, J. & Dávalos-Prado, J. Z. (2023). Single and binary removals of Pb(II) and Cd(II) with chemically modified Opuntia ficus indica Cladodes. Molecules, 28, 11, pp. 1-17. DOI:10.3390/molecules28114451.
  10. Li, C., Wei, S., Li, Z., Li, M. & Zha, Y. (2023). Study on the adsorption performance of steel slag and manganese slag composite materials for lead. Desalination and Water Treatment, 304, pp. 150–161. DOI:10.5004/dwt.2023.29806.
  11. Madadgar, S., Doultai, A. F., Boroumand, Z., Sadeghpour, H., Taherdankoo, R. & Butscher, C. (2023). Biosorption of aqueous Pb(II), Co(II), Cd(II) and Ni(II) ions from Sungun Copper Mine wastewater by Chrysopogon zizanioides Root powder. Minerals, 13, 106, pp. 1-19. DOI:10.3390/min13010106.
  12. Manoj, K., Debendra, R., Rajendra, K. & Ajaya, B. (2020). Determination of point zero charges (PZC) of homemade Charcoals of Shorea Robusta (Sakhuwa) and Pinus Roxburghii (Salla). International Journal of Engineering Research & Technology, 9, 10, pp. 152-155. DOI:10.17577/IJERTV9IS100046.
  13. Mishra, S., Prasad, A.K., Shukla, A., Vinod, A., Preety, K. & Varma, A.K. (2023). Estima-tion of Carbon Content in High-Ash Coal Using Mid-Infrared Fourier-Transform In-frared Spectroscopy. Minerals, 13, 938. DOI:10.3390/min13070938.
  14. Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, A. F. & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University Science, 34, 3, pp. 1-12. DOI:10.1016/j.jksus.2022.101865.
  15. Moyo, M., Pakade, V. E. & Modies, J. S. (2017). Biosorption of lead(II) by chemically modi-fied Mangifera indica seed shells: Adsorbent preparation, characterization and per-formance assessment. Process Safety and Environmental Protection, 111, pp. 40-51. DOI:10.1016/j.psep.2017.06.007.
  16. Nassef, E. & Eltaweel, Y. (2019). Removal of Zinc from aqueous solution using activated Oil shale. Journal of Chemistry, ID 4261210, pp. 1-9. DOI:10.1155/2019/4261210.
  17. Nazari, M. A., Mohaddes, F., Pramanik, B.K., Othman, M., Muster, T. & Bhuiyan, M.A. (2018). Application of Victorian brown coal for removal of ammonium and organics from wastewater. Environmental Technology, 39, 2, pp. 1–33. DOI: 10.1080/09593330.2017.1319424
  18. Nouri, L., Ghodbane, I., Hamdaoui, O. & Chiha, M. (2007). Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. Journal of Hazardous Materials, 149, 1, pp. 115-125. DOI:10.1016/j.jhazmat.2007.03.055.
  19. Phaenark, Ch., Harn-asa, P., Paejaroen, P., Chunchob, S. & Sawangproh, W. (2023). Re-moval of Pb(II) and Cd(II) by biomass derived from Broadleaf Cattail and Water Hy-acinth. Journal of Water and Environmental Technology, 21, 4, pp. 191–203. DOI:10.2965/jwet.22-138.
  20. Ramin, M., Hamid, M., Ehsan, A. & Ramezan, A. T. (2018). Adsorption of cadmium from aqueous solutions by novel Fe3O4- newly isolated Actinomucor sp. Bionanoadsor-bent: functional group study. Artificial Cell Nanomedicine, and Biotechnology, 46, 3, pp. 1092-1101. DOI:10.1080/21691401.2018.1533841.
  21. Sarada, B., Prasad, M. K., Kumar, K. K. & Murthy, Ch. V. R. (2017). Biosorption of Cd2+ by Green Plant Biomass, Araucaria Heterophylla: Characterization, Kinetic, isotherm and thermodynamic studies. Applied Water Science, 7, 9, pp. 3483–3496. DOI:10.1007/s13201-017-0618-1.
  22. Senthil, R B. & Senthil, K P. (2021). Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 1, 116995. DOI:10.1016/j.envpol.2021.116995.
  23. Thaçi, B. S., Daci-Ajavazi, M., Daci, N. & Gashi, S. (2023). Removal of Zinc (II) ions by Wheat Bran and Waste Coffee as low-cost biosorbents. Iranian Journal of Chemistry and Chemical Engineering, 42, 1, pp. 111-122. DOI:10.30492/IJCCE.2022.541673.4995.
  24. Thaçi, B. S., Gashi, S.T., Daci, N. M,. Podvorica, F. I. & Sopaj, F. (2024). A versatile study of single and binary removals of Pb(II) and Cd(II) ions from aqueous solutions using pine cone as biosorbent. Desalination and Water Treatment. 319, 100465. DOI:10.1016/j.dwt.2024.100465.
  25. Thaçi, B. S., Gashi, S., Daci, N. & Daci-Ajvazi, M. (2021). Hybrid processes evaluation of Pb(II) removal from wastewater effluents. Polish Journal of Environment Studies, 30, 4, pp. 3261-3267. DOI:10.15244/pjoes/130457.
  26. Wang, P., Huang, Zh., Fu, Zh., Zhao, P., Feng, Z., Wang, Y. & Li, F. (2022). Adsorption mechanism of Cd(II) by calcium‑modified lignite‑derived humin in aqueous solu-tions. International Journal of Coal Science & Technology, 9, 37, pp. 1-11. DOI:10.1007/s40789-022-00492-2.
  27. Wang, P., Liu, W., Xu, H. & Liu, G. (2021). Adsorption of Pb(II) cation from aqueous solu-tion by acid modified low-rank coal: An experimental study and simulation. Water Science & Technology, 84, 12, pp. 3726-3737. DOI:10.2166/wst.2021.462.
  28. Wei, W., Wang, Q., Li, A., Yang, J., Ma, F., Pi, S. & Wu, D. (2016). Biosorption of Pb(II) from aqueous solutions by extracellular polymeric substance extracted from Klebsiel-la sp. J1: “Adsorption behavior and mechanism assessment”. Scientific Reports, 6, 1, pp. 1-10. DOI:10.1038/srep31575.
  29. Zheng, L., Dang, Z., Yi, X. & Zhang, H. (2010). Equilibrium and kinetic studies of adsorp-tion of Cd(II) from aqueous solution using modified corn stalk. Journal of Hazardous Materials, 176, 1-3, pp. 650-656. DOI:10.1016/j.jhazmat.2009.11.081.
  30. Zherebtsov, S. I., Malyshenko, N.V., Votolin, K.S. & Ismagilov, Z. R. (2020). Sorption of Metal Cations by Lignite and Humic Acids. Coke and Chemistry, 63, 3, pp. 142–148. DOI: 10.3103/S1068364X20030096
Go to article

Authors and Affiliations

Bashkim Thaçi
1
ORCID: ORCID
Salih Gashi
2
Fetah Podvorica
1
Flamur Sopaj
1
Gentiana Hasani
1
Albana Veseli
1
Alexander Prado-Roller
3

  1. University of Prishtina, Kosovo
  2. Academy of Sciences and Arts of Kosovo, Kosovo
  3. University of Vienna, Faculty of Chemistry, Deputy Head X-RAY Centre, Austria
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work was to synthesize new carbon-mineral composites and evaluate their ability to remove sulfamethoxazole from water. Carbon-halloysite (CHS1a,b, CHNT1a,b) and carbon-kaolinite (CKT1a,b) composites were prepared using fruit pomace waste as a carbon precursor. In addition, raw halloysite (HS), halloysite nanotubes (HNT), and kaolinite (KT) were used as templates in the carbonization process conducted under a nitrohen atmosphere at two temperature values: 500oC and 800oC. The morphology and structural characteristics of the obtained composites were investigated using SEM EDX, FT-IR, Raman spectroscopy, and low-temperature nitrogen adsorption methods. All the composites were mesoporous materials. SEM and FTIR results confirmed that the surfaces of HNT, HS, and KT were covered with carbon. The highest carbon content was observed in composites prepared with HNT, suggesting that the nanotube structure enhances carbon deposition. The adsorption of sulfomethoxazole on both the newly synthesized carbon-mineral composites and the unmodified minerals was also studied. The removal efficiency of sulfamethoxazole increased significantly for composites such as CHS1a, CHNT1a, and CKT1a obtained at 800oC, compared to the raw minerals. The optimal conditions for sulfamethoxazole removal, achieving a maximum efficiency of 84%, were found using CHS1a with a dosage of 6 g/dm3 and an initial antibiotic concentration of 20 mg/dm3. The adsorption kinetics of sulfamethoxazole on the most effective adsorbent, CHS1a, was described using the pseudo-second-order kinetic model and the multi-center Langmuir adsorption model. CHS1a composite can be considered a promising adsorbent for the removal of sulfamethoxazole from water.
Go to article

Bibliography

  1. Anadao, P., Pajolli, I.L.R., Hildebrando, E.A. & Wiebeck, H. (2014). Preparation and characterization of carbon/montmorillonite composites and nanocomposites from waste bleaching sodium montmorillonite clay, Advanced Powder Technology 25, pp. 926–932. DOI.10.1016/j.apt.2014.01.010
  2. Avisa,r D., Primor, O., Gozlan, I. & Mamane, H. (2010). Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay, Water, Air, & Soil Pollution, 209, pp.439–450. DOI:10.1007/s11270-009-0212-8
  3. Bakandritsos, A., Kouvelos, E., Steriotis, T. & Petridis, D. (2005). Aqueous and Gaseous Adsorption from Montmorillonite-Carbon Composites and from Derived Carbons, Langmuir, 21, pp. 2349–2355. DOI. 10.1021/la047495g
  4. Balarak, D., Baniasadi, M., Lee, S.M. & Shim, M.J. (2021). Ciprofloxacin adsorption onto azolla filiculoides activated carbon from aqueous solutions, Desalination and Water Treatment, 218, pp. 444–453. DOI.10.5004/dwt.2021.26986
  5. Bandura, L., Białoszewska, M., Leiviskä, T. & Franus, M. (2022). The role of zeolite structure in its -cyclodextrin modification and tetracycline adsorption from aqueous solution: charactersistics and sorption mechanism, Materials, 15, p. 6317. DOI.10.3390/ma15186317
  6. Bernal, V., Erto, A., Giraldo, L. & Moreno-Piraján, J.C. (2017). Effect of solution pH on the adsorption of paracetamol on chemically modified activated carbons, Molecules, 22, p. 1032. DOI.10.3390/molecules22071032
  7. Biancullo, F., Moreira, N.F.F., Ribeiro, A.R., Manaia, C.M., Faria, J.L., Nunes, O.C., Castro-Silva, S.M. & Silva, A.M.T. (2019). Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents, Chemical Engineering Journal, 367, p. 304. DOI.10.1016/j.cej.2019.02.012
  8. Chen, Y., Li, M., Gao, W., Guan, Y., Hao, Z. & Liu, J. (2024). Occurrence and risks of pharmaceuticals, personal care products, and endocrine-disrupting compounds in Chinese surface waters, Journal of Environmental Sciences, 146, pp. 251-263. DOI.10.1016/j.jes.2023.10.011
  9. Chen, L.-F., Liang, H.-W., Lu,Y., Cui, C.-H. & Yu, S.-H. (2011). Synthesis of an Attapulgite Clay@Carbon Nanocomposite Adsorbent by a Hydrothermal Carbonization Process and Their Application in the Removal of Toxic Metal Ions fromWater, Langmuir, 27, pp. 8998–9004. DOI.10.1021/la2017165
  10. Cheng, H., Frost, R.L., Yang, J., Liu, Q. & He, J. (2010). Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite, Spectrochimica Acta, Part A, 77, pp. 1014–1020. DOI.10.1016/j.saa.2010.08.039
  11. De Oliveira, T., Fernandez, E. L., Fougère, E., Destandau, M., Boussafir, M., Sohmiya, M., Sugahara, Y. & Guégan, R. (2018). Competitive Association of Antibiotics with a Clay Mineral and Organoclay Derivatives as a Control of Their Lifetimes in the Environment, ACS Omega, 3, pp. 15332-15342.
  12. Evers, M., Lange, R.-L., Heinz, E. & Wichern, M. (2022). Simultaneous powdered activated carbon dosage for micropollutant removal on a municipal wastewater treatment plant compared to the efficiency of a post treatment stage, Journal of Water Process Engineering, 47, p. 102755. DOI.10.1016/j.jwpe.2022.102755
  13. Freundlich, H.M.F. (1906). Over the adsorption in solution, Zeitschrift für Physikalische Chemie, 57, pp. 385–470.
  14. Gamoń, F., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2022). Adsorption of oxytetracycline and ciprofloxacin on carbon-based nanomaterials as affected by pH, Archives of Environmental Protection, 48, pp. 34–41. doi.org 10.24425/aep.2022.140764
  15. Gülenay Hacıosmanoğlu, G., Mejías, C., Martín, J., Santos, J. L., Aparicio, I. & Alonso, E. (2022). Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review, Journal of Environmental Management, 317, p. DOI.115397. 10.1016/j.jenvman.2022.115397
  16. Ho, Y.S. & McKay, G. (1999). Pseudo-second-order model for sorption processes, Process Biochemistry, 34, pp. 451–465. DOI.10.1016/S0032-9592(98)00112-5
  17. Hu, W., Niu, Y., Dong, K. & Wang, D. (2022). Removal of sulfamethoxazole from aqueous solution onto bagasse derived activated carbon: Response surface methodology, isotherm and kinetics studies, Journal of Molecular Liquids, 347, p. 11814. DOI.10.1016/j.molliq.2021.118141
  18. Jiang, T., Wu, W., Ma, M., Hu, Y. & Li, R. (2024). Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades, Science of The Total Environment, 951, p. 175664. DOI.10.1016/j.scitotenv.2024.175664
  19. Jiang, L., Zhang, C., Wei, J., Tjiu, W., Pan, J., Chen, Y. & Liu, T. Surface Modifications of Halloysite Nanotubes with Superparamagnetic Fe3O4 Nanoparticles and Carbonaceous Layers for Efficient Adsorption of Dyes in Water Treatment (2014). Chemical Research in Chinese Universities, 30, pp. 971–977. DOI.10.1007/s40242-014-4218-4.
  20. Joussein, E., Petit, S. & Delvaux, B. (2007). Behavior of halloysite clay under formamide treatment, Applied Clay Science, 35, pp. 17–24. DOI.10.1016/j.clay.2006.07.002.
  21. Kayal, A. & Mandal, S. (2022). Microbial degradation of antibiotic: future possibility of mitigating antibiotic pollution, Environmental Monitoring and Assessment, 194, p. 639. DOI.10.1007/s10661-022-10314-2.
  22. Kodama, S. & Sekiguchi, H. (2006). Estimation of point of zero charge for activated carbon treated with atmospheric pressure nonthermal oxygen plasmas, Thin Solid Films, 506–507, pp. 327–330. DOI.10.1016/j.tsf.2005.08.137.
  23. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24, pp. 1–39.
  24. Langmuir, I. (1916). The constitutional and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, pp. 2221–2295.
  25. Leboda, R., Charmas, B., Skubiszewska-Zięba, J. & Chodorowski, S. (2005). Carbon-mineral adsorbents prepared by pyrolysis of waste materials in the presence of tetrachloromethane, Journal of Colloid and Interface Science, 284, pp. 39-47. DOI.10.1016/j.jcis.2004.09.052.
  26. Lim, C.K., Bay, H.H., Neoh, C.H., Aris, A., Majid, Z.A. & Ibrahim, Z. (2013). Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies, Environmental Science and Pollution Research, 20, pp. 7243–7255. DOI.10.1007/s11356-013-1725-7.
  27. Liu, Y., Liu, X., Lu, S., Zhao, B., Wang, Z., Xi, B. & Guo, W. (2020). Adsorption and biodegradation of sulfamethoxazole and ofloxacin on zeolite: Influence of particle diameter and redox potential, Chemical Engineering Journal, 384, 123346.
  28. Lu, Z.-Y., Ma, Y. L., Zhang, J.-T., Fan, N.-S., Huang, B.-Ch. & Jin, R.-C. (2020). A critical review of antibiotic removal strategies: Performance and mechanisms, Journal of Water Process Engineering, 38, p. 101681. DOI.101681.10.1016/j.jwpe.2020.101681.
  29. Luo, J., Li, X., Ge, C., Müller, K., Yu, H., Huang ,P., Li, J., Tsang, D.C.W., Bolan, N.S., Rinklebe, J. & Wang, H. (2018). Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH modified biochar under single and ternary systems, Bioresource Technology, 263, pp. 385–392. DOI.10.1016/j.biortech.2018.05.022.
  30. Ma, Y., Yang, L., Wu, L., Li, P., Qi, X., He, L., Cui, S., Ding, Y. & Zhang, Z. (2020). Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal, Science of The Total Environment, 718, p. 137299. DOI.10.1016/j.scitotenv.2020.137299
  31. Parida, V. K., Saidulu, D., Majumder, A., Srivastava, A., Gupta, B. & Gupta, A. K. (2021). Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives, Journal of Environmental Chemical Engineering, 9, p. 105966. DOI.10.1016/j.jece.2021.105966.
  32. Prasannamedha, G. & Senthil, K.P. (2019). A review on Contamination and Removal of Sulfamethoxazole from Aqueous Solution using Cleaner Techniques: Present and Future Perspective, Journal of Cleaner Production, 250(5), p. 119553. DOI.10.1016/j.jclepro.2019.119553.
  33. Qalyoubi, L., Al-Othman, A., Al-Asheh, S., Shirvanimoghaddam, K., Mahmoodi, R. & Naebe, M. (2024). Textile-based biochar for the removal of ciprofloxacin antibiotics from water, Emergent Materials, 7, pp. 577–588. DOI.10.1007/s42247-023-00512-0.
  34. Sagaseta de Ilurdoz, M., Jaime Sadhwani, J. & Vaswani Reboso, J. (2022). Antibiotic removal processes from water & wastewater for the protection of the aquatic environment – a review, Journal of Water Process Engineering, 45, p. 102474. DOI.10.1016/j.jwpe.2021.102474.
  35. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 57, pp. 603–619. DOI.10.1351/pac198254112201.
  36. Skubiszewska-Zięba, J., Charmas, B., Leboda, R. & Gun’ko, V.M. (2012). Carbon-mineral adsorbents with a diatomaceous earth/perlite matrix modified by carbon deposits, Microporous and Mesoporous Materials, 156, pp. 209–216. DOI.10.1016/j.micromeso.2012.02.038.
  37. Szczepanik, B., Banaś, D., Kubala-Kukuś, A., Szary, K., Słomkiewicz, P., Rędzia, N. & Frydel, L. (2020). Surface Properties of Halloysite-Carbon Nanocomposites and Their Application for Adsorption of Paracetamol, Materials, 13, p. 5647. DOI.10.3390/ma13245647.
  38. Szczepanik, B., Frydel, L., Słomkiewicz, P. M., Banaś, D., Stabrawa, I. & Kubala-Kukuś, A. (2023). Adsorptive removal of chloroxylenol and chlorophene from aqueous solutions using carbon-halloysite nanocomposites obtained from corrugated cardboard as a carbon precursor, Desalination and Water Treatment, 288, pp. 93–103. DOI.10.5004/dwt.2023.29212.
  39. Szczepanik, B., Rędzia, N., Frydel, L., Słomkiewicz, P., Kołbus, A., Styszko, K. & Samojeden, B. (2019). Synthesis and Characterization of Halloysite/Carbon Nanocomposites for Enhanced NSAIDs Adsorption from Water, Materials, 12, p. 3754. DOI.10.3390/ma12223754.
  40. Tan, X., Wei, H., Zhou, Y., Zhang, Ch. & Ho, S.-H. (2022). Adsorption of sulfamethoxazole via biochar: The key role of characteristic components derived from different growth stage of microalgae, Environmental Research, 210, p. 112965. DOI.10.1016/j.envres.2022.112965.
  41. Tang, L., Yu, J., Pang, Y., Zeng,, G., Deng Y., Wang, J., Ren, X., Ye,, S., Peng B. & Feng, H. (2018). Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal, Chemical Engineering Journal, 336, pp. 160–169. DOI.10.1016/j.cej.2017.11.048.
  42. Temkin, M.I. & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst, Acta USSR 12, 3, pp. 27–356.
  43. Terzyk, A. P. (2001). The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH, Colloids and Surfaces, 177, pp. 23–45. DOI.10.1016/S0927-7757(00)00594-X.
  44. Wang, J. & Zhuan, R. (2020). Degradation of antibiotics by advanced oxidation processes: An overview, Total Environment, 701, p. 135023. DOI.10.1016/j.scitotenv.2019.135023.
  45. Weber, W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon solution, Journal of the Sanitary Engineering Division Am. Soc. Civ. Eng, 89, pp. 31–59.
  46. Wu, X., Gao, P., Zhang, X., Jin, G., Xu, Y. & Wu, Y. (2014). Synthesis of clay/carbon adsorbent through hydrothermal carbonization of cellulose on palygorskite, Applied Clay Science, 95, pp. 60–66. DOI.10.1016/j.clay.2014.03.010.
  47. Wu, X., Liu, C., Qi, H., Zhang, X., Dai, J., Zhang, Q., Zhang, L., Wu, Y. & Peng, X. (2016). Synthesis and adsorption properties of halloysite/carbon nanocomposites and halloysite-derived carbon nanotubes, Applied Clay Science, 119, pp. 284–293. DOI.10.1016/j.clay.2015.10.029.
  48. Wu, X., Xu, Y., Zhang, X., Wu, Y. & Gao, P. (2015). Adsorption of low-concentration methylene blue onto a palygorskite/carbon composite, New Carbon Materials, 30, pp.71–78. DOI.10.1016/S1872-5805(24)60878-4.
  49. Wu, X., Zhu, W., Zhang, X., Chen, T. & Frost, R.L. (2011). Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol, Applied Clay Science, 52, pp. 400–406. DOI.10.1016/j.clay.2011.04.011.
  50. Xiang, Y., Xu, Z., Wei, Y., Zhou, Y., Yang, X., Yang, Y., Yang, J., Zhang, J., Luo, L. & Zhou, Z. (2019). Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors, Journal of Environmental Management, 237, pp. 128-138. DOI.10.1016/j.jenvman.2019.02.068.
  51. Yuan, P., Tan, D., Annabi-Bergaya, F., Yan, W., Fan, M., Liu, D. & He, H. (2012). Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating, Clays and Clay Minerals, 60(6), pp. 561-573. DOI.10.1346/CCMN.2012.0600602.
  52. Zhang, Ch., Wang, L., Gao, X. & He, X. (2016). Antibiotics in WWTP discharge into the Chaobai River, Beijing, Archives of Environmental Protection, 42, pp. 48–57. DOI.10.1515/aep-2016-0036.
  53. Zhao, J., Han, Y., Liu, J., Li, B., Li, J., Li, W., Shi, P., Pan, Y., & Li, A. (2024). Occurrence, distribution and potential environmental risks of pollutants in aquaculture ponds during pond cleaning in Taihu Lake Basin, China, Science of The Total Environment, 939, p. 173610. DOI. 10.1016/j.scitotenv.2024.173610.
  54. Zhao, J. (2023). Molecular imprinting functionalization of magnetic biochar to adsorb sulfamethoxazole: Mechanism, regeneration and targeted adsorption, Process Safety and Environmental Protection, 171, pp. 238–249. DOI.10.1016/j.psep.2023.01.024.
  55. Zhao, T., Ali, A., Su, J., Liu, S., Yan, H. & Xu, L. (2024). Removal of sulfamethoxazole from water by biosurfactant-modified sludge biochar: Properties and mechanism, Journal of Environmental Chemical Engineering, 12, p.114200. DOI.10.1016/j.jece.2024.114200.
  56. Zhao, Z. & Zhou, W. (2019). Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole, Environmental Pollution, 245, pp. 208-217. DOI: 10.1016/j.envpol.2018.11.013
Go to article

Authors and Affiliations

Piotr Słomkiewicz
1
Beata Szczepanik
1
Katarzyna Piekacz
1
Klaudiusz Gołombek
2
ORCID: ORCID
Maria Włodarczyk-Makuła
3

  1. Jan Kochanowski University Kielce, Poland
  2. Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Poland
  3. Faculty of Infrastructure and Environment, Częstochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Developing universal hydrological models for modeling urban catchments remains one of the major challenges in contemporary hydrology. This study aimed to create a model that integrates catchment characteristics, sewer network topology, sewer storage capacity, and rainfall data, along with a sensitivity analysis of input parameters. The goal was to evaluate the potential of advanced analytical methods, specifically, Multivariate Adaptive Regression Splines (MARS) and soft-sensor technology, to improve peak flow (Qm) forecasting in stormwater systems. The results showed that combining MARS models with soft sensors yields high forecasting accuracy (R² = 0.96, RMSE = 0.038), even under variable rainfall conditions. However, the development of universally applicable model relationships proved challenging due to difficulties in parameterizing the model under changing rainfall scenarios. Additionally, the inclusion of a risk analysis method also enabled consideration of sewer network capacity and introduced a safety margin coefficient to assess system flexibility under future climate conditions. While the proposed approach does not lead to the creation of universal tools, it offers valuable insights for further research on adapting sewer systems to evolving hydrological conditions. The findings suggest promising directions for the development of cost-free, zero-emission soft sensors and models adaptable across diverse urban catchments.
Go to article

Bibliography

  1. Addison-Atkinson, W., Chen, A.S., Memon, F.A. & Chang, T.J., 2022. Modelling urban sewer flooding and quantitative microbial risk assessment: a critical review. J. Flood Risk Mangement. 15, e12844.
  2. Amiri, H., Azadi, S., Javadpour, S., Naghavi, A.A. & Boczkaj, G., 2022. Selecting wells for an optimal design of groundwater monitoring network based on monitoring priority map: a Kish Island case study. Water Resour. Ind. 27, 100172 DOI:10.1016/j.wri.2022.100172.
  3. Bach, P. M., Kuller, M., McCarthy, D. T. & Deletic, A. (2020). A spatial planning-support system for generating decentralised urban stormwater management schemes. Science of The Total Environment, 138282. DOI:10.1016/j.scitotenv.2020.138282.
  4. Banasik, K., Krajewski, A., Sikorska-Senoner, A. E. & Hejduk, L. (2014). Curve number estimation for a small urban catchment from recorded rainfall-runoff events. Archives of Environmental Protection, 40, 3, pp. 21–30. DOI:10.2478/aep-2014-0032.
  5. Barco, J., Wong, K.M. & Stenstrom, M.K. (2008). Automatic calibration of the U.S. EPA SWMM model for a large urban catchment. J. Hydraul. Eng. 134, pp. 466–474. DOI:10.1061/(ASCE)0733-9429(2008)134:4(466).
  6. Bell, C. D., Wolfand, J. M., Panos, C. L., Bhaskar, A. S., Gilliom, R. L., Hogue, T. S. & Jefferson, A. J. (2020). Stormwater control impacts on runoff volume and peak flow: A meta‐analysis of watershed modeling studies. Hydrological Processes. DOI:10.1002/hyp.13784.
  7. Beven, K. (2020). Deep learning, hydrological processes and the uniqueness of place. Hydrological Processes, 34, 16, pp. 3608–3613. DOI:10.1002/hyp.13805.
  8. Bhaskar, A. S., Hogan, D. M., Nimmo, J. R. & Perkins, K. S. (2018). Groundwater recharge amidst focused stormwater infiltration. Hydrological Processes, 32, 13, pp. 2058–2068. DOI:10.1002/hyp.13137.
  9. Birgani, Y. T., Yazdandoost, F. & Malaekepour, S. M. (2013). Urban Drainage Systems Risk Assessment under Climate Change Conditions.
  10. Butler, D., Farmani, R., Fu, G., Ward, S., Diao, K. & Astaraie-Imani, M. (2014). A new approach to urban water management: Safe and sure. Procedia Engineering, 89, pp. 347-354.
  11. Cantone, J. & Schmidt, A. (2011). Improved understanding and prediction of the hydrologic response of highly urbanized catchments through development of the Illinois Urban Hydrologic Model. Water Resources Research, 47, 8. DOI:10.1029/2010wr009330.
  12. Chadalawada, J., Havlicek, V. & Babovic, V. A (2017). Genetic Programming Approach to System Identification of Rainfall-Runoff Models. Water Resour Manage 31, pp. 3975–3992. DOI:10.1007/s11269-017-1719-1.
  13. Cristiano, E., ten Veldhuis, M.C., Gaitan, S., Rodriguez, S.O. & van de Giesen, N. (2018). Critical scales to explain urban hydrological response. Hydrol. Earth Syst. Sci. Discuss. DOI:10.5194/hess-2017-715.
  14. Cristiano, E., ten Veldhuis, M.C., Wright, D.B., Smith, J.A. & van de Giesen, N. (2019). The influence of rainfall and catchment critical scales on urban hydrological response sensitivity. Water Resour. Res. 55, pp. 3375–3390. DOI:10.1029/2018WR024143.
  15. De Paola, F. & Ranucci, A. (2012). Analysis of spatial variability for stormwater capture tank assessment. Irrig. Drain. 61, pp. 682–690. DOI:10.1002/ird.
  16. Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P. & Rieckermann, J. (2013). Improving uncertainty estimation in urban hydrological modeling by statistically describing bias. Hydrology and Earth System Sciences, 17, 10, pp. 4209–4225. DOI:10.5194/hess-17-4209-2013.
  17. Duan, H., Akker, B. van den, Thwaites, B. J., Peng, L., Herman, C., Pan, Y. & Ye, L. (2020). Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant. Water Research, 116196. DOI:10.1016/j.watres.2020.116196
  18. DWA-A 118E, 2006. Hydraulic Dimensioning and Verification of Drain and Sewer Systems. DWA German Association for Water, Wastewater and Waste, Hennef, Germany.
  19. Fatone, F., Szeląg, B., Kiczko, A., Majerek, D., Majewska, M., Drewnowski, J. & Łagód, G. (2021). Advanced sensitivity analysis of the impact of the temporal distribution and intensity of rainfall on hydrograph parameters in urban catchments. Hydrol. Earth Syst. Sci. 25, pp. 5493–5516. DOI:10.5194/hess-25-5493-2021.
  20. Fraga, I., Cea, L., Puertas, J., Su´arez, J., Jim´enez, V. & J´acome, A. (2016). Global sensitivity and GLUE-based uncertainty analysis of a 2D–1D dual urban drainage model. J. Hydrol. Eng. 21, 04016004. DOI:10.1061/(ASCE)HE.1943-5584.0001335.
  21. Friedman, J. H. & Roosen, C. B. (1995). An introduction to multivariate adaptive regression splines. Statistical Methods in Medical Research, 4, 3, pp. 197–217. DOI:10.1177/096228029500400303.
  22. Fu, G. & Butler, D. (2014). Copula-based frequency analysis of overflow and flooding in urban drainage systems. J. Hydrol. 510, pp. 49–58. DOI:10.1016/j.jhydrol.2013.12.006.
  23. Fu, G., Jin, Y., Sun, S., Yuan, Z. & Butler, D. (2022). The role of deep learning in urban water management: A critical review. Water Research 223, 1 118973, DOI:10.1016/j.watres.2022.118973.
  24. Gargano, R., Di Palma, F., de Marinis, G., Granata, F. & Greco, R. (2015). A stochastic approach for the water demand of residential end users. Urban Water Journal, 13, 6, pp. 569–582. DOI:10.1080/1573062x.2015.1011.
  25. Gires, A., Tchiguirinskaia, I., Schertzer, D., Ochoa-Rodriguez, S., Willems, P., Ichiba, A. & ten Veldhuis, M.-C. (2017). Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system. Hydrology and Earth System Sciences, 21, 5, pp./ 2361–2375. DOI:10.5194/hess-21-2361-2017.
  26. Gironás, J., Roesner, L. A., Rossman, L. A. & Davis, J. (2010). A new applications manual for the Storm Water Management Model (SWMM), Environ. Modell. Softw., 25, pp. 813–814. DOI:10.1016/j.envsoft.2009.11.009, 2010.
  27. Gong, Y., Zhang, G., Hao, Y. & Nie, L., 2022. Enrichment Evaluation of Heavy Metals from Stormwater Runoff to Soil and Shrubs in Bioretention Facilities. Water, 14(4), 638. DOI:10.3390/w14040638
  28. Guan, M., Sillanpää, N. & Koivusalo, H. (2015). Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment. Hydrological Processes, 30, 4, 543-557. DOI:10.1002/hyp.10624.
  29. Guo, K., Guan, M. & Yu, D. (2021). Urban surface water flood modelling – a comprehensive review of current models and future challenges. Hydrol. Earth Syst. Sci. 25, pp. 2843–2860. DOI:10.5194/hess-25-2843-2021.
  30. Guo, K., Guan, M., Haochen, Y. & Xilin, X. (2023). A spatially distributed hydrodynamic model framework for urban flood hydrological and hydraulic processes involving drainage flow quantification. Journal of Hydrology. 625. DOI:10.1016/j.jhydrol.2023.130135.
  31. Hauger, M. B., Mouchel, J. M. & Mikkelsen, P. S. (2006). Indicators of hazard, vulnerability and risk in urban drainage. Water science and technology, 54, 6-7, pp. 441-450. DOI:10.2166/wst.2006.622.
  32. Ichiba, A., Gires, A., Tchiguirinskaia, I., Schertzer, D., Bompard, P. & Ten Veldhuis, M.-C. (2018). Scale effect challenges in urban hydrology highlighted with a distributed hydrological model. Hydrology and Earth System Sciences, 22, 1, pp. 331–350. DOI:10.5194/hess-22-331-2018.
  33. Jato-Espino, D., Sillanpää, N., Andrés-Doménech, I. & Rodriguez-Hernandez, J. (2017). Flood Risk Assessment in Urban Catchments Using Multiple Regression Analysis. Journal of Water Resources Planning and Management, 144, 2. DOI:10.1061/(ASCE)WR.1943-5452.0000874.
  34. Jato-Espino, D., Sillanp¨a¨a, N., Andr´es-Dom´enech, I. & Rodriguez-Hernandez, J. (2018). Flood risk assessment in urban catchments using multiple regression analysis. J. Water Resour. Planning Manag. 144, 04017085. DOI:10.1061/(ASCE)WR.1943-5452.0000874.
  35. Kiczko, A., Szeląg, B., Kozioł, A. P., Krukowski, M., Kubrak, E., Kubrak, J. & Romanowicz, R. J. (2018). Optimal capacity of a stormwater reservoir for flood peak reduction. Journal of Hydrologic Engineering, 23, 4. DOI:10.1061/(ASCE)HE.1943-5584.0001636
  36. Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S. & Nearing, G. S. (2019). Towards Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resources Research. DOI:10.1029/2019wr026065
  37. Krebs, G., Kokkonen, T., Valtanen, M., Setälä, H. & Koivusalo, H. (2014). Spatial resolution considerations for urban hydrological modelling, J. Hydrol., 512, pp. 482–497. DOI:10.1016/j.jhydrol.2014.03.013.
  38. Kumar, S., Agarwal, A., Ganapathy, A., Villuri, V.GK. Pasupuleti, S., Kumar, D., Kaushal, D.R., Gosain, A.K. & Sivakuma, B. (2022). . Impact of climate change on stormwater drainage in urban areas. Stoch Environ Res Risk Assess 36, pp. 77–96. DOI:10.1007/s00477-021-02105-x.
  39. Kwon, S. H. & Kim, J. H. (2021). Machine Learning and Urban Drainage Systems: State-of-the-Art Review. Water, 13, 24, 3545. DOI:10.3390/w13243545.
  40. Li, X. & Willems, P. (2020). A hybrid model for fast and probabilistic urban pluvial flood prediction. Water Resour. Res. 56, 6. DOI:10.1029/2019WR025128.
  41. Li, X., Erpicum, S., Mignot, E., Archambeau, P., Pirotton, M. & Dewals, B. (2022). Laboratory modelling of urban flooding. Sci. Data, 9, 1. DOI:10.1038/s41597-022-01282-w.
  42. Liu, C. Y. & Chui, T. F. M. (2017). Factors influencing stormwater mitigation in permeable pavement. Water, 9, 12, 988. DOI:10.3390/w9120988.
  43. Liu ,J., Cho, H-S., Osman, S., Jeong, H-G. & Lee, K. (2022). Review of the status of urban flood monitoring and forecasting in TC region, Tropical Cyclone Research and Review 11, 2, pp.103-119.. DOI:10.1016/j.tcrr.2022.07.001.
  44. Luiso, J. E. & Giribet, J. I. (2017). Optical flow sensor. 2017 XVII Workshop on Information Processing and Control (RPIC). DOI:10.23919/rpic.2017.8211652.
  45. Meierdiercks, K.L., Smith, J.A., Baeck, M.L. & Miller, A.J. (2010). Analyses of urban drainage network structure and its impact on hydrologic response. JAWRA Journal of the American Water Resources Association 46, pp. 932–943. DOI: 10.1111/j.1752-1688.2010.00465.x.
  46. Mejía, A. I. & Moglen, G. E. (2010). Impact of the spatial distribution of imperviousness on the hydrologic response of an urbanizing basin. Hydrological Processes, 24, 23, pp. 3359–3373. DOI:10.1002/hyp.7755.
  47. Al Mehedi, M. A., Amur, A., Metcalf, J., McGauley, M., Smith, V. & Wadzuk, B. (2023). Predicting the performance of green stormwater infrastructure using multivariate long short-term memory (LSTM) neural network. Journal of Hydrology, 625, 130076. DOI:10.1016/j.jhydrol.2023.130076.
  48. Mondal, K., Bandyopadhyay, S. & Karmakar, S. (2023). Framework for global sensitivity analysis in a complex 1D-2D coupled hydrodynamic model: Highlighting its importance on flood management over large data-scarce regions. Journal of Environmental Management, 332, 117312. DOI:10.1016/j.jenvman.2023.117312
  49. Moon, H., Yoon, S. & Moon, M., (2023). Urban flood forecasting using a hybrid modeling approach based on a deep learning technique. Journal of Hydroinformatics,25, 2, pp. 593–610. DOI:10.2166/hydro.2023.203.
  50. Mor´an-Valencia, M., Flegl, M. & Güemes-Castorena, D. (2023). A state-level analysis of the water system management efficiency in Mexico: two-stage DEA approach. Water Resour. Ind. 29, 100200 DOI:10.1016/j.wri.2022.100200.
  51. Napiorkowski, J.J., Piotrowski, A.P., Karamuz, E. & Senbeta, T.B. (2023). Calibration of conceptual rainfall-runoff models by selected differential evolution and particle swarm optimization variants. Acta Geophys. 71, pp. 2325–2338. DOI:10.1007/s11600-022-00988-0.
  52. Nowogoński, I. (2019). Emporal and spatial variability of rainfall in modelling of stormwater outflows. CEER; 29, 4, pp. 267-278. DOI: 10.2478/ceer-2019-0060.
  53. Ogden, F.L., Pradhan, N.R., Downer, C.W. & Zahner, J.A. (2011). Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour. Res. 47, W12503. DOI:10.1029/2011WR010550.
  54. Palmitessa, R., Grum, M., Engsig-Karup, A.P. & Löwe, R. (2022). Accelerating hydrodynamic simulations of urban drainage systems with physics-guided machine learning. Water Res. 223, 118972 DOI:10.1016/j.watres.2022.118972.
  55. Perdikaki, M., Makropoulos, C. & Kallioras, A. (2022). Participatory groundwater modelling for managed aquifer recharge as a tool for water resources management of a coastal aquifer in Greece. Hydrgeol. J. 30, 1, pp. 37–58. DOI: 10.1007/s10040-021-02427-8
  56. Qiu, Y., da Silva Rocha Paz, I., Chen, F., Versini, P. A., Schertzer, D. & Tchiguirinskaia, I. (2020). Space variability of hydrological responses of Nature-Based Solutions and the resulting uncertainty. Hydrology and Earth System Sciences Discussions, 1-34. DOI:10.5194/hess-2020-468
  57. Rosenzweig, B.R., Cantis, H., Kim, Y., Cohn, A., Grove, K., Brock, J., Yesuf, J., Mistry, P., Welty, C., McPhearson, T., Sauer, J. & Chang, H. (2021). The value of urban flood modeling. Earth’s Future 9, e2020EF001739. DOI:10.1029/2020EF001739.
  58. Sharifi, A., Beris, A.T., Javidi, A.S., Nouri, M., Lonbar, A.G. & Ahmadi, M. (2024). Application of artificial intelligence in digital twin models for stormwater infrastructure systems in smart cities. Advanced Engineering Informatics, 61, 102485. DOI:10.1016/j.aei.2024.102485.
  59. Sharma, S., Lee, B. S., Nicholas, R. E., & Keller, K. (2021). A safety factor approach to designing urban infrastructure for dynamic conditions. Earth's Future, 9, 12, e2021EF002118. DOI:10.1029/2021EF002118.
  60. She, L. & You, X.Y. (2019). A dynamic flow forecast model for urban drainage using the coupled artificial neural network. Water Resour. Manag. 3, pp. 3143–3153. DOI:10.1007/s11269-019-02294-9.
  61. Shi, B., Catsamas, S., Kolotelo, P., Wang, M., Lintern, A., Jovanovic, D. & McCarthy, D. T. (2021). A Low-Cost Water Depth and Electrical Conductivity Sensor for Detecting Inputs into Urban Stormwater Networks. Sensors, 21, 9, 3056. DOI:10.3390/s21093056.
  62. Szeląg, B., (2013). Influence of the Hydrogramme Shape on the Capacity and Selection of Drains of a Small Retention Reservoir. University of Technology, Kielce. PhD thesis.
  63. Szeląg, B., Kiczko, A. & Dąbek, L. (2016). Sensitivity and uncertainty analysis of hydrodynamic model (SWMM) for storm water runoff forecating in an urban basin – A case study, Ochr. Sr., 38, pp. 15–22.
  64. Szeląg, B., Majerek, D., Kiczko, A., Łagód, G., Fatone, F. & McGarity, A. (2022a). Analysis of sewer network performance in context of modernization: modeling, sensitivity, uncertainty analysis. Journal of Water Resources Planning and Management. 148: pp[. 1– 12. DOI:10.1061/(ASCE)WR.1943–5452.0001610.
  65. Szeląg, B., Suligowski, R., De Paola, F., Siwicki, P., Majerek, D. & Łagód, G. (2022b). Influence of urban catchment characteristics and rainfall origins on the phenomenon of stormwater flooding: case study. Environ. Model. Softw. 150, 105335 DOI:10.1016/j.envsoft.2022.105335.
  66. Tabuchi, J.-P., Blanchet, B. & Rocher, V. (2020). Integrated Smart Water Management of the sanitation system of the Greater Paris region. Water International, 45, 6, pp. 574–603. DOI:10.1080/02508060.2020.1830584.
  67. Tao, D. Q., Pleau, M., Akridge, A., Fradet, O., Grondin, F., Laughlin, S. & Shoemaker, L. (2020). Analytics and Optimization Reduce Sewage Overflows to Protect Community Waterways in Kentucky. INFORMS Journal on Applied Analytics, 50, 1, pp. 7–20. DOI:10.1287/inte.2019.1022.
  68. Ursino, N. (2015). Risk analysis of sustainable urban drainage and irrigation. Advances in Water Resources, 83, pp. 277–284. DOI:10.1016/j.advwatres.2015.06.011.
  69. Vojinovic, Z., Kecman, V. & Babovic, V. (2003). Hybrid Approach for Modeling Wet Weather Response in Wastewater Systems. Journal of Water Resources Planning and Management, 129, 6. DOI:10.1061/(ASCE)0733-9496(2003)129:6(511).
  70. Wałek, G. (2019). The influence of roads on the formation of surface runoff in the urbanized area on the example of the Silnica River catchment area in Kielce. Jan Kochanowski University Press, Kielce. (in Polish).
  71. Wałęga, A., Cupak, A., Michalec, B. & Wachulec, K. (2013). The influence of physical and geographical catchment parameters and precipitation characteristics on the runoff time of concentration. Journal of Civil Engineering, Environment and Architecture, 30, 60, pp. 143–160. DOI:10.7862/rb.2013.44.
  72. Wang X., Kvaal K. & Ratnaweera H. (2019). Explicit and interpretable nonlinear soft sensor models for influent surveillance at a full-scale wastewater treatment plant. J. Process Control, 77, pp. 1-6. 10.1016/j.jprocont.2019.03.005 .
  73. Wawrzyniak, M. & Wdowikowski, M. (2023). Heavy rainfall modeling in an urban catchment area on the example of Szczecin, Gaz, Woda i Technika Sanitarna. pp.22-30. DOI:10.15199/17.2023.7.4.
  74. Willems, P. (2013). Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. Journal of Hydrology, 496, pp. 166–177. DOI:10.1016/j.jhydrol.2013.05.037.
  75. Wolfs, V. & Willems, P. (2016). Modular Conceptual Modelling Approach and Software for Sewer Hydraulic Computations. Water Resources Management, 31, 1, pp. 283–298. DOI:10.1007/s11269-016-1524-2.
  76. Wong B. P. & Kerkez B. (2016). Real-time environmental sensor data: an application to water quality using web services. Environmental Modelling and Software 84, pp. 505–517. DOI:10.1016/j.envsoft.2016.07.020.
  77. Wu, Y., She, D., Xia, J., Song, J., Xiao, T. & Zhou, Y. (2023). The quantitative assessment of impact of pumping capacity and LID on urban flood susceptibility based on machine learning. Journal of Hydrology, 617, 129116. DOI:10.1016/j.jhydrol.2023.129116.
  78. Yang, Y. & Chui, T. F. M. (2020). Modelling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods, Hydrol. And Earth Syst. Sci., 25,11, pp. 5839-5858. DOI:10.5194/hess-2020-460, in review, .
  79. Yao, L., Wei, W. & Chen, L. (2016). How does imperviousness impact the urban rainfall-runoff process under various storm cases? Ecological Indicators, 60, pp. 893–905. DOI:10.1016/j.ecolind.2015.08.041 10.1016/j.ecolind.2015.08.041.
  80. Yao, Y., Li, J., Jiang, Y. & Huang, G. (2023). Evaluating the response and adaptation of urban stormwater systems to changed rainfall with the CMIP6 projections. Journal of Environmental Management, 347, 1, 119135. DOI:10.1016/j.jenvman.2023.119135.
  81. Zawilski, M. & Sakson, G. (2013). Assessment of total suspended solid emission discharged via storm sewerage system from urban areas. OCHRONA SRODOWISKA, 35, 2, pp. 33-40.
  82. Zhang, K., Liu, Y., Deletic, A., McCarthy, D. T., Hatt, B. E., Payne, E. G. Chandrasena, G., Li, Y., Pham, T., Jamali, B., Daly, E., Fletcher, T.D. & Lintern, A. (2021). The impact of stormwater biofilter design and operational variables on nutrient removal-a statistical modelling approach. Water Research, 188, 116486.
  83. Zhou, Q. (2014). A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water, 6, 4, pp. 976–992. DOI:10.3390/w6040976.
Go to article

Authors and Affiliations

Krzysztof Barbusiński
1
ORCID: ORCID
Bartosz Szeląg
2
ORCID: ORCID
Anita Białek
2
ORCID: ORCID
Marek Kalenik
3
ORCID: ORCID
Tomáš Bakalár
4
ORCID: ORCID

  1. Department of Water and Wastewater Engineering, Silesian University of Technology, Gliwice, Poland
  2. Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Poland
  3. Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, Poland
  4. Institute of Earth Resources, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice,Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

Effective water resource management and reduction of water consumption require water utilities to minimize losses during the treatment process. As a result, backwash water produced during filtration is often the subject of research focused on its reuse within the water treatment system. This study was conducted at two large water treatment facilities, each with a capacity of 100,000 m3/day. The research focused on backwash water produced during the cleaning of sand filters. Before being reintroduced into the treatment process, the backwash water underwent pre-treatment involving UV disinfection followed by ultrafiltration. The effectiveness of various processes, including coagulation with sedimentation, microfiltration, ultrafiltration, and UV disinfection was assessed under optimal conditions, based on their ability to remove organic matter and microorganisms, which pose health risks when backwash water is recirculated. Additionally, the operational and capital costs of selected pre-treatment approaches were evaluated. The findings revealed that pre-treating backwash water with ultrafiltration membranes (UF), followed by UV disinfection, and reusing it in the treatment systems can reduce environmental impacts.
Go to article

Bibliography

  1. Achilli, A. (2023). Analysis of backwash settings to maximize net water production in an engineering-scale ultrafiltration system for water reuse, J. Water Process Eng., 53, 103761. DOI:10.1016/j.jwpe.2023.103761
  2. Alhussaini, M.A., Binger, Z.M., Souza-Chaves, B.M., Amusat, O.O., Park, J., Bartholomew, T.V., Anis, S.F., Hashaikeh, R. & Hilal, N. (2019). Microfiltration membrane processes: A review of research trends over the past decade, J. Water Process Eng., 32, 100941. DOI:10.1016/j.jwpe.2019.100941
  3. Arendze, S. & Sibiya, M. (2014). Filter backwash water treatment options, Journal of Water Reuse and Desalination, 4, 2, pp. 85-91. DOI: /10.2166/wrd.2013.131
  4. Arévalo, J., Ruiz, L.M., Parada-Albarracín, J.A., González-Pérez, D.M., Pérez, J., Moreno, B. & Gómez, M.A. (2012). Wastewater reuse after treatment by MBR. Microfiltration or ultrafiltration?, Desalination, 299, 22. DOI:10.1016/j.desal.2012.05.008
  5. Australian Water Association (2023). Water Reuse in Urban Landscaping. https://www.awa.asn.au/ (22.09.2024).
  6. Cescon, A. & Jiang, J. Q. (2020). Filtration process and alternative filter media material in water treatment, Water, 12, 12, 3377. DOI:10.3390/w12123377
  7. Chaudhry, R.M., Nelson, K.L. & Drewes, J.E. (2015). Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor, Environmental science & technology, 49, 5, pp. 2815-2822. DOI: 10.1021/es505332n
  8. Cheng, L.H., Xiong, Z.Z., Cai, S., Li, D.W. & Xu, X.H. (2020). Aeration-manganese sand filter-ultrafiltration to remove iron and manganese from water: Oxidation effect and fouling behavior of manganese sand coated film, Journal of Water Process Engineering, 38, 101621. DOI:10.1016/j.jwpe.2020.101621
  9. Cuartucci, M. (2020). Ultrafiltration, a cost-effective solution for treating surface water to potable standard, Water Practice & Technology, 15(2), 426-436. DOI:10.2166/wpt.2020.039
  10. Diwakar, A., Rituja, A., Shubhangi, G., Suvarna, A. & Ansari, Y. (2020). Treatment of Sand Filter Backwash Water from Water Treatment Plant, International Journal of Advanced Science and Technology, 29, 7, pp. 12130-12137.
  11. Ebrahimi, A., Amin, M.M., Pourzamani, H., Hajizadeh, Y., Mahvi, A.H., Mahdavi, M. & Rad, M.H.R. (2017). Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl 3 as a pre-treatment, Environmental monitoring and assessment, 189, pp. 1-15. DOI:10.1007/s10661-017-6091-3.
  12. Ebrahimi, A., Mahdavi, M., Pirsaheb, M., Alimohammadi, F. & Mahvi, A.H. (2017). Dataset on the cost estimation for spent filter backwash water (SFBW) treatment, Data in Brief, 15, pp. 1043-1047. DOI:10.1016/j.dib.2017.10.040
  13. Hofs, B., Ogier, J., Vries, D., Beerendonk, E.F. & Cornelissen, E.R. (2011). Comparison of ceramic and polymeric membrane permeability and fouling using surface water, Sep. Purif. Technol., 79, pp. 365–374. DOI:10.1016/j.seppur.2011.03.025
  14. Israel Water Authority, https://shituf.water.gov.il/#/ (22.09.2024).
  15. Jerroumi, S., Amarine, M. & Gourich, B. (2023). Technological trends in manganese removal from groundwater: A review, Journal of Water Process Engineering, 56, 104365. DOI:10.1016/j.jwpe.2023.104365
  16. Jibhakate, M.L., Bhorkar, M.P., Bhole, A.G. & Baitule, P.K. (2017). Reuse & recirculation of filter backwash water of water treatment water, Int. J. Eng. Res. Appl, 7, 4, pp. 60-63. DOI:10,9790/9622-0704016063
  17. Kang, J., Hao, X., Zhou, H. & Ding, R. (2021). An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect, Agricultural Water Management, 255, 107008. DOI: 10.1016/j.agwat.2021.107008
  18. Karimanzira, D., Went, J. & Neumann, F. (2021). Cleaning Strategies and Cost Modelling of Experimental Membrane-based Desalination Plants, International Journal, 9, 1, pp. 6-22. DOI:10.12691/ijefm-9-1-2
  19. Khilchevskyi, V. & Karamushka, V. (2021). Global water resources: distribution and demand, Clean Water and Sanitation, pp. 1-11. Cham: Springer International Publishing.
  20. Konieczny, K., Wszelaka-Rylik, M. & Macherzyński, B. (2019) Membrane processes innovation in environmental protection: Review, Arch. Environ. Protect., 45, pp. 20–29. DOI:10.24425/aep.2019.130238
  21. Liang, W. X., Duan, J., Beecham, S. & Mulcahy, D. (2018). Influence of spent filter backwash water recycling on pesticide removal in a conventional drinking water treatment process, Environ. Sci.: Water Res. Technol., 4, pp. 1057–1067. DOI:10.1039/C7EW00530J
  22. Luo, X., Zhang, B., Lu, Y., Mei, Y. & Shen, L. (2022). Advances in application of ultraviolet irradiation for biofilm control in water and wastewater infrastructure, Journal of Hazardous Materials, 421, 126682. DOI:10.1016/j.jhazmat.2021.126682
  23. Mahdavi, M., Ebrahimi, A., Azarpira, H., Tashauoei, H.R. & Mahvi, H.A. (2017). Dataset on the spent filter backwash water treatment by sedimentation, coagulation and ultrafiltration, Data in Brief, 15, pp. 916-921. DOI:10.1016/j.dib.2017.10.062
  24. Masotti, L. (2011). Depurazione Della Acque—Tecniche ed Impianti per il Trattamento Delle Acque di Rifiuto; Ed. Calderini, Milano, Italy 2011.
  25. Mazari, L. & Abdessemed, D. (2020). Feasibility of Reuse Filter Backwash Water as Primary/Aid Coagulant in Coagulation–Sedimentation Process for Tertiary Wastewater Treatment, Arabian Journal for Science and Engineering, 45, pp. 7409-7417. DOI:10.1007/s13369-020-04597-1
  26. Meese, A. F., Kim, D. J., Wu, X., Le, L., Napier, C., Hernandez, M. T. & Kim, J. H. (2021). Opportunities and challenges for industrial water treatment and reuse, ACS ES&T Engineering, 2, 3, pp. 465-488. DOI:10.1021/acsestengg.1c00282
  27. NEWater: Turning Wastewater into Safe, Clean Water 2023, https://www.pub.gov.sg/watersupply/fournationaltaps/newater (22.09.2024).
  28. Qian, Y., Shi, Y., Guo, J., Chen, Y., Hanigan, D. & An, D. (2023). Molecular characterization of disinfection byproduct precursors in filter backwash water from 10 drinking water treatment plants, Science of the Total Environment, 856, 159027. DOI:10.1016/j.scitotenv.2022.159027
  29. Qian, Y., Shi, Y., Guo, J., Chen, Y., Hanigan, D. & An, D. (2023). Molecular characterization of disinfection by product precursors in filter backwash water from 10 drinking water treatment plants, Science of The Total Environment, 856, 159027. DOI:10.1016/j.scitotenv.2022.159027
  30. Rani, C. N. & Karthikeyan, S. (2021). Synergic effects on degradation of a mixture of polycyclic aromatic hydrocarbons in a UV slurry photocatalytic membrane reactor and its cost estimation, Chemical Engineering and Processing-Process Intensification, 159, 108179. DOI:10.1016/j.cep.2020.108179
  31. Ruiz-Rosa, I., García-Rodríguez, F.J. & Mendoza-Jiménez, J. (2016). Development and application of a cost management model for wastewater treatment and reuse processes, Journal of cleaner production, 113, pp. 299-310. DOI:10.1016/j.jclepro.2015.12.044
  32. Silva, F. , Geraldes, A.M. & Albuquerque, A. (2022). Water reuse in a municipal sports center, 1st International FibEnTech Congress 10.18502/kms.v7i1.11624 http://hdl.handle.net/10198/26078
  33. Studziński, W., Poćwiardowski, W. & Osińska, W. (2021). Application of the swimming pool backwash water recovery system with the use of filter tubes, Molecules, 26, 21, 6620. DOI: 10.3390/molecules26216620
  34. Sukanya, K., Sivarajasekar, N. & Saranya, K. (2022). Spent filter backwash water treatment by coagulation followed by ultrafiltration, Industrial Wastewater Treatment: Emerg-ing Technologies for Sustainability, pp. 27-40. Cham: Springer International Publish-ing. DOI:10.1007/978-3-030-98202-7_2
  35. Suman, S., Singh, N.P., Sulekh, Ch. (2012). Effect of Filter Backwash Water when blends with Raw Water on Total Organic Carbon and Dissolve Organic Carbon Removal, Research Journal of Chemical Sciences, 10, 38-42.
  36. Torabi, M.S., Momeni, M., Robati A. & Yazdanpanah, N. (2024). Water quality in the reservoirs of seasonal river dams, Environment Protection Engineering, 50, 5. DOI:10.37190/epe240201
  37. Turan, M. (2023). Backwashing of granular media filters and membranes for water treatment: a review, AQUA—Water Infrastructure, Ecosystems and Society, 72, 3, pp. 274-298. DOI: 10.2166/aqua.2023.207
  38. Wolska, M., Kabsch-Korbutowicz, M., Rosińska, A., Solipiwko-Pieścik, A. & Urbańska-Kozłowska, H. (2024). The Use of Microfiltration for the Pretreatment of Backwash Water from Sand Filters, Materials, 17, 2819. DOI:10.3390/ma17122819
  39. Wolska, M., Kabsch-Korbutowicz, M., Solipiwko-Pieścik, A., Urbańska-Kozłowska, H. & Ferenc, Z. (2024). Assessing the feasibility of using ultrafiltration to recirculatebackwash water in a surface water treatment plant, Archives of Environmental Protection, 50, pp. 3-13. DOI:10.24425/aep.2024.150547
  40. Wolska, M., Solipiwko-Pieścik, A. & Urbańska-Kozłowska, H. (2024). Disinfection as a stabilization method for backwash water reuse, Desalination and Water Treatment, 317, 100101. DOI:10.1016/j.dwt.2024.100101
  41. Wolska, M., Urbańska-Kozłowska, H. & Solipiwko-Pieścik, A. (2025). An assessment of coagulation process efficiency as a pre-treatment for reusing filtration backwash in water treatment plants, Archives of civil engineering,71,1, pp.225-240. DOI:10.24425/ace.2025.153331
  42. Xie, Y., Zeng, L., Wang, P., Wu, X. & Feng, T. (2022). Water cost for water purification: Renewability assessment of a typical wastewater treatment plant in China, Journal of Cleaner Production, 349, 131474. DOI:10.1016/j.jclepro.2022.131474
  43. Yang, J., Monnot, M., Eljaddi, T., Ercolei, L., Simonian, L. & Moulin, P. (2022). Ultrafiltration as tertiary treatment for municipal wastewater reuse, Separation and Purification Technology, 272, 118921. DOI:10.1016/j.seppur.2021.118921
  44. Zhou, Z., Yang, Y., Li, X., Su, Z., Liu, Y., Ren, J. & Zhang, Y. (2015). Effect of recycling filter backwash water on characteristic variability of dissolved organic matter in coagulation sedimentation process, Desalination and Water Treatment, 53, pp. 48-56. DOI:10.1080/19443994.2013.836994
Go to article

Authors and Affiliations

Małgorzata Wolska
1
ORCID: ORCID
Juan Tomás García Bermejo
2
Antonio Vigueras Rodríguez
2
Francisco Javier Pérez De La Cruz
2
Małgorzata Kabsch-Korbutowicz
1
Halina Urbańska-Kozłowska
1
ORCID: ORCID
Agata Rosińska
3

  1. Wrocław University of Technology, Poland
  2. Politecnic University of Cartagena, Spain
  3. Czestochowa Technical University, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hydrogen sulphide (H2S) removal is a critical aspect of waste gas treatment, particularly in industries, municipalities, and agriculture. This study investigates the impact of pH and loading rate on the efficiency of hydrogen sulphide removal in biotrickling filters. Biological methods, acknowledged as Best Available Techniques (BAT), are gaining prominence due to their advantages over classical physicochemical methods. The research aims to elucidate the influence of pH levels and loading rates on the performance of biotrickling filters in mitigating hydrogen sulphide emissions. The tests were conducted at constant pH values of 1, 2, 3 and 4, which were automatically maintained using a pump dispensing NaOH solution. The H2S concentrations at the inlet to the column were selected from a range of 60 – 300 ppm. During the study, the proportions of various groups of microorganisms (mesophilic bacteria for environmental application, potentially pathogenic mesophilic bacteria and microscopic fungi), the loading rate (LR), elimination capacity (EC), and removal efficiency (RE) were determined at pilot-scale level, with gas volume flow rates of 40 L*min-1 During the series of measurements, a maximum elimination capacity of the biotrickling filter of 224 g H2S/(m3ˑh), with nearly 100 % H2S removal, was achieved.
Go to article

Bibliography

  1. Abdollahi, M. & Hosseini, A. (2014). Hydrogen Sulfide, in: Encyclopedia of Toxicology, Elsevier.
  2. Agency for Toxic Substances and Disease Registry (ATSDR) (2008). Health consultation, exposure investigation report for airborne exposures to hydrogen sulfide
  3. Beigi, B.H.M. (2019). Odour Treatment in Sewage Treatment Works. Engineering Doctorate Thesis, University of Surrey, Centre for Environment and Sustainability. URN: 6111100. DOI:10.15126/thesis.00853715
  4. Beigi, B.H.M., Thorpe, R.B., Ouki, S., Winter, P. & Waalkens, A. (2019). Hydrogen sulphide and VOC removal in biotrickling filters: Comparison of data from a full-scale, low-emission unit with kinetic models, Chemical Engineering Science, 208, pp. 1–12. DOI:10.1016/j.ces.2019.06.012
  5. Chen, Y., Wang, X., He, S., Zhu, S. & Shen, S. (2016). The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H₂S from air, Journal of Environmental Management, 165, pp. 11–16. DOI:10.1016/j.jenvman.2015.09.008
  6. Cox, H.H.J. & Deshusses, M.A. (2001). Biotrickling Filters. in: Kennes, C. & Veiga, M.C. (eds.), Bioreactors for Waste Gas Treatment, Springer Science+Business Media, Dordrecht 2001.
  7. Danila, V., Zagorskis, A. & Januševičius, T. (2022). Effects of water content and irrigation of packing materials on the performance of biofilters and biotrickling filters: A review, Processes, 10, 1304. DOI:10.3390/pr10071304
  8. Dobrzyniewski, D., Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2023). Process control of air stream deodorization from vapors of VOCs using a gas sensor matrix conducted in the biotrickling filter (BTF), Archives of Environmental Protection, 49(2), pp. 85–94. DOI:10.24425/aep.2023.145900
  9. Dobslaw, D., Woiski, C., Winkler, F., Engesser, K.H. & Dobslaw, C. (2018). Prevention of clogging in a polyurethane foam packed biotrickling filter treating emissions of 2-butoxyethanol, Journal of Cleaner Production, 200, pp. 609–621. DOI:10.1016/j.clepro.2018.07.248
  10. Dobslaw, D. & Ortlinghaus, O. (2020). Biological Waste Air and Waste Gas Treatment: Overview, Challenges, Operational Efficiency, and Current Trends, Sustainability, 12(20), pp. 1–29. DOI:10.3390/su12208577
  11. Dobslaw, D. (2023). Integrated treatment process for industrial gas effluent. in: Ho, Lau, Chakraborty, Natarajan & Al Arni (eds.), Advanced Technologies for Solid, Liquid, and Gas Treatment, CRC-Press Taylor & Francis Group, Boca Raton. DOI:10.1201/9781003260738
  12. Dumont, E. (2017). Modelling of the performances of a full-scale biotrickling filter treating high H₂S concentration, Journal of Environmental Chemical Engineering, 5(3), pp. 2833–2839. DOI:10.1016/j.jece.2017.05.039
  13. Estrada, J.M., Kraakman, B., Lebrero, R. & Muñoz, R. (2012). A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies, Biotechnology Advances, 30, pp. 1354–1363. DOI:10.1016/j.biotechadv.2012.02.010
  14. Fernández, M., Ramírez, M., Pérez, R.M., Gómez, J.M. & Cantero, D. (2013). Hydrogen suphide removal from biogas by an anoxic biotrickling filter packed with Pall rings, Chemical Engineering Journal, 225, pp. 456–463. DOI:10.1016/j.cej.2013.04.020
  15. Fortuny, M., Baeza, J.A., Gamisans, X., Casas, C., Lafuente, J., Deshusses, M.A. & Gabriel, D. (2008). Biological sweetening of energy gases mimics in biotrickling filters, Chemosphere, 71, pp. 10–17. DOI:10.1016/j.chemosphere.2007.10.058
  16. Gabriel, D. & Deshusses, M.A. (2003). Performance of a biotrickling filter full-scale treating H₂S at a gas contact time of 1.6 to 2.2 seconds, Environmental Progress, 22(2), pp. 111–118. DOI:10.1002/ep.670220213
  17. González-Sánchez, A., Revah, S. & Deshusses, M.A. (2008). Alkaline biofiltration of H₂S odors, Environmental Science & Technology, 42(19), pp. 7398–7404. DOI:10.1021/es800437f
  18. Gupta, A.K., Ibrahim, S. & Al Shoaibi, A. (2016). Advances in sulfur chemistry for treatment of acid gases, Progress in Energy and Combustion Science, 54, pp. 65–92. DOI:10.1016/j.pecs.2015.11.001
  19. Habeeb, O.A., Kanthasamy, R., Ali, G.A.M., Sethupathi, S. & Bin Mohd Yunus, R. (2018). Hydrogen sulfide emission sources, regulations, and removal techniques: a review, Reviews in Chemical Engineering, 34(6), pp. 837–854. DOI:10.1515/revce-2017-0004
  20. Haosagul, S., Prommeenate, P., Hobbs, G. & Pisutpaisal, N. (2019a). Sulfur-oxidizing bacteria in full-scale biogas cleanup system of ethanol industry, Renewable Energy, pp. 1–10. DOI:10.1016/j.renene.2019.11.140
  21. Haosagul, S., Prommeenate, P., Hobbs, G. & Pisutpaisal, N. (2019b). Sulfide-oxidizing bacteria community in full-scale bioscrubber treating H₂S in biogas from swine anaerobic digester, Renewable Energy, pp. 1–10. DOI:10.1016/j.renene.2019.11.139
  22. Heaney, C.D., Wing, S., Campbell, R.L., Caldwell, D., Hopkins, B., Richardson, D. & Yeatts, K. (2011). Relation between malodor, ambient hydrogen sulfide, and health in a community bordering a landfill, Environmental Research, 111, pp. 847–852. DOI:10.1016/j.envres.2011.05.021
  23. Iranpour, R., Cox, H.H.J., Deshusses, M.A. & Schroeder, E.D. (2005). Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal, Environmental Progress, 24(3), pp. 254–267. DOI:10.1002/ep.10077
  24. Kasperczyk, D. & Urbaniec, K. (2015). Application of a compact trickle-bed bioreactor to the biodegradation of pollutants from the ventilation air in a copper-ore mine, Journal of Cleaner Production, 87, pp. 971–976. DOI:10.1016/j.jclepro.2014.09.009
  25. Kasperczyk, D., Urbaniec, K., Barbusinski, K., Rene, E.R. & Colmenares-Quintero, R.F. (2019). Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant, Journal of Environmental Management, 236, pp. 413–419. DOI:10.1016/j.jenvman.2019.01.106
  26. Kawase, Y., Hirata, A., Kojima, T., Ohmori, S., Akutagawa, H., Uehara, K., Iwata, K., Nakajima, T. & Yamamoto, K. (2014). Improvement of biodegradation in compact co-current biotrickling filter by high recycle liquid flow rate: Performance and biodegradation kinetics of ammonia removal, Process Biochemistry, 49, pp. 1733–1740. DOI:10.1016/j.procbio.2014.06.008
  27. Ko, J.H., Xu, Q. & Jang, Y.-C. (2015). Emissions and control of hydrogen sulfide at landfills: A review, Critical Reviews in Environmental Science and Technology, 45, pp. 1–28. DOI:10.1080/10643389.2015.1010427
  28. Lambert, T.W., Goodwin, V.M., Stefani, D. & Strosher, L. (2006). Hydrogen sulfide (H₂S) and sour gas effects on the eye: A historical perspective, Science of The Total Environment, 367, pp. 1–22. DOI:10.1016/j.scitotenv.2006.01.034
  29. Lafita, C., Penya-Roja, J.M., Sempere, F., Waalkens, A. & Gabaldon, C. (2012b). Hydrogen sulfide and odor removal by field-scale biotrickling filters: Influence of seasonal variations of load and temperature, Journal of Environmental Science and Health, Part A, 47, pp. 970–978. DOI:10.1080/10934529.2012.667302
  30. López, M.E., Rene, E.R., Malhautier, L., Rocher, J., Bayle, S., Veiga, M.C. & Kennes, C. (2013). One-stage biotrickling filter for the removal of a mixture of volatile pollutants from air: Performance and microbial community analysis, Bioresource Technology, 138, pp. 245–251. DOI:10.1016/j.biortech.2013.03.136
  31. López, L.R., Bezerra, T., Mora, M., Lafuente, J. & Gabriel, D. (2016). Influence of trickling liquid velocity and flow pattern in the improvement of oxygen transport in aerobic biotrickling filters for biogas desulfurization, Journal of Chemical Technology and Biotechnology, 91, pp. 1031–1039. DOI:10.1002/jctb.4696
  32. McNevin, D. & Barford, J. (2000). Biofiltration as an odour abatement strategy, Biochemical Engineering Journal, 5, pp. 231–242. DOI:10.1016/s1369-703x(00)00064-4
  33. Melse, R.W., Ploegaert, J.P.M. & Ogink, N.W.M. (2012). Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations, Biosystems Engineering, 113, pp. 242–252. DOI:10.1016/j.biosystemseng.2012.08.010
  34. Montebello, A.M., Mora, M., López, L.R., Bezerra, T., Gamisans, X., Lafuente, J., Baeza, M. & Gabriel, D. (2014). Aerobic desulfurization of biogas by acidic biotrickling filtration in a randomly packed reactor, Journal of Hazardous Materials, 264, pp. 516–523. DOI:10.1016/j.jhazmat.2013.11.016
  35. Parzentna-Gabor, A., Kasperczyk, D., Barbusinski, K., Rene, E.R. & Urbaniec, K. (2023). Odor and volatile organic compounds biotreatment using compact trickle bed bioreactors (CTBB) in a wastewater treatment plant, Bioresource Technology, 376, 128876. DOI:10.1016/j.biortech.2023.128876
  36. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka, I. (2022). Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odor emissions, Archives of Environmental Protection, 48(3), pp. 3–20. DOI:10.24425/aep.2022.142685
  37. Quijano, G., Figueroa-González, I. & Buitrón, G. (2018). Fully aerobic two-step desulfurization process for purification of highly H₂S-laden biogas, Journal of Chemical Technology & Biotechnology, 93, pp. 3553–3561. DOI:10.1002/jctb.5732
  38. Rodriguez, G., Dorado, A.D., Fortuny, M., Gabriel, D. & Gamisans, X. (2014). Biotrickling filters for biogas sweetening: Oxygen transfer improvement for a reliable operation, Process Safety and Environmental Protection, 92, pp. 261–268. DOI:10.1016/j.psep.2013.02.002
  39. Romanik, E., Miller, U., Dehghani, M. & Sówka, I. (2023). Preliminary studies on the optimisation of the operating conditions of the BTF for the hydrogen sulfide removal. in: Korzystka-Muskała, M. (ed.), 4th Symposium "Air Quality and Health": Book of Abstracts, Institute of Geography and Regional Development, University of Wrocław, pp. 106–106, Wrocław 2023.
  40. Rubright, S.L.M., Pearce, L.L. & Peterson, J. (2017). Environmental toxicology of hydrogen sulfide, Nitric Oxide, 71, pp. 1–13. DOI:10.1016/j.niox.2017.09.011
  41. Runye, Z., Kennes, C., Zhuowei, C., Lichao, L., Jianming, Y. & Jianmeng, C. (2015). Styrene removal in a biotrickling filter and a combined UV-biotrickling filter: Steady- and transient-state performance and microbial analysis, Chemical Engineering Journal, 275, pp. 168–178. DOI:10.1016/j.cej.2015.04.016
  42. Sakuma, T., Hattori, T. & Deshusses, M.A. (2006). Comparison of different packing materials for the biofiltration of air toxics, Journal of the Air & Waste Management Association, 56(11), pp. 1567–1575. DOI:10.1080/10473289.2006.10464564
  43. Schmidt, T. & Anderson, W.A. (2017). Biotrickling filtration of air contaminated with 1-butanol, Environments, 4(3), 57. DOI:10.3390/environments4030057
  44. Sempere, F., Winter, P., Waalkens, A., Hühnert, N., Cranshaw, I., Beigi, B. & Thorpe, R.B. (2018). Treatment of discontinuous emission of sewage sludge odours by a full-scale biotrickling filter with an activated carbon polishing unit, Water Science & Technology, pp. 1–8. DOI:10.2166/wst.2018.203
  45. Smreczak, B., Klimkowicz-Pawlas, A. & Maliszewska-Kordybach, B. (2013). Bioavailability of persistent organic pollutants (POPs) in soils, Studia i Raporty IUNG-PIB, 35(9), pp. 137–153. (in Polish)
  46. Sorokin, D.Y. & Kuenen, J.G. (2005). Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes, FEMS Microbiology Reviews, 29(4), pp. 685–702. DOI:10.1016/j.femsre.2004.10.005
  47. Spennati, F., Mannucci, A., Mori, G., Giordano, C. & Munz, G. (2017). Moving bed bio tricling filters: An innovative solution for hydrogen sulphide removal from gas streams, Desalination and Water Treatment, 61, pp. 215–221. DOI:10.5004/dwt.2016.11138
  48. Tayar, S.P., Guerrero, R.D.B.S., Hidalgo, L.F. & Bevilaqua, D. (2019). Evaluation of biogas biodesulfurization using different packing materials, Chemical Engineering, 3(1), p. 27. DOI:10.3390/chemengineering3010027
  49. Trisakti, B., Matseh, I., Sidabutar, R., Azis, A., Nasution, J.A. & Pasaribu, K. (2024). Removal of H₂S from rich solution in absorption process by utilizing Thiobacillus sp., E3S Web of Conferences, 519, 04013. DOI:10.1051/e3sconf/202451904013
  50. Tsang, Y.F., Wang, L. & Chua, H. (2015). Simultaneous hydrogen sulphide and ammonia removal in a biotrickling filter: Crossed inhibitory effects among selected pollutants and microbial community change, Chemical Engineering Journal, 281, pp. 389–396. DOI:1016/j.cej.2015.06.107
  51. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste, Archives of Environmental Protection, 46(3), pp. 60–68. DOI:10.24425/aep.2020.134536
  52. Wu, J., Jian, X., Jin, Z., Yan, S. & Zhang, J. (2020). The performance and microbial community in a slightly alkaline biotrickling filter for the removal of high concentration H₂S from biogas, Chemosphere, 249, 126127. DOI:10.1016/j.chemosphere.2020.126127
  53. Ying, S., Kong, X., Cai, Z., Man, Z., Xin, Y. & Liu, D. (2020). Interactions and microbial variations in a biotrickling filter treating low concentrations of hydrogen sulfide and ammonia, Chemosphere, 126931. DOI:10.1016/j.chemosphere.2020.126931
  54. Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N. & Verstraete, W. (2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review, Water Research, 42, pp. 1–12. DOI:10.1016/j.watres.2007.07.013
  55. Zhang, M., Xue, Q., Zhang, S., Zhang, Y., Yin, W., Zhang, Y. & Liu, Y. (2021). Development of whole-cell catalyst system for sulfide biotreatment based on the engineered haloalkaliphilic bacterium, AMB Express, 11, 142. DOI:10.1186/s13568-021-01302-9
Go to article

Authors and Affiliations

Urszula Miller
1
ORCID: ORCID
Elżbieta Romanik
1
ORCID: ORCID
Izabela Sówka
1
ORCID: ORCID
Milad Dehghani
2

  1. Wrocław University of Science and Technology, Poland
  2. Tholander Ablufttechnik GmbH, Germany
Download PDF Download RIS Download Bibtex

Abstract

Particulate matter (PM) is released during waste management operations as a result of various mechanical and chemical processes. The emission of specific chemical compounds is influenced by transformations occurring during the phases of aerobic waste biodegradation. This study provides a thorough analysis of particle number concentrations (PNC) and PM concentrations measured at a composting facility handling organic waste, with a focus on the detailed fractionation of PM to identify which fractions predominate in different areas of the composting site. PNC measurements were conducted using an Optical Particle Sizer, which detects the number of particles within the 0.3 – 10 μm size range through single-particle counting. Differences in PNC observed between the compost piles and other areas of the facility were minimal. The average mass concentrations of PM1, PM2.5, and PM10 on the waste piles were 1.71 μg/m3, 4.5 μg/m3, and 19.77 μg/m3, respectively. Similar to PNC, higher PM concentrations were observed for fresh and maturing compost piles, with increases of up to 86% compared to mature piles at the end of the process. These findings provide critical insights into the distribution of airborne particles within a biodegradable waste composting facility, an environment with significant implications for environmental monitoring and public health.
Go to article

Bibliography

  1. Barkhordari, A., Guzman, M.I., Ebrahimzadeh, G., Sorooshian, A., Delikhoon, M., Rastani, M.J., Golbaz, S., Fazlzadeh, M., Nabizadeh, R. & Baghani, A.N. (2022). Characteristics and health effects of particulate matter emitted from a waste sorting plant, Waste Management, 150, pp. 244–256. DOI:10.1016/j.wasman.2022.07.012
  2. Bounakhla, Y., Benchrif, A., Costabile, F., Tahri, M., El Gourch, B., El Hassan, E.K., Zahry, F. & Bounakhla, M. (2023). Overview of PM10, PM2.5 and BC and Their Dependent Relationships with Meteorological Variables in an Urban Area in Northwestern Morocco, Atmosphere, 14, 1, 162. DOI:10.3390/atmos14010162
  3. Chalvatzaki, E., Aleksandropoulou, V., Glytsos, T. & Lazaridis, M. (2012). The effect of dust emissions from open storage piles to particle ambient concentration and human exposure, WASTE MANAGEMENT, 32, 12, pp. 2456–2468. DOI:10.1016/j.wasman.2012.06.005
  4. Chalvatzaki, E., Aleksandropoulou, V. & Lazaridis, M. (2013). A Case Study of Landfill Workers Exposure and Dose to Particulate Matter-Bound Metals, Water, Air, & Soil Pollution, 225, 1, 1782. DOI:10.1007/s11270-013-1782-z
  5. Chalvatzaki, E., Kopanakis, I., Kontaksakis, M., Glytsos, T., Kalogerakis, N. & Lazaridis, M. (2010). Measurements of particulate matter concentrations at a landfill site (Crete, Greece), Waste Management, 30, 11, pp. 2058–2064. DOI:10.1016/j.wasman.2010.05.025
  6. Ghobakhloo, S., Mostafaii, G.R., Khoshakhlagh, A.H., Moda, H.M. & Gruszecka-Kosowska, A. (2024). Health risk assessment of heavy metals in exposed workers of municipal waste recycling facility in Iran, Chemosphere, 346, 140627. DOI:10.1016/j.chemosphere.2023.140627
  7. Khoshakhlagh, A.H., Ghobakhloo, S., Peijnenburg, W.J.G.M., Gruszecka-Kosowska, A. & Cicchella, D. (2024a). To breathe or not to breathe: Inhalational exposure to heavy metals and related health risk. Sci Total Environ., 1, 932:172556. DOI:10.1016/j.scitotenv.2024.172556.
  8. Khoshakhlagh A.H., Mohammadzadeh M. & Gruszecka-Kosowska A. (2024b). The preventive and carcinogenic effect of metals on cancer: a systematic review. BMC Public Health, 1, 24. DOI:10.1186/s12889-024-19585-5.
  9. Ghobakhloo, S., Khoshakhlagh, A.H., Mostafaii G.R. & Carlsen L. (2025). Biomonitoring of metals in the blood and urine of waste recyclers from exposure to airborne fine particulate matter (PM2.5), Journal of Environmental Health Science and Engineering, 23, 2. DOI: DOI:10.1007/s40201-024-00924-y
  10. Huang, X. (2023). The Impact of PM10 and Other Airborne Particulate Matter on the Cardiopulmonary and Respiratory Systems of Sports Personnel under Atmospheric Exposure, Atmosphere, 14, 11, 1697. DOI:10.3390/atmos14111697
  11. Ibor, O.R., Khan, E.A. & Arkuwe, A. (2023). A bioanalytical approach for assessing the effects of soil extracts from solid waste dumpsite in Calabar (Nigeria) on lipid and estrogenic signaling of fish Poeciliopsis lucida hepatocellular carcinoma-1 cells in vitro and in vivo African catfish (Clarias gariepinus), Journal of Toxicology and Environmental Health. Part A, 86, 20, pp. 774–789. DOI:10.1080/15287394.2023.2240839
  12. Juda-Rezler, K., Reizer, M., Maciejewska, K., Błaszczak, B. & Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site, Science of The Total Environment, 713, 136729. DOI:10.1016/j.scitotenv.2020.136729
  13. Juda-Rezler, K., Reizer, M. & Oudinet, J.-P. (2011). Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006, Atmospheric Environment, 45, 36, pp. 6557–6566. DOI:10.1016/j.atmosenv.2011.08.020
  14. Madhwal, S., Prabhu, V., Sundriyal, S. & Shridhar, V. (2020). Distribution, characterization and health risk assessment of size fractionated bioaerosols at an open landfill site in Dehradun, India, Atmospheric Pollution Research, 11, 1, pp. 156–169. DOI:10.1016/j.apr.2019.10.002
  15. Mahato D., Sankar T.K., Ambade B., Mohammad F., Soleiman A.A. & Gautam S. (2023). Burning of Municipal Solid Waste: An Invitation for Aerosol Black Carbon and PM2.5 Over Mid–Sized City in India, Aerosol Science and Engineering, 7, pp 341-354. DOI:10.1007/s41810-023-00184-7
  16. Pascale, E., Franchitti, E., Zanchi, N., Anedda, E., Bonetta, S. & Traversi, D. (2022). Size-Fractionated PM10 and Bioaerosol Indicator Development by Different Methods in Composting Plants for Risk Assessment, Frontiers in Environmental Science, 10, 777598. DOI:10.3389/fenvs.2022.777598
  17. Pileco Cappelleti, C., Santos Silva, K.T., Rodrigues-Conrad, K., Grams, K.C., Kottwitz da Silva, I., Frielink, A.P., da Rocha Abdallah, S., de Fátima Colet, C., Bortolotto, J.W., Bonfanti-Azzolin, G. & Migliorini Parisi, M. (2023). Cytotoxic and oxidative changes in individuals occupationally exposed to recyclable municipal solid waste, Journal of Toxicology and Environmental Health, Part A, 86, 23, pp. 898–908. DOI:10.1080/15287394.2023.2256782
  18. Priyanka, D., Kamdi, P., Bafana, A., Panuganti, S., Sivanesan, S., Kumar, A. & Kannan, K. (2023). Prevalence, Dispersion and Nature of Bioaerosols over a Solid Landfill Site in Central India, Aerosol and Air Quality Research, 23, 220431. DOI:10.4209/aaqr.220431
  19. Purdy, C.W., Clark, R.N. & Straus, D.C. (2009). Ambient and indoor particulate aerosols generated by dairies in the south-ern High Plains, Journal of Dairy Science, 92, 12, pp. 6033–6045. DOI:10.3168/jds.2009-2498
  20. Reizer, M., Maciejewska, K., Błaszczak, B., Klejnowski, K. & Juda-Rezler, K. (2025). PM10 source apportionment in two different urban sites in Southern Poland, Archives of Environmental Protection, 51, 1, pp.116-134. DOI:10.24425/aep.153755
  21. Singh A. (2023). Municipal solid waste management models: a review study to evaluate the conceptual framework for developing nations, International Journal of Environment and Waste Management, 30, 3, pp 303-323. DOI:10.1504/IJEWM.2022.128222
  22. Singh A., Mukhopadhyay D., Sarkar J.P. & Dutta S. (2014). Studies on Effect of Plastic on Biodegradation of Vegetable Solid Market Waste Through Detailed Analysis of Leachate, The Journal of Solid Waste Technology and Management, 40, 3, pp: 266-284. DOI:10.5276/JSWTM.2014.266
  23. Singh, A. & Raj, P. (2018). Segregation of waste at source reduces the environmental hazards of municipal solid waste in Patna, India, Archives of Environmental Protection, 44, 4, pp. 96–110. DOI:10.24425/aep.2018.122306
  24. Siodełko, R. & Boruszko, D. (2024). Numerical model for simulating the hydraulic parameters of the aeration system ensuring equal oxygenation of the compost heap, Archives of Environmental Protection, 50, 1, pp. 87-94. DOI:10.24425/aep.2024.149435
  25. Szyłak-Szydłowski, M. & Kos, W. (2024). Application of Sensory Methods to Evaluate the Effectiveness of Solutions to Reduce the Exposure to Odour Nuisance and Ammonia Emissions from the Compost Heaps, Sensors, 24, 13, 4200. DOI:10.3390/s24134200
  26. Urbanowicz, T., Skotak, K., Olasińska-Wiśniewska, A., Filipiak, K.J., Bratkowski, J., Wyrwa, M., Sikora, J., Tyburski, P., Krasińska, B., Krasiński, Z., Tykarski, A. & Jemielity, M. (2024). Long-Term Exposure to PM10 Air Pollution Exaggerates Progression of Coronary Artery Disease, Atmosphere, 15, 2, 216. DOI:10.3390/atmos15020216
  27. Vega, E., Mugica, V., Reyes, E., Sánchez, G., Chow, J.C. & Watson, J.G. (2001). Chemical composition of fugitive dust emitters in Mexico City, Atmospheric Environment, 35, 23, pp. 4033–4039. DOI:10.1016/S1352-2310(01)00164-9
  28. Viegas, S., Almeida-Silva, M. & Viegas, C. (2014). Occupational exposure to particulate matter in 2 Portuguese waste-sorting units, International Journal of Occupational Medicine and Environmental Health, 27, 5, pp. 854–862. DOI:10.2478/s13382-014-0310-8
  29. Wong, M.W., Tzeng, S.-Y., Mo, H.-F. & Su, W. (2024). Impact of COVID-19 on PM2.5 concentrations in Singapore, Indonesia, and Thailand: Cluster Analysis and Generalized Additive Mixed Models, Archives of Environmental Protection, 50, 4, pp. 116–126. DOI:10.24425/aep.2024.152901
  30. Yang, Z., Mahendran, R., Yu, P., Xu, R., Yu, W., Godellawattage, S., Li, S. & Guo, Y. (2022). Health Effects of Long-Term Exposure to Ambient PM2.5 in Asia-Pacific: A Systematic Review of Cohort Studies, Current Environmental Health Reports, 9, 2, pp. 130–151. DOI:10.1007/s40572-022-00344-w
Go to article

Authors and Affiliations

Wojciech Kos
1
Magdalena Reizer
1
ORCID: ORCID
Mirosław Szyłak-Szydłowski
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Environmental Enginering, Poland
Download PDF Download RIS Download Bibtex

Abstract

Plant and crustacean microbiotests were assessed for their suitability in evaluating soil and groundwater contamination with ethylbenzene (EB) following a railway accident. Bioassays using Lepidium sativum, Sinapis alba, Sorghum saccharatum, Heterocypris incongruens, and Thamnocephalus platyurus were conducted to measure acute toxicity in both naturally and artificially contaminated podzolic soils. Results of direct contact tests showed significant correlations between toxicity endpoints and EB concentrations. In naturally contaminated soils (EB: 67–2865 mg.kg-1), seed germination decreased by 17–52%, and root growth by 55–70%. L. sativum and H. incongruens exhibited the highest sensitivity. T. platyurus also responded to EB in soil pore water and groundwater, although only temporary narcotic effects were observed at lower concentrations (≤76 mg.dm-3). In contrast, artificially spiked soils did not affect seed germination but inhibited root elongation and crustacean growth. These findings highlight the influence of environmental factors, such as contamination duration and soil moisture, on EB toxicity and support the application of microbiotests in evaluating contaminated soils.
Go to article

Bibliography

  1. Aivalioti, M., Vamvasakis, I. & Gidarakos, E. (2010). BTEX and MTBE adsorption onto raw and thermally modified diatomite. Journal of Hazardous Materials, 178, 1, pp. 136–143. DOI:10.1016/j.jhazmat.2010.01.053
  2. Albergaria, J.T., da Conceição, M., Alvim-Ferraz, M. & Delerue-Matos, M.C.F. (2010). Estimation of pollutant partition in sandy soils with different water contents. Environmental Monitoring and Assessment, 171, pp. 171–180. DOI:10.1007/s10661-009-1269-y
  3. ATSDR. Toxicological Profile for Ethylbenzene. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2010 Nov. 6, Potential for human exposure. https://www.ncbi.nlm.nih.gov/books/NBK600919
  4. Bahar, M.M., Samarasinghe, S.V.A.Ch., Bekele, D. & Naidu, R. (2024). Residual hydrocarbons in long‑term contaminated soils: implications to risk‑based management. Environmental Science and Pollution Research, 31, pp. 22759–22773. DOI:10.1007/s11356-024-32593-7
  5. Baker, J.A., Matheson, G., Gilron, G. & DeForest, D.K. (2022). Evaluation of Sublethal Toxicity of Nitrite to a Suite of Aquatic Organisms in Support of the Derivation of a Chronic Environmental Water Quality Benchmark. Archives of Environmental Contamination and Toxicology, 83, pp. 1–12. DOI:10.1007/s00244-022-00941-8
  6. Balseiro-Romero, M., Kidd, P.S. & Monterroso, C. (2016). Leachability of volatile fuel compounds from contaminated soils and the effect of plant exudates: A comparison of column and batchleaching tests. Journal of Hazardous Materials, 304, pp. 481-489. DOI:10.1016/j.jhazmat.2015.11.017
  7. Bergomi, A., Mangia, C., Fermo, P. Genga, A., Comite, V., Guadagnini, S. & Ielpo, P. (2024). Outdoor trends and indoor investigations of volatile organic compounds in two high schools of southern Italy. Air Quality, Atmosphere and Health, 17, pp. 1325–1340. DOI:10.1007/s11869-024-01509-2
  8. Blaise, C. & Gagné, F. (2009). Bioassays and biomarkers, two pillars of ecotoxicology: past, present and prospective uses. Fresenius Environmental Bulletin, 18, 2, pp. 135-139.
  9. Bobra, A.M., Shiu, W.Y. & Mackay, D. (1983). A predictive correlation for the acute toxicity of hydrocarbons and chlorinated hydrocarbons to the water flea (Daphnia magna). Chemosphere, 12, pp. 1121-1129. DOI:10.1016/0045-6535(83)90118-2
  10. Czerniawska-Kusza, I. & Kusza, G. (2011). The potential of the Phytotoxkit microbiotest for hazard evaluation of sediments in eutrophic freshwater ecosystems. Environmental Monitoring and Assessment, 179, pp. 113–121. DOI: 10.1007/s10661-010-1722-y
  11. Di Marzio, W. & Saenz, M.E. (2006). QSARS for aromatic hydrocarbons at several trophic levels. Environmental Toxicology 21, 2, pp. 118-124. DOI:10.1002/tox.20163
  12. Domínguez-Rodríguez, V.I., Adams, R.H., Sánchez-Madrigal, F., de los S. Pascual-Chablé, J. & Gómez-Cruz, R. (2020). Soil contact bioassay for rapid determination of acute toxicity with Eisenia foetida. Heliyon, 6, 1, e03131. DOI:10.1016/j.heliyon.2019.e03131
  13. Durmusoglu, E., Taspinar, F. & Karademir, A. (2010). Health risk assessment of BTEX emission in the landfill environment. Journal of Hazardous Materials, 176, pp. 870-877. DOI:10.1016/j.jhazmat.2009.11.117
  14. Gross, S.A., Avens, H.J., Banducci, A.M., Sahmel, J., Panko, J.M. & Tvermoes, B.E. (2013). Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations. Journal of the Air & Waste Management Association, 63, 4, pp. 424–432. DOI:10.1080/10962247.2012.759166
  15. Hazrati, S., Rostami, R., Farjaminezhad, M. & Fazlzadeh, M. (2016). Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran. Atmospheric Environment, 132, pp. 91-97. DOI:10.1016/j.atmosenv.2016.02.042
  16. He, Y., Jiang, R. & Hou, X. (2023). Responses of maize germination, root morphology and leaf trait to characteristics of lead pollution: a case study. International Journal of Coal Science & Technology, 10, 12. DOI:10.1007/s40789-023-00565-w
  17. Hentati, O., Lachhab, R., Ayadi, M. & Ksibi, M. (2013). Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environmental Monitoring and Assessment, 185, pp. 2989-2998. DOI:10.1007/s10661-012-2766-y
  18. Huang, M., Zhang, W., Hao, L., Wang, Z., Fang, L., Kong, R., Shan, X., Liu, F. & Sheng, L. (2010). Experimental study of photooxidation products of ethylbenzene. Journal of Environmental Sciences, 22, 10, pp. 1570–1575. DOI:10.1016/S1001-0742(09)60291-6
  19. Hubálek, T., Vosáhlová, S., Matějů, V., Kováčová, N. & Novotny, C. (2007). Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study. Archives of Environmental Contamination and Toxicology, 52, pp. 1–7. DOI:10.1007/s00244-006-0030-6
  20. IARC. International Agency for Research on Cancer (IARC), 2000. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Industrial Chemicals, Vol. 77, IARC, Lyon, France.
  21. Insam, H. & Seewald, M.S.A. (2010). Volatile organic compounds (VOCs) in soils. Biology and Fertility of Soils, 46, pp. 199–213. DOI:10.1007/s00374-010-0442-3
  22. LeBlanc, G.A. (1980). Acute toxicity of priority pollutants to water flea (Daphnia magna). Bulletin of Environmental Contamination and Toxicology, 24, pp. 684-691.
  23. Loureiro, S., Ferreira, A.L.G.. Soares, A.M.V.M. & Nogueira, A.J.A. (2005). Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere 61, pp. 168–177. DOI:10.1016/j.chemosphere.2005.02.070
  24. Łaszczyca, P., Nakonieczny, M. & Kostecki, M. (2023). Ecotoxicological biotests as tools for continuous monitoring of water quality in dam reservoir. Archives of Environmental Protection, 49, 1, pp. 25-38. DOI:10.24425/aep.2023.144734
  25. Masten, L.W., Boeri, R.L. & Walker, J.D. (1994). Strategies employed to deteremine the acute aquatic toxicity of ethyl benzene, a highly volatile, poorly water-soluble chemical. Ecotoxicology and Environmental Safety, 27, 3, pp. 335-348. DOI:10.1006/eesa.1994.1027
  26. Oleszczuk, P., Malara, A., Jośko, I. & Lesiuk, A. (2012). The phytotoxicity changes of sewage sludge-amended soils. Water, Air, & Soil Pollution, 223, pp. 4937–4948. DOI:10.1007/s11270-012-1248-8
  27. Ostracodtoxkit F. (2001). Chronic Direct Contact Sediment Toxicity Test. Standard operation procedure (pp. 1–36). Nazareth: MicroBioTests Inc.
  28. Paradelo, R., Virto, I. & Chenu, C. (2015). Net effect of liming on soil organic carbon stocks: a review. Agriculture, Ecosystems & Environment, 202, pp. 98-107. DOI:10.1016/j.agee.2015.01.005
  29. Phytotoxkit. (2004). Seed germination and early growth microbiotest with higher plants. Standard operation procedure (pp. 1–24). Nazareth: MicroBioTests Inc.
  30. Pusz, A., Wiśniewska, M., Kamiński, A., Knosala, P. & Rogalski, D. (2024). Influence of carbons on metal stabilization and the reduction in soil phytotoxicity with the assessment of health risks. Resources, 13, 5, 66. DOI:10.3390/resources13050066
  31. Rodrigo-Ilarri, J., Rodrigo-Clavero, M.E., Capilla, J. E. & Romero-Ballesteros, L. (2023). Environmental Assessment of Soil and Groundwater Pollution by BTEX Leaching in Valencia Region (Spain). Water, 15, 18, 3279. DOI:10.3390/w15183279
  32. Serrano, A., Gallego, M. & González, J.L. (2006). Assessment of natural attenuation of volatile aromatic hydrocarbons in agricultural soil contaminated with diesel fuel. Environmental Pollution, 144, pp. 203-209. DOI:10.1016/j.envpol.2005.12.031
  33. Szopka, K., Gruss, I., Gruszka, D., Karczewska, A., Gediga, K. Gałka, B. & Dradrach, A. (2021). The Effects of forest litter and waterlogging on the ecotoxicity of soils strongly enriched in arsenic in a historical mining site. Forests, 12, 355. DOI:10.3390/f12030355
  34. Thamnotoxkit F. (1991). Crustacean toxicity screening test for freshwater. Standard operation procedure (pp. 1–23). Nazareth: MicroBioTests Inc.
  35. Tamrakar, A., Pervez, S., Verma, M., Majumdar, D., Pervez, Y.F., Candeias, C., Dugga, P., Mishra, A., Verma, S.R., Deb, M.K., Shrivas, K., Satnami M.L. & Karbhal, I. (2022). BTEX in Ambient Air of India: a Scoping Review of their Concentrations, Sources, and impact. Water, Air, & Soil Pollution, 233, 411. DOI:10.1007/s11270-022-05863-8
  36. Tang, J., Wang, M., Wang, F., Sun, Q. & Zhou, Q. (2011). Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences, 23, 5, pp. 845–851. DOI:10.1016/S1001-0742(10)60517-7
  37. Weelink, S.A.B., van Eekert, M.H.A. & Stams, A.J.M. (2010). Degradation of BTEX by anaerobic bacteria: physiology and application. Reviews in Environmental Science and Biotechnology, 9, pp. 359-385. DOI:10.1007/s11157-010-9219-2
  38. Wieczorek, J. & Baran, A. (2022). Pollution indices and biotests as useful tools for the evaluation of the degree of soil contamination by trace elements. Journal of Soils and Sediments, 22, 2, pp. 559–576. DOI:10.1007/s11368-021-03091-x
  39. Wu, Bo., Guo, S. & Wang, J. (2021). Spatial ecological risk assessment for contaminated soil in oiled fields. Journal of Hazardous Materials, 403, 123984. DOI:10.1016/j.jhazmat.2020.123984
  40. Yu, B., Yuan, Z., Yu, Z. & Xue-song, F. (2022). BTEX in the environment: An update on sources, fate, distribution, pretreatment, analysis, and removal techniques. Chemical Engineering Journal, 435, 134825. DOI:10.1016/j.cej.2022.134825
  41. Zheng, S. & Zhou, Q. (2017). Intoxication and biochemical responses of freshwater snail Bellamya aeruginosa to ethylbenzene. Environmental Science and Pollution Research, 24, pp. 189–198. DOI:10.1007/s11356-016-7716-8
Go to article

Authors and Affiliations

Grzegorz Maciej Kusza
1
ORCID: ORCID
Izabela Czerniawska-Kusza
2
ORCID: ORCID
Katarzyna Łuczak
1
ORCID: ORCID
Tomasz Ciesielczuk
1
ORCID: ORCID
Aleksandra Cichoń
1
ORCID: ORCID
Izabella Pisarek
1
ORCID: ORCID

  1. Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
  2. Institute of Biology, University of Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to carry out experimental research and numerical simulation of microplastic pollution in the Vilnelė River. Six locations were selected for the experimental studies: 3 measurement points and 3 releasers. It was determined that the average concentration of microplastics at the selected measurement points was in the range between 0.10 and 0.42 particles/L. The concentration of microplastics at the selected releasers ranged from 3 to 31.6 particles/L. A morphological analysis of the microplastics was also carried out. Synthetic polymer microplastics were found to be the dominant type among all detected microplastics. The ANSYS software was used for numerical modelling. The Euler–Lagrange method was selected to model the movement of microplastics in river water. It was found that microplastic pollution in the Vilnelė River was mainly lower than in other selected rivers and lakes around the world. The numerical simulation of microplastic pollution in the Vilnelė River provided models that, by depicting the pollution sources, show how far microplastic particles are transported within one hour. These models help identify the most suitable locations for further microplastic research, enable the prediction of pollution levels, and allows other researchers to repeat the research.
Go to article

Bibliography

  1. Akdogan, Z., Guven, B. & Kideys, A. E. (2023). Microplastic distribution in the surface water and sediment of the Ergene River. Environmental Research, 234, 116500. DOI:10.1016/j.envres.2023.116500
  2. Alarming' microplastic pollution in Europe's great rivers. Retrieved from: https://www.france24.com/en/live-news/20250407-alarming-microplastic-pollution-in-europe-s-great-rivers
  3. Amrutha, K. & Warrier, A. K. (2020). The first report on the source-to-sink characterisation of microplastic pollution from a riverine environment in tropical India. Science of the Total Environment, 739, 140377. DOI:10.1016/j.scitotenv.2020.140377
  4. ANSYS Fluent Tutorial Guide (2017). Retrieved from: https://users.abo.fi/rzevenho/ansys%20fluent%2018%20tutorial%20guide.pdf (05.03.2025)
  5. Babajamaaty, G., Mohammadian, A. & Pilechi, A. (2021, May). Numerical Modeling of Microplastics Fate and Transport in a Stretch of the Fraser River. In Canadian Society of Civil Engineering Annual Conference (pp. 99-107). Singapore: Springer Nature Singapore. DOI:10.1007/978-981-19-0507-0_10
  6. Baldwin, A. K., Corsi, S. R. & Mason, S. A. (2016). Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology. Environmental Science & Technology, 50, 19, pp. 10377–10385. DOI:10.1021/acs.est.6b02917
  7. Bruge, A., Dhamelincourt, M., Lanceleur, L., Monperrus, M., Gasperi, J. & Tassin, B. (2020). A first estimation of uncertainties related to microplastic sampling in rivers. Science of the Total Environment, 718, 137319. DOI:10.1016/j.scitotenv.2020.137319
  8. Büngener, L., Schäffer, S. M., Schwarz, A. & Schwalb, A. (2024). Microplastics in a small river: Occurrence and influencing factors along the river Oker, Northern Germany. Journal of Contaminant Hydrology, 264, 104366. DOI:10.1016/j.jconhyd.2024.104366
  9. Buwono, N. R., Risjani, Y.& Soegianto, A. (2021). Distribution of microplastics about water quality parameters in the Brantas River, East Java, Indonesia. Environmental Technology & Innovation, 24, 101915. DOI:10.1016/j.eti.2021.101915
  10. Chanez, L., Rania, D., Fouzia, T., Faouzi, S. & Kheireddine, O. (2024). Evaluation of sediment contamination by macro and microplastics in coastal waters of Southern Mediterranean: a case study of Annaba, Algeria, before and after the COVID-19 pandemic. Archives of Environmental Protection, 50, 2. DOI:10.24425/aep.2024.150549
  11. Darnu Group. (2021). Vilnios upės tyrimų ataskaita. Retrieved from https://darnugroup.lt/wp-content/uploads/2021/09/Vilnios-upes-tyrimu-ataskaita.pdf
  12. Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N. & Tassin, B. (2016). Microplastic contamination in an urban area: A case study in Greater Paris. Environmental Chemistry, 12, 5, pp. 592–599. DOI:10.1071/EN14167
  13. Enfrin, M., Lee, J., Le-Clech, P. & Dumée, L. F. (2020). Nanoplastics in the environment: What we know and what we need to know. Environmental Science: Water Research & Technology, 6, 3, pp. 763–777. DOI:10.1039/C9EW00987G
  14. European Commission’s Group of Chief Scientific Advisors. (2019). Environmental and Health risks of Microplastic pollution. In Publications Office of the European Union, 2019 (6). DOI:10.2777/54199
  15. Fatahi, M., Akdogan, G., Dorfling, C. & Van Wyk, P. (2021). Numerical study of microplastic dispersal in simulated coastal waters using cfd approach. Water, 13, 23, 3432. DOI:10.1016/j.psep.2025.106873
  16. Ferraz, M., Bauer, A. L., Valiati, V. H. & Schulz, U. H. (2020). Microplastic concentrations in raw and drinking water in the Sinos River, southern Brazil. Water (Switzerland), 12, 11, pp. 1–10. DOI:10.3390/w12113115
  17. Fu, Z., Chen, G., Wang, W. & Wang, J. (2020). Microplastic pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China. Environmental Pollution, 266, 115098. DOI:10.1016/j.envpol.2020.115098
  18. Gao, S., Orlowski, N., Bopf, F. K. & Breuer, L. (2024). A review on microplastics in major European rivers. Wiley Interdisciplinary Reviews: Water, 11, 3, e1713. DOI:10.1002/wat2.1713
  19. Ghadiri, M., Sinka, I. C. & Haxaire, R. (2011). Particle size analysis using the Rosin-Rammler-Sperling-Bennett (RRSB) distribution: A comparison with log-normal. Powder Technology, 208, 1, pp. 23–28. DOI:10.1016/j.powtec.2010.12.005
  20. Ghiglione, J. F. & ter Halle, A. (2025). Source, fate, and effects of plastic litters in the European land-sea continuum (Editorial). Environmental Science and Pollution Research, 32, 7, pp. 10021–10022. DOI:10.1007/s11356-024-35827-w
  21. Goh, P. S., Kang, H. S., Ismail, A. F., Khor, W. H., Quen, L. K. & Higgins, D. (2022). Nanomaterials for microplastic remediation from the aquatic environment: Why nano matters? Chemosphere, 299, 134418. DOI:10.1016/j.chemosphere.2022.134418
  22. Haque, A., Holsen, T. M. & Baki, A. B. (2024). Distribution and risk assessment of microplastic pollution in a rural river system near a wastewater treatment plant, hydro-dam, and river confluence. Scientific Reports, 14, 1, 6006. DOI:10.1038/s41598-024-56730-x
  23. He, B., Smith, M., Egodawatta, P., Ayoko, G. A., Rintoul, L. & Goonetilleke, A. (2021). Dispersal and transport of microplastics in river sediments. Environmental pollution, 279, 116884. DOI:10.1016/j.envpol.2021.116884
  24. Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology, 46, 6, pp. 3060–3075. DOI:10.1021/es2031505
  25. Hildebrandt, L., Zimmermann, T., Primpke, S., Fischer, D., Gerdts, G. & Pröfrock, D. (2021). Comparison and uncertainty evaluation of two centrifugal separators for microplastic sampling. Journal of Hazardous Materials, 414, 125482. DOI:10.1016/j.jhazmat.2021.125482
  26. Hossain, M. S., Rahman, M. S., Uddin, M. N., Sharifuzzaman, S. M., Chowdhury, S. R., Sarker, S. & Nawaz Chowdhury, M. S. (2020). Microplastic contamination in Penaeid shrimp from the Northern Bay of Bengal. Chemosphere, 238, 124688. DOI:10.1016/j.chemosphere.2019.124688
  27. Ivleva, N. P., Wiesheu, A. C. & Niessner, R. (2017). Microplastic in aquatic ecosystems. Angewandte Chemie International Edition, 56, 7, pp. 1720–1739. DOI:10.1002/anie.201606957
  28. Kabir, S. A., Bhuiyan, M. A., Zhang, G. & Pramanik, B. K. (2025). Use of computational fluid dynamics to model microplastic transport in the stormwater runoff system. Process Safety and Environmental Protection, 106873. DOI:10.1016/j.psep.2025.106873
  29. Kaimathuruthy, B. J., Jalón-Rojas, I. & Sous, D. (2025). Modelling microplastic dynamics in estuaries: A comprehensive review, challenges and recommendations. EGUsphere. DOI:10.5194/egusphere-2025-529
  30. Kay, P., Hiscoe, R., Moberley, I., Bajic, L. & McKenna, N. (2018). Wastewater treatment plants as a source of microplastics in river catchments. Environmental Science and Pollution Research, 25, pp. 20264-20267. DOI:10.1007/s11356-018-2070-7
  31. Kim, K., Park, T. & Jeong, H. (2023). Applicability of the WASP8 in simulating river microplastic concentration. Journal of Korea Water Resources Association, 56, 5, pp. 337-345. DOI:10.3741/JKWRA.2023.56.5.337
  32. Klein, S., Worch, E. & Knepper, T. P. (2015). Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environmental Science & Technology, 49, 10, pp. 6070–6076. DOI:10.1021/acs.est.5b00492
  33. Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M. & De France, J. (2019). Microplastics in freshwater and drinking water: Critical review and assessment of data quality. Water Research, 155, pp. 410–422. DOI:10.1016/j.watres.2019.02.054
  34. Li Yuxuan, Dou Ming, Li Guiqiu, Wang Zhen, Zhou Yuze, & Xing Aoqi. (2025). Hydraulic experiment and numerical simulation of microplastic migration in aquatic environments. China Environmental Science, 45, 3, pp. 1765-1776.
  35. Lithuanian Hydrometeorological Service. (n.d.). Hydrological conditions and flood data. Retrieved from https://www.meteo.lt
  36. Liu, F., Olesen, K. B., Borregaard, A. R. & Vollertsen, J. (2019). Microplastics in urban and highway stormwater retention ponds. Science of The Total Environment, 671, pp. 992–1000. DOI:10.1016/j.scitotenv.2019.03.416
  37. Liu, R. P., Li, Z. Z., Liu, F., Dong, Y., Jiao, J. G., Sun, P. P. & RM, E. W. (2021). Microplastic pollution in the Yellow River, China: Status and research progress of biotoxicological effects. China Geology, 4, 4, pp. 585-592. DOI:10.31035/cg2021081
  38. Liu, Z., Bai, Y., Zhao, X., Liu, X., Wei, H., Wei, M. & Ma, Y. (2024). Contributions from typical sources to microplastics in surface water of a semiarid urban river. Journal of Hazardous Materials, 478, 135570. DOI:10.1016/j.jhazmat.2024.135570
  39. Löder, M. G. J., Imhof, H. K., Ladehoff, M., Löschel, L. A., Lorenz, C., Mintenig, S., Piehl, S., Primpke, S., Schrank, I., Laforsch, C. & Gerdts, G. (2017). Enzymatic purification of microplastics in environmental samples. Environmental Science & Technology, 51, 24, pp. 14283–14292. DOI:10.1021/acs.est.7b03055
  40. Madsen, S. & Khawaja, H. A. (2018). CFD modelling of pollutant transport. Multiphysics Conference, Krakow. Retrieved from https://munin.uit.no/handle/10037/19808
  41. Mahlavu T. O., Mpenyana-Monyatsi, L., Momba, M. N. & Mamba, B. B. (2011). A simplified cost-effective biosand filter (BSFZ) for removal of chemical contaminants from water. Journal of Chemical Engineering and Material Sciences, 2, 10, pp. 156-167. DOI:10.5897/JCEMS11.041
  42. Microbeads and glitter among the 94,000 microplastics flowing down the River Thames every second. Retrieved from: https://www.sciencefocus.com/news/microbeads-and-glitter-among-the-94000-microplastics-flowing-down-the-river-thames-every-second
  43. Munno, K., De Frond, H., O'Donnell, B. & Rochman, C. M. (2020). Increasing the accuracy of microplastic abundance estimates using selective fluorescent staining. Scientific Reports, 10, 23717. DOI:10.1038/s41598-020-80706-6
  44. Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology, 50, 11, pp. 5800–5808. DOI:10.1021/acs.est.5b05416
  45. Napper, I. E. & Thompson, R. C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine Pollution Bulletin, 112, 1–2, pp. 39–45. DOI:10.1016/j.marpolbul.2016.09.025
  46. Obermaier, N. & Pistocchi, A. (2022). A Preliminary European-Scale Assessment of Microplastics in Urban Wastewater. Frontiers in Environmental Science, 10, 912323. DOI:10.3389/fenvs.2022.912323
  47. Order No. Dl-313 of the Minister of the Environment of the Republic of Lithuania On the Normative document of Lithuanian environmental protection LAND 81-2006 (2006). Retrieved from: https://e-seimas.lrs.lt/rs/legalact/TAD/TAIS.281398 (04.05.2025) (in Lithuanian)
  48. Ostadhosseyni, S., Mohammadian, A. & Pilechi, A. (2025). Solid Particle Movement Simulation in a Quiescent Container Based on Discrete Element Method Using CFDEM. In Computational Fluid Dynamics: Novel Numerical and Computational Approaches: Infosys Science Foundation Series. Springer, Singapore, pp. 1-24. DOI:10.1007/978-981-97-8152-2_1
  49. Park, T. J., Lee, S. H., Lee, M. S., Lee, J. K., Park, J. H. & Zoh, K. D. (2020). Distributions of microplastics in surface water, fish, and sediment in the vicinity of a sewage treatment plant. Water, 12, 12, 3333. DOI:10.3390/w12123333
  50. Pashaei, R., Sabaliauskaite, V., Suzdalev, S., Balčiūnas, A., Putna-Nimane, I., Rees, R. M. & Dzingelevičienė, R. (2023). Assessing the occurrence and distribution of microplastics in surface freshwater and wastewaters of Latvia and Lithuania. Toxics, 11, 4, 292. DOI:10.3390/toxics11040292
  51. Pervez, R., Wang, Y., Mahmood, Q. & Jattak, Z. (2020). Stereomicroscopic and Fourier Transform Infrared (FTIR) Spectroscopic Characterisation of the Abundance, Distribution and Composition of Microplastics in the Beaches of Qingdao, China. Analytical Letters, 53, 18, pp. 2960–2977. DOI:10.1080/00032719.2020.1763379
  52. Pervez, M. N., Keshavarzifard, M. & Moore, F. (2020). Identification of microplastics in sediments and water from urban rivers in Iran using visual classification. Environmental Science and Pollution Research, 27, 13, pp. 15454–15466. DOI:10.1007/s11356-020-08001-0
  53. Pham, H. T., Pham, T. Q., Pham, N., Nguyen, L. H. T., Cragg, S. & Michie, L. (2024). Abundance and variation of microplastics between seasons in a tropical estuary: The case of Can Gio estuary, Vietnam. Archives of Environmental Protection, 50, 3, pp. 3-17. DOI:10.24425/aep.2024.151681
  54. Quyen, L. D., Park, Y. G., Lee, I. C. & Choi, J. M. (2024). CFD analysis of microplastic transport over the slopes. Journal of Marine Science and Engineering, 12, 1, 145. DOI:10.3390/jmse12010145
  55. Rowley, K. H., Cucknell, A. C., Smith, B. D., Clark, P. F. & Morritt, D. (2020). London’s river of plastic: High levels of microplastics in the Thames water column. Science of the Total Environment, 740, 140018. DOI:10.1016/j.scitotenv.2020.140018
  56. Sand-Jensen, K. (1998). Influence of submerged macrophytes on sediment and water flow in lowland streams. Freshwater Biology, 39, 4, pp. 663–679. DOI:10.1046/j.1365-2427.1998.00316.x
  57. Sekudewicz, I., Dąbrowska, A. M. & Syczewski, M. D. (2021). Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Science of the Total Environment, 762, 143111. DOI:10.1016/j.scitotenv.2020.143111
  58. Siregar, L. Y., Muchlisin, Z. A., Pradit, S., Yucharoen, M. & Faradilla, S. B. (2025). Microplastic contamination in fish harvested from the estuarine mangrove forest of Banda Aceh City, Indonesia. Archives of Environmental Protection, 51, 1, pp.3-11. DOI:10.24425/aep.2025.153745
  59. Stanton, T., Johnson, M., Nathanail, P., MacNaughtan, W., Gomes, R. L. (2020). Freshwater microplastic concentrations vary through both space and time. Environmental Pollution, 263, 114481. DOI:10.1016/j.envpol.2020.114481
  60. Travaš, V., Kranjčević, L., Družeta, S., Holjević, T., Lučin, I., Alvir, M., Grbčić, L. & Sikirica, A. (2021). Model of microplastic particle movement in inhomogeneous and laminar velocity fields. Hrvatske vode, 29, 117, pp. 201-213.
  61. Van Emmerik, T. & Schwarz, A. (2020). Plastic debris in rivers. Wiley Interdisciplinary Reviews: Water, 7, 1, e1398. DOI:10.1002/wat2.1398
  62. Viršek, M. K., Palatinus, A., Koren, Š., Peterlin, M., Horvat, P. & Kržan, A. (2016). Protocol for microplastics sampling on the sea surface and sample analysis. Journal of visualized experiments: JoVE, 118, 55161.
  63. Visuotinė lietuvių enciklopedija. (n.d.). Vilnia. Retrieved from https://www.vle.lt/straipsnis/vilnia/
  64. Wang, Yan, Zhou, B., Chen, H., Yuan, R. & Wang, F. (2022). Distribution, biological effects and biofilms of microplastics in freshwater systems - A review. Chemosphere, 299, 134370. DOI:10.1016/j.chemosphere.2022.134370
  65. Werbowski, L. M., Gilbreath, A. N., Munno, K., Zhu, X., Grbic, J., Wu, T.,Sutton, R., Sedlak, M. D., Deshpande, A. D. & Rochman, C. M. (2021). Urban stormwater runoff: a major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters. ACS ES&T Water, 1, 6, pp. 1420-1428. DOI:10.1021/acsestwater.1c00017.
  66. Yang, H. & Foroutan, H. (2023). Effects of near-bed turbulence on microplastics fate and transport in streams. Science of The Total Environment, 905, 167173. DOI:10.1016/j.scitotenv.2023.167173
  67. Zeri, C., Adamopoulou, A., Koi, A., Koutsikos, N., Lytras, E. & Dimitriou, E. (2021). Rivers and wastewater-treatment plants as microplastic pathways to eastern Mediterranean waters: First records for the Aegean Sea, Greece. Sustainability, 13, 10, 5328. DOI:10.3390/su13105328
  68. Ziajahromi, S., Neale, P. A., Rintoul, L. & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, pp. 93–99. DOI:10.1016/j.watres.2017.01.042
Go to article

Authors and Affiliations

Dainius Paliulis
1
ORCID: ORCID
Mantas Pranskevicius
1
ORCID: ORCID
Deimante Taraseviciute
1
ORCID: ORCID

  1. Vilnius Tech (Vilnius Gediminas Technical University), Lithuania

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Reviewers

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more