Applied sciences

Archives of Environmental Protection

Content

Archives of Environmental Protection | 2024 | 50 | 4

Download PDF Download RIS Download Bibtex

Abstract

The subject of studies was one-year-old needles of Scots pine (Pinus sylvestris L.), collected from various characteristic landscape zones of Poland, reflecting different conditions of air pollutant emission and deposition (Integrated Monitoring of the Natural Environment base stations, industrial centers, and large cities). Analyses were carried out using a Quanta 250 FEI scanning electron microscope equipped with an EDAX Genesis X-ray spectroscopy microanalyzer. The needle surfaces were examined to identify natural structures (e.g., stomata, pollen, fungi) and anthropogenic structures (e.g. particulates with heavy metals) under conditions of diversified anthropopressure. In samples from areas with no significant local pollution sources (Wigry, Borecka Forest, Parsęta, Tuchola Forest), particles of mineral origin (resulting from rock weathering) containing Si, Al, Ca were identified. Needles collected in Roztocze, Łysogóry, Kampinos and Karkonosze, contained round technogenic particles (spherules) containing Fe, Al and Si, which had traveled significant distances. In Katowice, Poznań and Kraków, particles deposited on the bioindicators’ surfaces were composed of Ca, Si, Al, Fe, Cu, and other heavy metals. Micrographs obtained from the analysis were used to develop a model for identifying air pollutants using artificial intelligence.
Go to article

Bibliography

  1. Adamiec, E., Jarosz-Krzemińska, E., Brzoza-Woch, R., Rzeszutek, M., Bartyzel, J., Pełech-Pilichowski, T.& Zyśk, J. (2023). The Geochemical and Fractionation Study on Toxic Elements in Road Dust Collected from the Arterial Roads in Kraków. Archives of Environmental Protection, 49(2), pp. 104-110. DOI:10.24425/aep.2023.145902
  2. Badeenezhad, A., Parseh, I., Veisi, A., Rostami, S., Ghelichi-Ghojogh, M., Badfar, G. & Abbasi, F. (2023). Short-term Exposure to Some Heavy Metals Carried With PM10 and Cardiovascular System Biomarkers During Dust Storm. Scientific Reports, 13(1). DOI:10.1038/s41598-023-31978-x
  3. Brostrøm, A., Kling, K. I., Hougaard, K. S. & Mølhave, K. (2020a). Complex Aerosol Characterization by Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Spectroscopy. Scientific Reports, 10(1). DOI:10.1038/s41598-020-65383-5
  4. Chen, Y., Ning, Y., Bi, X., Liu, J., Yang, S., Liu, Z. & Huang, W. (2022). Pine needles as urban atmospheric pollution indicators: Heavy metal concentrations and Pb isotopic source identification. Chemosphere, 296, 134043. DOI:10.1016/j.chemosphere.2022.134043
  5. Chollet, F. (2021). Deep Learning with Python, Second Edition. Simon and Schuster.
  6. Chung, D., Lee, J., Lee, S., Park, K. & Shim, K. (2021). Efficacy of pine needles as bioindicators of air pollution in Incheon, South Korea. Atmospheric Pollution Research, 12(5), 101063. DOI:10.1016/j.apr.2021.101063
  7. Driscoll, M. (2021). Pillow: Image Processing with Python. Independently Published.
  8. Guo, Z., Gao, Y., Yuan, X., Yuan, M., Huang, L., Wang, S., Liu, C. & Duan, C. (2023). Effects of Heavy Metals on Stomata in Plants: A Review. International Journal of Molecular Sciences, 24(11):9302. DOI:10.3390/ijms24119302
  9. Hamdan, N., Alawadhi, H. & Shameer, M. (2020). SEM/EDS as complementary techniques to XRD and XRF for structural determination of particulate matter pollution. Microscopy and Microanalysis, 26(S2), 990–992. DOI:10.1017/s1431927620016591
  10. Jadoon, W. A., Abdel-Dayem, S. M. M. A., Saqib, Z., Takeda, K., Sakugawa, H., Hussain, M., Shah, G. M., Rehman, W. & Syed, J. H. (2020). Heavy Metals in Urban Dusts From Alexandria and Kafr El-Sheikh, Egypt: Implications for Human Health. Environmental Science and Pollution Research International, 28(2), pp. 2007–2018. DOI:10.1007/s11356-020-08786-1
  11. Jeong, G. Y., Kim, J. Y., Seo, J., Kim, G. M., Jin, H. C. & Chun, Y. (2014). Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmospheric Chemistry and Physics, 14(1), pp. 505–521. DOI:10.5194/acp-14-505-2014
  12. Kardel, F., Wuyts, K., De Wael, K. & Samson, R. (2018). Biomonitoring of Atmospheric Particulate Pollution via Chemical Composition and Magnetic Properties of Roadside Tree Leaves. Environmental Science and Pollution Research International, 25(26), pp. 25994–26004. DOI:10.1007/s11356-018-2592-z
  13. Kokoulin, А., May, I., Zagorodnov, S. & Yuzhakov, А. (2023). On new methods for measuring and identifying dust microparticles in ambient air. Health Risk Analysis, 1, pp. 36–45. DOI:10.21668/health.risk/2023.1.04.eng
  14. Leung, W. W. (2021). Nanofiber filter technologies for filtration of submicron aerosols and nanoaerosols. Elsevier.
  15. Kostrzewski, A., Majewski, M. (2021). Integrated monitoring of the natural environment: organization, measurement system, research methods, implementation guidelines. Biblioteka Monitoringu Środowiska. Warszawa. (in Polish)
  16. Longoria-Rodríguez, F. E., González, L. T., Mancilla, Y., Acuña-Askar, K., Arizpe-Zapata, J. A., González, J., Kharissova, O. V. & Mendoza, A. (2021). Sequential SEM-EDS, PLM, and MRS microanalysis of individual atmospheric particles: a useful tool for assigning emission sources. Toxics, 9(2), 37. DOI:10.3390/toxics9020037
  17. Marek, S., Tomaszewski, D., Żytkowiak, R., Jasińska, A., Zadworny, M., Boratyńska, K., Dering, M., Danusevičius, D., Oleksyn, J. & Wyka, T. P. (2021). Stomatal density in Pinus sylvestris as an indicator of temperature rather than CO2: Evidence from a pan‐European transect. Plant, Cell & Environment/Plant, Cell and Environment, 45(1), pp. 121–132. DOI:10.1111/pce.14220
  18. Maria, G. M., Truşcă, R., Banciu, C., Vladimirescu, M., Paica, I., Catană, R. D. & Manole, A. (2023). Sem-edx identification and characterization of airborne microspheres: potential effects on human health. Carpathian Journal of Earth and Environmental Sciences, 18(2), pp. 299–306. DOI:10.26471/cjees/2023/018/260
  19. Michalski, R. & Pecyna-Utylska P. (2022). Chemical characterization of bulk depositions in two cities of Upper Silesia (Zabrze, Bytom), Poland. Case study. Archives of Environmental Protection, 48(2), pp. 106-116. DOI:10.24425/aep.2022.140784
  20. Nelli, F. (2018). Python Data Analytics: With Pandas, NumPy, and Matplotlib 2nd ed. Edition. Apress.
  21. Osma, E., Elveren, M. & Karakoyun, G. (2016). Heavy metal accumulation affects growth of Scots pine by causing oxidative damage. Air Quality, Atmosphere & Health, 10(1), pp. 85–92. DOI:10.1007/s11869-016-0410-7
  22. Ronneberger, O., Fischer, P. & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015. 234-241. DOI:10.48550/arXiv.1505.04597
  23. Sahu, C., Basti, S. & Sahu, S. K. (2021). Particulate Collection Potential of Trees as a Means to Improve the Air Quality in Urban Areas in India. Environmental Processes, 8(1), pp. 377–395. DOI:10.1007/s40710-021-00494-3
  24. Sankaran, A., Aralikiatte, R., Mani, S., Khare, S., Panwar, N. & Gantayat, N. (2017). DARVIZ: Deep AbstractRepresentation, Visualization, and Verification of Deep Learning Models. IEEE/ACM 39th International Conference on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER). 47–50. DOI:10.1109/ICSE-NIER.2017.13
  25. Sensuła, B., Piotrowska, N., Nowińska, K., Koruszowic, M., Lazaj, D., Osadnik, R., Paluch, R., Stasiak, A. & Strączek, B. (2023). Characteristics of pine needles exposed to pollution in Silesia, Poland: carbon isotopes, iWUE, and trace element concentrations in pine needles. Radiocarbon, 65(1), pp. 233–246. DOI:10.1017/rdc.2023.1
  26. Sielski, J., Kaziród-Wolski, K., Jóźwiak, M. A. & Jóźwiak, M. (2021). The influence of air pollution by PM2.5, PM10 and associated heavy metals on the parameters of out-of-hospital cardiac arrest. Science of the Total Environment, 788, 147541. DOI:10.1016/j.scitotenv.2021.147541
  27. Szwed, M., Żukowski, W. & Kozłowski, R. (2021). The Presence of Selected Elements in the Microscopic Image of Pine Needles as an Effect of Cement and Lime Pressure within the Region of Białe Zagłębie (Central Europe). Toxics, 9(1), 15. DOI:10.3390/toxics9010015
  28. Szwed, M., Kozłowski, R., Żukowski, W., Mbengue, S., Suchánková, L. & Prokes, R. (2023). Insights into the Chemical Characteristics of Atmospheric Aerosols from Urban-Industrial and Rural Sites in South-East of Poland during Winter. Quaestiones Geographicae, 42, pp. 89–99, https://doi:10.14746/quageo-2023-0025.
  29. Torahi, A., Arzani, K. & Moallemi, N. (2021). Impact of Dust deposition on photosynthesis, gas exchange and yield of date palm (Phoenix dactylifera L.) cv. `Sayer’. Journal of Agricultural Science and Technology, 23, pp. 631-644.
  30. Wrońska-Pilarek, D., Krysztofiak-Kaniewska, A., Matusiak, K., Bocianowski, J., Wiatrowska, B. & Okoński, B. (2023). Does distance from a sand mine affect needle features in Pinus sylvestris L.? Forest Ecology and Management, 546, 121276. DOI:10.1016/j.foreco.2023.121276
  31. Zhang, W., Li, Y., Wang, Q., Zhang, T., Meng, H., Gong, J. & Zhang, Z. (2022). Particulate Matter and Trace Metal Retention Capacities of Six Tree Species: Implications for Improving Urban Air Quality. Sustainability, 14(20), 13374. DOI:10.3390/su142013374
  32. Zsigmond, A. R., Száraz, A. & Urák, I. (2021). Macro and trace elements in the black pine needles as inorganic indicators of urban traffic emissions. Environmental Pollution, 291, 118228. DOI:10.1016/j.envpol.2021.118228
Go to article

Authors and Affiliations

Mirosław Szwed
1
ORCID: ORCID
Dariusz Pasieka
1
ORCID: ORCID

  1. Jan Kochanowski University, Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

Air quality is a critical aspect of environmental health, and its assessment and prediction serve as pivotal components in mitigating the adverse effects of air pollution. This study focuses on advancing air quality prediction in India through the application of cutting-edge deep learning techniques, specifically the Stacked Bidirectional Long Short-Term Memory (Bi-LSTM) and Convolutional Neural Network (CNN) architecture. Through meticulous preprocessing - encompassing missing value handling, normalization, and temporal sequencing - the dataset is prepared for the Stacked Bi-LSTM and CNN hybrid model. The model architecture leverages the temporal sequence-capturing capabilities of Stacked Bi-LSTM layers, enhancing it with the spatial feature extraction prowess of CNN layers. This integrated approach aims to address the intricate and nonlinear dependencies present in air quality time series data. During the training phase, the Adam optimizer is used to fine-tune the model’s hyperparameters, with Mean Squared Error (MSE) serving as the loss function. Important assessment metrics, including as Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and MSE, are used to evaluate the performance of the model. Furthermore, this study conducts a detailed temporal analysis, unraveling diurnal, seasonal, and long-term trends in air quality fluctuations. The study aims to offer valuable insights into the temporal and spatial patterns of air quality in India, thereby aiding environmental policymakers, urban planners, and researchers in formulating effective strategies for air quality management. The application of Stacked Bi-LSTM and CNN architectures in this research holds promise for enhancing real-time forecasting accuracy and facilitating informed decision-making towards sustainable environmental practices.
Go to article

Bibliography

  1. Akinosho, T. D., Oyedele, L. O., Bilal, M., Barrera-Animas, A. Y., Gbadamosi, A. Q. & Olawale, O. A. (2022). A scalable deep learning system for monitoring and forecasting pollutant concentration levels on UK highways. Ecological Informatics, 69, 101609. DOI:10.1016/j.ecoinf.2022.101609
  2. Al-Eidi, S., Amsaad, F., Darwish, O., Tashtoush, Y., Alqahtani, A. & Niveshitha, N. (2023). Comparative Analysis Study for Air Quality Prediction in Smart Cities Using Regression Techniques. IEEE Access. DOI:10.1109/ACCESS.2023.3280129
  3. Cao, Y., Zhang, D., Ding, S., Zhong, W. & Yan, C. (2023). A Hybrid Air Quality Prediction Model Based on Empirical Mode Decomposition. Tsinghua Science and Technology, 29(1), 99-111. DOI:10.26599/TST.2023.2200016
  4. Dobrzyniewski, D., Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2023). Process control of air stream deodorization from vapors of VOCs using a gas sensor matrix conducted in the biotrickling filter (BTF). Archives of Environmental Protection, 49(2). DOI:10.24425/aep.2023.144733
  5. Drewil, G. I. & AlBahadili, R. J. (2022). Air pollution prediction using LSTM deep learning and metaheuristics algorithms. Measurement: Sensors, 24, 100546. DOI:10.1016/j.measen.2022.100546
  6. Fang, Z., Yang, H., Li, C., Cheng, L., Zhao, M. & Xie, C. (2021). Prediction of PM2.5 hourly concentrations in Beijing based on machine learning algorithm and ground-based LiDAR. Archives of Environmental Protection, 47(3). DOI:10.24425/aep.2021.138474
  7. Fu, L., Li, J. & Chen, Y. (2023). An innovative decision-making method for air quality monitoring based on big data-assisted artificial intelligence technique. Journal of Innovation & Knowledge, 8(2), 100294. DOI:10.1016/j.jik.2023.100294
  8. Godłowska, J., Kaszowski, K. & Kaszowski, W. (2022). Application of the FAPPS system based on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser PolandApplication of the FAPPS system based on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser Poland. Archives of Environmental Protection, 48(3). DOI:10.24425/aep.2022.142698
  9. Holnicki, P., Kałuszko, A. & Nahorski, Z. (2021). Analysis of emission abatement scenario to improve urban air quality. Archives of Environmental Protection, 47(2). DOI:10.24425/aep.2021.137281
  10. Iskandaryan, D., Ramos, F. & Trilles, S. (2023). A set of deep learning algorithms for air quality prediction applications. Software Impacts, 17, 100562. DOI:10.1016/j.simpa.2023.100562
  11. Iskandaryan, D., Ramos, F. & Trilles, S. (2023). Graph Neural Network for Air Quality Prediction: A Case Study in Madrid. IEEE Access, 11, 2729-2742. DOI:10.1109/ACCESS.2023.3244295
  12. Janarthanan, R., Partheeban, P., Somasundaram, K. & Elamparithi, P. N. (2021). A deep learning approach for prediction of air quality index in a metropolitan city. Sustainable Cities and Society, 67, 102720. DOI:10.1016/j.scs.2021.102720
  13. Jurado, X., Reiminger, N., Benmoussa, M., Vazquez, J. & Wemmert, C. (2022). Deep learning methods evaluation to predict air quality based on Computational Fluid Dynamics. Expert Systems with Applications, 203, 117294. DOI:10.1016/j.eswa.2022.117294
  14. Kanmani, P., Selvaraj, P. & Burugari, V. K. (2022). An energy efficient approach of deep learning based soft sensor for air quality management. Measurement: Sensors, 24, 100460. DOI:10.1016/j.measen.2022.100460
  15. Liu, B., Yan, S., Li, J., Qu, G., Li, Y., Lang, J. & Gu, R. (2019). A sequence-to-sequence air quality predictor based on the n-step recurrent prediction. IEEE Access, 7, 43331-43345. DOI:10.1109/ACCESS.2019.2903323
  16. Liu, C., Pan, G., Song, D. & Wei, H. (2023). Air Quality Index Forecasting Via Genetic Algorithm-Based Improved Extreme Learning Machine. IEEE Access. DOI:10.1109/ACCESS.2023.3273346
  17. Lu, T., Gu, C., Yuan, D., Zhang, K. & Shao, C. (2023). Deep learning model for displacement monitoring of super high arch dams based on measured temperature data. Measurement, 222, 113579. DOI:10.1016/j.measurement.2023.113579
  18. Matthaios, V. N., Knibbs, L. D., Kramer, L. J., Crilley, L. R. & Bloss, W. J. (2023). Predicting real-time within-vehicle air pollution exposure with mass-balance and machine learning approaches using on-road and air quality data. Atmospheric Environment, 120233. DOI:10.1016/j.atmosenv.2023.120233
  19. Prado-Rujas, I. I., García-Dopico, A., Serrano, E., Córdoba, M. L. & Pérez, M. S. (2024). A multivariable sensor-agnostic framework for spatio-temporal air quality forecasting based on Deep Learning. Engineering Applications of Artificial Intelligence, 127, 107271. DOI:10.1016/j.engappai.2023.107271
  20. Shao, Q., Chen, J. & Jiang, T. (2023). A novel coupled optimization prediction model for air quality. IEEE Access. DOI:10.1109/ACCESS.2023.3267475
  21. Shin, S., Baek, K. & So, H. (2023). Rapid monitoring of indoor air quality for efficient HVAC systems using fully convolutional network deep learning model. Building and Environment, 234, 110191. DOI:10.1016/j.buildenv.2023.110191
  22. Wang, X., Wang, M., Liu, X., Mao, Y., Chen, Y. & Dai, S. (2024). Surveillance-image-based outdoor air quality monitoring. Environmental Science and Ecotechnology, 18, 100319. DOI:10.1016/j.ese.2024.100319
  23. Wardana, I. N. K., Fahmy, S. A. & Gardner, J. W. (2023). TinyML Models for a Low-cost Air Quality Monitoring Device. IEEE Sensors Letters. DOI:10.1109/LSENS.2023.3247646
  24. Wood, D. A. (2022). Local integrated air quality predictions from meteorology (2015 to 2020) with machine and deep learning assisted by data mining. Sustainability Analytics and Modeling, 2, 100002. DOI:10.1016/j.susanm.2022.100002
  25. Yadav, N., Sorek-Hamer, M., Von Pohle, M., Asanjan, A. A., Sahasrabhojanee, A., Suel, E., Arku, R., Lingenfelter, V., Brauer, M., Ezzati, M. & Oza, N. (2023). Using Deep Transfer Learning and Satellite Imagery to Estimate Urban Air Quality in Data-Poor Regions. Environmental Pollution, 122914. DOI:10.1016/j.envpol.2023.122914
  26. Yang, Y., Mei, G. & Izzo, S. (2022). Revealing influence of meteorological conditions on air quality prediction using explainable deep learning. IEEE Access, 10, 50755-50773. DOI:10.1109/ACCESS.2022.3163935
  27. Yu, W., Nakisa, B., Ali, E., Loke, S. W., Stevanovic, S. & Guo, Y. (2023). Sensor-based indoor air temperature prediction using deep ensemble machine learning: An Australian urban environment case study. Urban Climate, 51, 101599. DOI:10.1016/j.uclim.2023.101599
  28. Zhang, B., Wang, Z., Lu, Y., Li, M. Z., Yang, R., Pan, J., & Kou, Z. (2023). Air pollutant diffusion trend prediction based on deep learning for targeted season—North China as an example. Expert Systems with Applications, 232, 120718. DOI:10.1016/j.eswa.2023.120718
  29. Zhang, Y., Wang, Y., Gao, M., Ma, Q., Zhao, J., Zhang, R., Wang, Q. & Huang, L. (2019). A predictive data feature exploration-based air quality prediction approach. IEEE Access, 7, 30732-30743. DOI:10.1109/ACCESS.2019.2903346
  30. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3). DOI:10.24425/aep.2021.138473
Go to article

Authors and Affiliations

S Karkuzhali
Thendral Puyalnithi
R Nirmalan

Download PDF Download RIS Download Bibtex

Abstract

Light pollution in the form of artificial sky glow affects not only the immediate surroundings of the towns that generate it but also more distant areas, including protected regions. This study examines the extent of the impact of the artificial sky glow, originating from Zakopane and the surrounding towns, on the western part of the Tatra National Park (TPN) in Poland. Due to the specific challenges of conducting night measurements in mountainous terrain, the valleys of the Western Tatras– Lejowa, Kościeliska and Chochołowska - were selected for the study. Sky brightness measurements were taken using Sky Quality Meter photometers (type SQM-L) under both cloudless and completely overcast conditions. The results show that in the case of a cloudless sky, the range of sky glow from nearby towns extends approximately 2-2.5 km from the valleys outlets. However, under cloudy conditions, this range increases to approximately 6 km. It was also observed that the ground illumination caused by the brightened sky is significantly lower than that produced by the brightest natural object in the sky, the Moon. Nevertheless, the night sky’s brightness exceeds natural levels, which undoubtedly affects local mountain ecosystems
Go to article

Authors and Affiliations

Tomasz Ściężor
1
ORCID: ORCID
Anna Czaplicka
1
ORCID: ORCID
Zofia Czaplicka
1

  1. Cracow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article addresses the issue of assessing the impact of road rebuilding on traffic noise pollution. To assess noise hazards, parameters expressed on the decibel scale were used, and a new measure was proposed - a scalar reference that compares the sound level value to the recommended threshold. This measure is based on Weber Fechner's law, which relates to human perception of changes in sound levels. It was derived through the decibel algebra applied to measurement results and is called the “coefficient of exceedance of the recommended sound level”. Its usefulness was verified by analyzing the results of measurements of traffic and noise parameters before and two years after the reconstruction of a section of the national road in Kielce. An assessment was made of traffic volume, vehicle speed, and road vehicle noise. The analysis evaluated the absolute values, variability and uncertainty of results obtained for the entire year, Fridays and Sundays. Significant differences in traffic parameter values were observed between the lanes entering and leaving the city on weekdays and weekends. The analysis showed a 28% increase in traffic volume following the road reconstruction. The current measure, which compares the difference in noise levels before and after the road reconstruction, indicates that while noise levels have decreased, they still exceed the normative values. For the same parameters, the median coefficient of exceedance decreased by approximately 17%, and the maximum coefficient of exceedance decreased by approximately 15%. The diagnostic usefulness of the coefficient of exceedance was further assessed using noise simulations based on the Cnossos-EU model. These simulations showed the high sensitivity of the proposed scalar noise measure to changes in vehicle speed and traffic volume. The simulations also indicated that to meet the Polish noise normative values, traffic volume would need to reduced by 50%, and the vehicle speed would need to be capped at 50 km/h. Additionally, the simulations suggested that even more stringent traffic restrictions would be necessary to meet the World Health Organization's noise recommendations.
Go to article

Bibliography

  1. Batko, W., Radziszewski, L. & Bąkowski, A. (2023). Limitations of decibel algebra in the study of environmental acoustic hazards. In AIP Conference Proceedings (Vol. 2949, No. 1). AIP Publishing, DOI:10.1063/5.0166002
  2. Bąkowski A. & Radziszewski L. (2022) Analysis of the Traffic Parameters on a Section in the City of the National Road during Several Years of Operation. Communications - Scientific Letters of the University of Zilina, 24, 1, A12-A25, DOI:10.26552/com.C.2022.1.A12-A25
  3. Bąkowski, A. & Radziszewski, L. (2023). Urban tidal flow noise-case study. Vibrations in Physical Systems, 34(1). DOI:10.21008/j.0860-6897.2023.1.19
  4. Benocci R., Molteni A., Cambiaghi M., Angelini F., Roman E. & Zambon G. (2019). Reliability of Dynamap traffic noise prediction, Applied Acoustics 156, pp. 142–150. DOI:10.1016/j.apacoust.2019.07.004
  5. Brambilla, G., Benocci, R., Potenza, A. & Zambon, G. (2023). Stabilization Time of Running Equivalent Level LAeq for Urban Road Traffic Noise. Appl. Sci. 13, 207. DOI:10.3390/app13010207
  6. Ece, M., Tosun, İ., Ekinci, K. & Yalçindağ, N.S. (2018)_. Modeling of road traffic noise and traffic flow measures to reduce noise exposure in Antalya metropolitan municipality. J Environ Health Sci Eng. 16, 1, pp. 1-10. DOI:10.1007/s40201-018-0288-4. PMID: 30258637; PMCID: PMC6148232.
  7. European Union. Directive 2002/49/EC of the European Parliament and the Council of June 25 2002 relating to the assessment and management of environmental noise. Off. J. Eur. Communities. 2002, 189, 12–25
  8. Graziuso, G., Francavilla, A. B., Mancini, S. & Guarnaccia, C. (2022). Application of the Harmonica Index for noise assessment in different spatial contexts. In Journal of Physics: Conference Series 2162, 1, 012006. IOP Publishing DOI:10.1088/1742-6596/2162/1/012006
  9. Harantová, V., Hájnik, A., & Kalašová, A. (2020). Comparison of the flow rate and speed of vehicles on a representative road section before and after the implementation of measures in connection with COVID-19. Sustainability, 12, 17, 7216. DOI:10.3390/su12177216
  10. Holnicki, P., Kałuszko, A. & Nahorski, Z. (2021). Analysis of emission abatement scenario to improve urban air quality. Archives of Environmental Protection, 47, 2 pp. 103–114. DOI:10.24425/aep.2021.137282
  11. ISO 1996-1:2016 - Acoustics Description, measurement and assessment of environmental noise Part 1: Basic quantities and assessment procedures. https://www.iso.org/standard/59765.html.
  12. Khan, D. & Burdzik, R. (2023). Measurement and analysis of transport noise and vibration: A review of techniques, case studies, and future directions. Measurement, 113354. DOI:10.1016/j.measurement.2023.113354
  13. Macioszek, E. & Kurek, A. (2021). Road traffic distribution on public holidays and workdays on selected road transport network elements. Transport Problems, 16.
  14. Meller, G., de Lourenço, W. M., de Melo, V. S. G. & de Campos Grigoletti, G. (2023). Use of noise prediction models for road noise mapping in locations that do not have a standardized model: a short systematic review. Environmental Monitoring and Assessment, 195, 6, 740. DOI:10.1007
  15. Moroe, N. & Mabaso, P. (2022). Quantifying traffic noise pollution levels: a cross-sectional survey in South Africa. Scientific Reports, 12, 1, 3454. DOI:10.1038/s41598-022-07145-z
  16. Noussan, M., Carioni, G., Sanvito, F. D. & Colombo, E. (2019). Urban mobility demand profiles: Time series for cars and bike-sharing use as a resource for transport and energy modeling. Data, 4, 3, 108. DOI:10.3390/data4030108
  17. Patel, R., Kumar, Singh P. &, Saw, S. (2024). Traffic Noise Modeling under Mixed Traffic Condition n Mid-Sized Indian City: A Linear Regression and Neural Network-Based Approach. International Journal of Mathematical, Engineering and Management Sciences, 9, 3, pp. 411–434. DOI:10.33889/IJMEMS.2024.9.3.022
  18. Peters, R. (Ed.). (2020). Uncertainty in acoustics: measurement, prediction and assessment. CRC Press, DOI:10.1201/9780429470622
  19. Przysucha, B., Pawlik, P., Stępień, B. & Surowiec, A. (2021). Impact of the noise indicators components correlation Ld, Le, Ln on the uncertainty of the long-term day–evening–night noise indicator Lden. Measurement, 179, 109399. DOI:10.1016/j.measurement.2021.109399
  20. Ranpise, R. B. & Tandel, B. N. (2022). Urban road traffic noise monitoring, mapping, modelling, and mitigation: A thematic review. Noise Mapping, 9, 1, pp. 48-66. DOI:10.1515/noise-2022-0004
  21. Retallack, A. E. & Ostendorf, B. (2019). Current understanding of the effects of congestion on traffic accidents. International journal of environmental research and public health, 16, 18, 3400. DOI:10.3390/ijerph16183400
  22. Sahu, A. K., Nayak, S. K., Mohanty, C. R. & Pradhan, P. K. (2021). Traffic noise and its impact on wellness of the residents in sambalpur city–a critical analysis. Archives of Acoustics, 46, 2, pp. 353-363. DOI:10.24425/aoa.2021.136588
  23. Smiraglia, M., Benocci, R., Zambon, G. & Roman, H. E. (2016). Predicting hourly traffic noise from traffic flow rate model: Underlying concepts for the dynamic project. Noise mapping, 3, 1. DOI:10.1515/noise-2016-0010
  24. Starzomska, A. & Strużewska, J. (2024). A six-year measurement-based analysis of traffic-related particulate matter pollution in urban areas: the case of Warsaw, Poland (2016-2021), Archives of Environmental Protection, 50, 2 pp. 75–84. DOI:10.24425/aep.2024.150554
  25. Upadhyay, S., Parida, M. & Kumar, B. (2023, February). Development of a Reference Energy Mean Emission Level Traffic Noise Models for Bituminous Pavement for Mid-Sized Cities in India. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 265, No. 5, pp. 2899–2906). Institute of Noise Control Engineering. DOI:10.3397/IN_2022_0408
  26. Wang, S., Yu, D., Ma, X. & Xing, X. (2018). Analyzing urban traffic demand distribution and the correlation between traffic flow and the built environment based on detector data and POIs. European Transport Research Review, 10, pp;. 1-17. DOI:10.1186/s12544-018-0325-5
  27. World Health Organization. (2018). Environmental noise guidelines for the European region. World Health Organization. Regional Office for Europe. ISBN: 9789289053563
  28. Wunderli, J. M., Pieren, R., Habermacher, M., Vienneau, D., Cajochen, C., Probst-Hensch, N. & Brink, M. (2016). Intermittency ratio: A metric reflecting short-term temporal variations of transportation noise exposure. Journal of exposure science & environmental epidemiology, 26, 6, pp. 575-585. DOI:10.1038/jes.2015.56
  29. Yang, W., Cai, M. & Luo, P. (2020). The calculation of road traffic noise spectrum based on the noise spectral characteristics of single vehicles. Applied Acoustics, 160, 107128. DOI:10.1016/j.apacoust.2019.107128
  30. Zhang, Y., Li, F., Liu, A., Yin, J. & Xu, L. (2023). Context-Expectation, Desensitization, and Synaesthesia: Comparing the Physical Acoustic Environment and Perceptual Soundscapes in Urban Public Spaces, SSRN. DOI:10.2139/ssrn.4583809
Go to article

Authors and Affiliations

Andrzej Bąkowski
1
Wojciech Batko
2
ORCID: ORCID
Leszek Radziszewski
1
ORCID: ORCID

  1. 1Kielce University of Technology, Poland
  2. Academy of Applied Sciences in Krosno, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present paper experimentally analyses the subjective assessment of indoor environment comfort based on a questionnaire survey conducted in a climate chamber located at Kielce University of Technology (Poland), if two types of face masks are worn by the respondents: thin (medical) and thick (cotton-made) masks. Air temperature and relative humidity in the chamber ranged from around 19 to 28oC and 20 – 70%, respectively. Precise measurement of the microclimate parameters was obtained with a microclimate meter, which recorded air temperature and relative humidity at the moment of completing the questionnaires. The respondents were of similar age (22 – 31 years old) and wore two types of clothing during the experiments: summer and winter, which differed by thermal resistance. This value amounted to 0.5 clo for the summer outfit and 0.8 clo for the winter one.In total 960 questionnaires were analysed in the study. The results indicate that the increase in air temperature led to poorer overall comfort, while the largest comfort sensation was recorded for the most favourable thermal sensation range. In general, thicker masks provided lower overall comfort than thinner masks for all relative humidity values.
Go to article

Bibliography

  1. Ahmad, R.I., Norfadzilah, J. & Raemy, M.Z. (2022). Human Responses to the Thermal Comfort in Air-Conditioned Building: A Climate Chamber Study, Int. J. Integrated Engineering, 14, 1, pp. 287-295. DOI:10.30880/ijie.2022.14.01.027
  2. Amanowicz, Ł., Ratajczak, K. & Dudkiewicz, E. (2023). Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review, Energies, 16, 4, 1853. DOI:10.3390/en16041853
  3. Chen, M., Farahani, A.V., Kilpeläinen, S., Kosonen, R., Younes, J., Ghaddar, N., Ghali, K. & Melikov, A.K. (2023). Thermal comfort chamber study of Nordic elderly people with local cooling devices in warm conditions, Building Environment, 235, 110213. DOI:10.1016/j.buildenv.2023.110213
  4. Dudkiewicz, E., Laska, M. & Fidorów-Kaprawy, N. (2021). Users’ Sensations in the Context of Energy Efficiency Maintenance in Public Utility Buildings, Energies, 14, 23, 8159. DOI:10.3390/en14238159
  5. Dong, Y., Shi, Y., Liu, Y., Rupp, R.F. & Toftum, J. (2022). Perceptive and physiological adaptation of migrants with different thermal experiences: A long-term climate chamber experiment, Building Environment, 211, 108727. DOI:10.1016/j.buildenv.2021.108727
  6. Frączek, K., Bulski, K. & Chmiel, M. (2023). Assessment of exposure to fungal aerosol in the lecture rooms of schools in the Lesser Poland region, Archives of Environmental Protection, 49, 4, pp. 95–102. DOI:10.24425/aep.2023.148688
  7. Hu, R., Liu, J., Xie, Y., Su, Y., Fang, Z., Diao, Y. & Shen, H., Influencing assessment of mask wearing on thermal comfort and pleasure during outdoor walking in hot summer region, Urban Climate, 54, 101854, 2024. DPOI:10.1016/j.uclim.2024.101854.
  8. Huo, S. & Hang, T.T. (2021). Ventilation of ordinary face masks, Building and Environment, 205, 108261. DOI:10.1016/j.buildenv.2021.108261
  9. Jiang, H., Cao, B. & Zhu, Y. (2023). Thermal comfort of personal protective equipment (PPE) wearers in different temperatures and activity conditions, Journal of Building Engineering, 78, 107609. DOI:10.1016/j.jobe.2023.107609
  10. Jiménez-García, S., De Juan Pérez, A., Pérez-Cañaveras, R.M. & Vizcaya-Moreno, F. (2022). Working Environment, Personal Protective Equipment, Personal Life Changes, and Well-Being Perceived in Spanish Nurses during COVID-19 Pandemic: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19, 4856. DOI:10.3390/ijerph19084856
  11. Kaniowski, R. & Pastuszko, R. (2021). Boiling of FC-72 on Surfaces with Open Copper Microchannel, Energies, 14, 7283. DOI:10.3390/en14217283
  12. Krawczyk, N., Dębska, L., Piotrowski, J.Zb., Honus, S. & Majewski, G. (2023). Validation of the Fanger Model and Assessment of SBS Symptoms in the Lecture Room, Rocznik Ochrona Środowiska, 25, pp. 68-76. DOI: 10.54740/ros.2023.008
  13. Lin, Y-C. & Chen, C-P. (2019). Thermoregulation and thermal sensation in response to wearing tight-fitting respirators and exercising in hot-and-humid indoor environment, Building and Environment, 160, 106158. DOI: 10.1016/j.buildenv.2019.05.036
  14. Liu, C., Li, G., He, Y. Zhang, A. & Ding, Y. (2020). Effects of wearing masks on human health and comfort during the COVID-19 pandemic, IOP Conf Ser: Earth Environ Sci, 531, 012034. DOI: 10.1088/1755-1315/531/1/012034
  15. Liu, T., Shan, X., Deng, Q., Zhou, Z., Yang, G., Wang, J. & Ren, Z. (2022). Thermal Perception and Physiological Responses under Different Protection States in Indoor Crowded Spaces during the COVID-19 Pandemic in Summer, Sustainability, 14, p. 5477. DOI:10.3390/su14095477
  16. Majewski, G., Orman, Ł.J., Telejko, M., Radek, N., Pietraszek, J. & Dudek, A. (2020). Assessment of Thermal Comfort in the Intelligent Buildings in View of Providing High Quality Indoor Environment, Energies, 13, 8, 1973. DOI:10.3390/en13081973
  17. Mutiara Sari M., Inoue, T., Septiariva, I.Y., Suryawan, W.K., Kato, S., Harryes, R.K., Yokota, K., Notodarmojo, S., Suhardono S. & Ramadan, B.S. (2022). Identification of face mask waste generation and processing in tourist areas with thermo-chemical process, Archives of Environmental Protection, 48, 2 pp. 79–85. DOI:10.24425/aep.2022.140768
  18. Nogaj, K., Turski, M. & Sekret R. (2017). The influence of using heat storage with PCM on inlet and outlet temperatures in substation in DHS, E3S Web of Conferences, 22, 00124. DOI:10.1051/e3sconf/20172200124
  19. Nogaj, K., Turski, M. & Sekret R. (2018). The use of substations with PCM heat accumulators in district heating system, MATEC Web of Conferences, 174, 01002. DOI:10.1051/matecconf/201817401002
  20. Orman, Ł.J., Siwczuk, N., Radek, N., Honus, S., Piotrowski, J.Z. & Dębska, L. (2024). Comparative Analysis of Subjective Indoor Environment Assessment in Actual and Simulated Conditions, Energies, 17, 656. DOI:10.3390/en17030656.
  21. Ratajczak, K., Amanowicz, Ł., Pałaszyńska, K., Pawlak, F. & Sinacka, J. (2023). Recent Achievements in Research on Thermal Comfort and Ventilation in the Aspect of Providing People with Appropriate Conditions in Different Types of Buildings—Semi-Systematic Review, Energies, 16, 17, 6254. DOI:10.3390/en16176254
  22. Seo, R., Rhee, K-N. & Jung, G-J. (2024). Impact of wearing indoor masks on occupant’s thermal comfort under different room temperature conditions in winter, Indoor and Built Environment, DOI:10.1177/1420326X241286888
  23. Soebarto, V., Zhang, H. & Schiavon, S. (2019). A thermal comfort environmental chamber study of older and younger people, Building Environment, 155. DOI:10.1016/j.buildenv.2019.03.032
  24. Starzomska, A. & Strużewska, J. (2024). A six-year measurement-based analysis of traffic-related particulate matter pollution in urban areas: the case of Warsaw, Poland (2016-2021), Archives of Environmental Protection, 50, 2 pp. 75–84. DOI:10.24425/aep.2024.150554
  25. Stokowiec, K., Wciślik, S. & Kotrys-Działak, D. (2023). Innovative Modernization of Building Heating Systems: The Economy and Ecology of a Hybrid District-Heating Substation, Inventions, 8, 1, 43. DOI:10.3390/inventions8010043
  26. Testo (2024), www.testo.com (28.06.2024)
  27. Upadhyay, K., Elangovan, R. & Subudhi, S. (2023). Establishing thermal comfort baseline in a sub-tropical region through a controlled climate chamber study, Advances in Building Energy Research. DOI:10.1080/17512549.2023.2258884
  28. Hang, R., Liu, J., Zhang, L., Lin, J. & Wu, Q. (2021). The distorted power of medical surgical masks for changing the human thermal psychology of indoor personnel in summer, Indoor Air, 31, pp. 1645–1656. DOI:10.1111/ina.12830
  29. Zhang, T.T., Zhang, T. & Liu, S. (2022). A Modified Surgical Face Mask to Improve Protection and Wearing Comfort, Buildings, 12, 663. DOI:10.3390/buildings12050663
  30. Zhang, Z.; Zhang, Y. & Khan, A. (2019). Thermal comfort of people from two types of air-conditioned buildings - Evidences from chamber experiments, Building Environment, 162, 106287. DOI:10.1016/j.buildenv.2019.106287
Go to article

Authors and Affiliations

Łukasz Jan Orman
1
ORCID: ORCID
Luiza Dębska
1
ORCID: ORCID
Lidia Dąbek
1
ORCID: ORCID
Stanislav Honus
2
ORCID: ORCID
Stanisław Adamczak
3
ORCID: ORCID

  1. Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology,al. Tysiaclecia P.P.7, 25-314 Kielce, Poland
  2. Faculty of Mechanical Engineering, VSB – Technical University of Ostrava,17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
  3. Faculty of Mechanical Engineering, Kielce University of Technology,al. Tysiaclecia P.P.7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

Thermal effects accompanying gas sorption on micro- and mesoporous materials provide unique insights into the type, course, and efficiency of sorption. In this study, metal-organic frameworks (MOFs) with different topologies and chemical structures were synthesized and investigated: HKUST-1, Ni-MOF-74, UiO-66, and MIL-140A. These MOFs were characterized structurally and sorptively with respect to selected greenhouse gases (GHGs). Sorption capacities for CO2 and CH4 were determined at several temperatures and measurement pressures, and the maximum sorption capacity was determined using the Langmuir-Freundlich model. Thermal effects accompanying adsorption were quantified through the isosteric heat of adsorption parameter. For each MOF, the values of isosteric heat of adsorption were higher for CO2 than for CH4. The values of this parameter was determined in the following order: HKUST-1 > Ni-MOF-74 > UiO-66 > MIL-140A. Energy homogeneity of the adsorbent surface was observed in nearly all cases, except for UiO-66 during CO2 adsorption. Changes in the determined isosteric heat of adsorption of CO2 with increasing sorption capacity were in the range of 5-15 kJ/mol, while for CH4 they ranged from 1.4 to 17 kJ/mol, respectively. The level of thermal selectivity of CO2 over CH4 was determined in the following order: UiO-66 (1.9) > Ni-MOF-64 (1.7) > MIL-140A (1.5) > HKUST-1 (1.1).
Go to article

Bibliography

  1. Abdelnaby, M. M., Tayeb, I. M., Alloush, A. M., Alyosef, H. A., Alnoaimi, A., Zeama, M., Mohammed, M. G. & Onaizi, S. A. (2024). Post-synthetic modification of UiO-66 analogue metal-organic framework as potential solid sorbent for direct air capture, Journal of CO2 Utilization, 79, 102647. DOI:10.1016/j.jcou.2023.102647.
  2. Aniruddha, R., Sreedhar, I. & Reddy, B. M. (2020). MOFs in carbon capture-past, present and future, Journal of CO2 Utilization, 42, 101297. DOI:10.1016/j.jcou.2020.101297.
  3. Barrett, E. P., Joyner, L. G. & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, 73, pp. 373–380. DOI:10.1021/ja01145a126.
  4. Becker, T. M., Heinen, J., Dubbeldam, D., Lin, L.-C. & Vlugt, T. J. H. (2017). Polarizable Force Fields for CO 2 and CH 4 Adsorption in M-MOF-74, The Journal of Physical Chemistry C, 121, pp. 4659–4673. DOI:10.1021/acs.jpcc.6b12052.
  5. Bisotti, F., Hoff, K. A., Mathisen, A. & Hovland, J. (2024). Direct Air capture (DAC) deployment: A review of the industrial deployment, Chemical Engineering Science, 283, 119416. DOI:10.1016/j.ces.2023.119416.
  6. Bordiga, S., Regli, L., Bonino, F., Groppo, E., Lamberti, C., Xiao, B., Wheatley, P. S., Morris, R. E. & Zecchina, A. (2007). Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR, Physical Chemistry Chemical Physics, 9, 2676. DOI:10.1039/b703643d.
  7. Brunauer, S., Emmett, P. H. & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60, pp. 309–319. DOI:10.1021/ja01269a023.
  8. Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. (2014). Water adsorption in MOFs: fundamentals and applications, Chem. Soc. Rev., 43, pp. 5594–5617. DOI:10.1039/C4CS00078A.
  9. Carreon, M. A. & Venna, S. R. (2020). Metal-Organic Framework Membranes for Molecular Gas Separations, World Scientific (Europe), 6. DOI:10.1142/q0200.
  10. Chai, W., Shen, Y., Wang, J. & Zhang, G. (2022). Applications of Metal-Organic Framework Materials, Journal of Physics: Conference Series, 2194, 012014. DOI:10.1088/1742-6596/2194/1/012014.
  11. Chakraborty, A., Saha, B. B., Ng, K. C., Koyama, S. & Srinivasan, K. (2009). Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces, Langmuir, 25, pp. 2204–2211. DOI:10.1021/la803289p.
  12. Choi, I., Jung, Y. E., Yoo, S. J., Kim, J. Y., Kim, H.-J., Lee, C. Y. & Jang, J. H. (2017). Facile Synthesis of M-MOF-74 (M=Co, Ni, Zn) and its Application as an ElectroCatalyst for Electrochemical CO2 Conversion and H2 Production, Journal of Electrochemical Science and Technology, 8, pp. 61–68. DOI:10.33961/JECST.2017.8.1.61.
  13. Chowdhury, P., Mekala, S., Dreisbach, F. & Gumma, S. (2012). Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity, Microporous and Mesoporous Materials, 152, pp. 246–252. DOI:10.1016/j.micromeso.2011.11.022.
  14. Cimino, R. T., Kowalczyk, P., Ravikovitch, P. I. & Neimark, A. V. (2017). Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory, Langmuir, 33, pp. 1769–1779. DOI:10.1021/acs.langmuir.6b04119.
  15. Czaja, A. U., Trukhan, N. & Müller, U. (2009). Industrial applications of metal–organic frameworks, Chemical Society Reviews, 38, 1284. DOI:10.1039/b804680h.
  16. Czarnota, R., Knapik, E., Wojnarowski, P., Janiga, D. & Stopa, J. (2019). Carbon Dioxide Separation Technologies, Archives of Mining Sciences, 64, pp. 487–498. DOI:10.24425/ams.2019.129364.
  17. Dhakshinamoorthy, A., Li, Z. & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks, Chemical Society Reviews, 47, pp. 8134–8172. DOI:10.1039/C8CS00256H.
  18. Ding, M., Cai, X. & Jiang, H.-L. (2019). Improving MOF stability: approaches and applications, Chemical Science, 10, pp. 10209–10230. DOI:10.1039/C9SC03916C
  19. Elhenawy, S. E. M., Khraisheh, M., AlMomani, F. & Walker, G. (2020). Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2, Catalysts, 10, 1293. DOI:10.3390/catal10111293.
  20. Erans, M., Sanz-Pérez, E. S., Hanak, D. P., Clulow, Z., Reiner, D. M. & Mutch, G. A. (2022). Direct air capture: process technology, techno-economic and socio-political challenges, Energy & Environmental Science, 15, pp. 1360–1405. DOI:10.1039/D1EE03523A.
  21. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks, Science, 341. DOI:10.1126/science.1230444.
  22. Gargiulo, N., Peluso, A. & Caputo, D. (2020). MOF-Based Adsorbents for Atmospheric Emission Control: A Review, Processes, 8, 613. DOI:10.3390/pr8050613.
  23. Giraldo, L., Rodriguez-Estupiñán, P. & Moreno-Piraján, J. C. (2019). Isosteric Heat: Comparative Study between Clausius–Clapeyron, CSK and Adsorption Calorimetry Methods, Processes, 7, 203. DOI:10.3390/pr7040203.
  24. Haldoupis, E., Borycz, J., Shi, H., Vogiatzis, K. D., Bai, P., Queen, W. L., Gagliardi, L. & Siepmann, J. I. (2015). Ab Initio Derived Force Fields for Predicting CO 2 Adsorption and Accessibility of Metal Sites in the Metal–Organic Frameworks M-MOF-74 (M = Mn, Co, Ni, Cu), The Journal of Physical Chemistry C, 119, pp. 16058–16071. DOI:10.1021/acs.jpcc.5b03700.
  25. Jodłowski, P. J., Kurowski, G., Dymek, K., Jędrzejczyk, R. J., Jeleń, P., Kuterasiński, Ł., Gancarczyk, A., Węgrzynowicz, A., Sawoszczuk, T. & Sitarz, M. (2020). In situ deposition of M(M=Zn; Ni; Co)-MOF-74 over structured carriers for cyclohexene oxidation - Spectroscopic and microscopic characterization, Microporous and Mesoporous Materials, 303, 110249. DOI:10.1016/j.micromeso.2020.110249.
  26. Jodłowski, P. J., Kurowski, G., Dymek, K., Oszajca, M., Piskorz, W., Hyjek, K., Wach, A., Pajdak, A., Mazur, M., Rainer, D. N., Wierzbicki, D., Jeleń, P. & Sitarz, M. (2023). From crystal phase mixture to pure metal-organic frameworks – Tuning pore and structure properties, Ultrasonics Sonochemistry, 95, 106377. DOI:10.1016/j.ultsonch.2023.106377.
  27. Jodłowski, P. J., Kurowski, G., Kuterasiński, Ł., Sitarz, M., Jeleń, P., Jaśkowska, J., Kołodziej, A., Pajdak, A., Majka, Z. & Boguszewska-Czubara, A. (2021). Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal–Organic Framework Materials to Prevent the Onset of Heart Defects—In Vivo and In Vitro, ACS Applied Materials & Interfaces, 13, pp. 312–323. DOI:10.1021/acsami.0c21508.
  28. Jodłowski, P. J., Kurowski, G., Skoczylas, N., Pajdak, A., Kudasik, M., Jędrzejczyk, R. J., Kuterasiński, Ł., Jeleń, P., Sitarz, M., Li, A. & Mazur, M. (2022). Silver and copper modified zeolite imidazole frameworks as sustainable methane storage systems, Journal of Cleaner Production, 352, 131638. DOI:10.1016/j.jclepro.2022.131638.
  29. Kong, X.-J. & Li, J.-R. (2021). An Overview of Metal–Organic Frameworks for Green Chemical Engineering, Engineering, 7, pp. 1115–1139. DOI:10.1016/j.eng.2021.07.001.
  30. Krzywanski, J., Grabowska, K., Sosnowski, M., Zylka, A., Kulakowska, A., Czakiert, T., Sztekler, K., Wesolowska, M. & Nowak, W. (2022). Heat Transfer in Adsorption Chillers with Fluidized Beds of Silica Gel, Zeolite, and Carbon Nanotubes, Heat Transfer Engineering, 43, 172–182. DOI:10.1080/01457632.2021.1874174.
  31. Kurzydym, I. & Czekaj, I. (2020). Modelling of porous metal-organic framework (MOF) materials used in catalysis, Technical Transactions, pp. 1–24. DOI:10.37705/TechTrans/e2020012.
  32. Langmuir, I. (1918). THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM, Journal of the American Chemical Society, 40, pp. 1361–1403. DOI:10.1021/ja02242a004.
  33. Lee, Y.-R., Kim, J. & Ahn, W.-S. (2013). Synthesis of metal-organic frameworks: A mini review, Korean Journal of Chemical Engineering, 30, pp. 1667–1680. DOI:10.1007/s11814-013-0140-6.
  34. Li, D., Chen, L., Liu, G., Yuan, Z., Li, B., Zhang, X. & Wei, J. (2021). Porous metal–organic frameworks for methane storage and capture: status and challenges, New Carbon Materials, 36, pp. 468–496. DOI:10.1016/S1872-5805(21)60034-3.
  35. Li, H., Li, L., Lin, R.-B., Zhou, W., Zhang, Z., Xiang, S. & Chen, B. (2019). Porous metal-organic frameworks for gas storage and separation: Status and challenges, EnergyChem, 1, 100006. DOI:10.1016/j.enchem.2019.100006.
  36. Li, M., Zhang, G., Boakye, A., Chai, H., Qu, L. & Zhang, X. (2021). Recent Advances in Metal-Organic Framework-Based Electrochemical Biosensing Applications, Frontiers in Bioengineering and Biotechnology, 9. DOI:10.3389/fbioe.2021.797067.
  37. Lin, R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. (2019). Exploration of porous metal–organic frameworks for gas separation and purification, Coordination Chemistry Reviews, 378, pp. 87–103. DOI:10.1016/j.ccr.2017.09.027.
  38. Madden, D. G., O’Nolan, D., Chen, K.-J., Hua, C., Kumar, A., Pham, T., Forrest, K. A., Space, B., Perry, J. J., Khraisheh, M. & Zaworotko, M. J. (2019). Highly selective CO2 removal for one-step liquefied natural gas processing by physisorbents, Chemical Communications, 55, pp. 3219–3222. DOI:10.1039/C9CC00626E.
  39. Mahdipoor, H. R., Halladj, R., Ganji Babakhani, E., Amjad-Iranagh, S. & Sadeghzadeh Ahari, J. (2021). Synthesis, characterization, and CO 2 adsorption properties of metal organic framework Fe-BDC, RSC Advances, 11, pp. 5192–5203. DOI:10.1039/D0RA09292D.
  40. Mangal, S., Priya, S. S., Lewis, N. L. & Jonnalagadda, S. (2018). Synthesis and characterization of metal organic framework-based photocatalyst and membrane for carbon dioxide conversion, Materials Today: Proceedings, 5, pp. 16378–16389. DOI:10.1016/j.matpr.2018.05.134.
  41. Mason, J. A., Veenstra, M. & Long, J. R. (2014). Evaluating metal–organic frameworks for natural gas storage, Chem. Sci., 5, pp. 32–51. DOI:10.1039/C3SC52633J.
  42. Myers, A. L. (2002). Thermodynamics of adsorption in porous materials, AIChE Journal, 48, pp. 145–160. DOI:10.1002/aic.690480115.
  43. Naghdi, S., Shahrestani, M. M., Zendehbad, M., Djahaniani, H., Kazemian, H. & Eder, D. (2023). Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs), Journal of Hazardous Materials, 442, 130127. DOI:10.1016/j.jhazmat.2022.130127.
  44. Neimark, A. V., Ravikovitch, P. I., Grün, M., Schüth, F. & Unger, K. K. (1998). Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption, Journal of Colloid and Interface Science, 207, pp. 159–169. DOI:10.1006/jcis.1998.5748.
  45. Nuhnen, A. & Janiak, C. (2020). A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal–organic frameworks, MOFs, Dalton Transactions, 49, pp. 10295–10307. DOI:10.1039/D0DT01784A.
  46. Olivier, J. P. (1995). Modeling physical adsorption on porous and nonporous solids using density functional theory, Journal of Porous Materials, 2, pp. 9–17. DOI:10.1007/BF00486565.
  47. Olivier, J. P. (2000). Comparison of the experimental isosteric heat of adsorption of argon on mesoporous silica with density functional theory calculations, Studies in Surface Science and Catalysis, 128, pp. 81–87. DOI:10.1016/S0167-2991(00)80011-7.
  48. Oschatz, M. & Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents, Energy & Environmental Science, 11, pp. 57–70. DOI:10.1039/C7EE02110K.
  49. Pajdak, A., Skoczylas, N., Dębski, A., Grzegorek, J., Maziarz, W. & Kudasik, M. (2019). CO2 and CH4 sorption on carbon nanomaterials and coals – Comparative characteristics, Journal of Natural Gas Science and Engineering, 72, 103003. DOI:10.1016/j.jngse.2019.103003.
  50. Park, H. J. & Suh, M. P. (2013). Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions, Chem. Sci., 4, pp. 685–690. DOI:10.1039/C2SC21253F.
  51. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M. & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103, pp. 10186–10191. DOI:10.1073/pnas.0602439103.
  52. Qazvini, O. T., Babarao, R. & Telfer, S. G. (2021). Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework, Nature Communications, 12, 197. DOI:10.1038/s41467-020-20489-2.
  53. Qian, Q., Asinger, P. A., Lee, M. J., Han, G., Mizrahi Rodriguez, K., Lin, S., Benedetti, F. M., Wu, A. X., Chi, W. S. & Smith, Z. P. (2020). MOF-Based Membranes for Gas Separations, Chemical Reviews, 120, pp. 8161–8266. DOI:10.1021/acs.chemrev.0c00119.
  54. Rafati Jolodar, A., Abdollahi, M., Fatemi, S. & Mansoubi, H. (2024). Enhancing carbon dioxide separation from natural gas in dynamic adsorption by a new type of bimetallic MOF; MIL-101(Cr-Al), Separation and Purification Technology, 334, 125990. DOI:10.1016/j.seppur.2023.125990.
  55. Rieth, A. J., Wright, A. M. & Dincă, M. (2019). Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture, Nature Reviews Materials, 4, pp. 708–725. DOI:10.1038/s41578-019-0140-1.
  56. Senkovska, I. & Kaskel, S. (2008). High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3, Microporous and Mesoporous Materials, 112, pp. 108–115. DOI:10.1016/j.micromeso.2007.09.016.
  57. Sircar, S., Mohr, R., Ristic, C. & Rao, M. B. (1999). Isosteric Heat of Adsorption: Theory and Experiment, The Journal of Physical Chemistry B, 103, pp. 6539–6546. DOI:10.1021/jp9903817.
  58. Sose, A. T., Cornell, H. D., Gibbons, B. J., Burris, A. A., Morris, A. J. & Deshmukh, S. A. (2021). Modelling drug adsorption in metal–organic frameworks: the role of solvent, RSC Advances, 11, pp. 17064–17071. DOI:10.1039/D1RA01746B.
  59. Strauss, I., Mundstock, A., Treger, M., Lange, K., Hwang, S., Chmelik, C., Rusch, P., Bigall, N. C., Pichler, T., Shiozawa, H. & Caro, J. (2019). Metal–Organic Framework Co-MOF-74-Based Host–Guest Composites for Resistive Gas Sensing, ACS Applied Materials & Interfaces, 11, pp. 14175–14181. DOI:10.1021/acsami.8b22002.
  60. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87, pp. 1051–1069. DOI:10.1515/pac-2014-1117.
  61. Tlili, N., Grévillot, G. & Vallières, C. (2009). Carbon dioxide capture and recovery by means of TSA and/or VSA, International Journal of Greenhouse Gas Control, 3, pp. 519–527. DOI:10.1016/j.ijggc.2009.04.005.
  62. Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., Lillerud, K. P. & Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory, Chemistry of Materials, 23, pp. 1700–1718. DOI:10.1021/cm1022882.
  63. Valverde, A., G.-Sainz, P., Orive, J., Larrea, E., Reizabal-Para, A., Tovar, G., Copello, G., Lázaro-Martinez, J. M., Rodriguez, B., Gonzalez-Navarrete, B., Quintero, Y., Rosales, M., García, A., Arriortua, M. I. & Fernández de Luis, R. (2021). Chapter Three - Porous, lightweight, metal organic materials: environment sustainability, in: Advanced Lightweight Multifunctional Materials, Costa, P., Costa, C. M., Lanceros-Mendez, S. (Eds.). Woodhead Publishing, pp. 49-129. DOI:10.1016/B978-0-12-818501-8.00012-3.
  64. Wierzbicki, M. (2019). Izosteryczne ciepło sorpcji metanu na wybranych węglach kamiennych, PRZEMYSŁ CHEMICZNY, 1, pp. 139–143. DOI:10.15199/62.2019.4.22.
  65. Xiao, T. & Liu, D. (2019). The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives, Microporous and Mesoporous Materials, 283, pp. 88–103. DOI:10.1016/j.micromeso.2019.03.002.
  66. Xu, B., Zhang, H., Mei, H. & Sun, D. (2020). Recent progress in metal-organic framework-based supercapacitor electrode materials, Coordination Chemistry Reviews, 420, 213438. DOI:10.1016/j.ccr.2020.213438.
  67. Yulia, F., Utami, V. J., Nasruddin, N. & Zulys, A. (2019). Synthesis, Characterizations, and Adsorption Isotherms of CO2 on Chromium Terephthalate (MIL-101) Metal-organic Frameworks (MOFs), International Journal of Technology, 10, 1427. DOI:10.14716/ijtech.v10i7.3706.
  68. Zhou, J., Zeng, C., Ou, H., Yang, Q., Xie, Q., Zeb, A., Lin, X., Ali, Z. & Hu, L. (2021). Metal–organic framework-based materials for full cell systems: a review, Journal of Materials Chemistry C, 9, pp. 11030–11058. DOI:10.1039/D1TC01905H.
  69. Zylka, A., Krzywanski, J., Czakiert, T., Idziak, K., Sosnowski, M., de Souza-Santos, M. L., Sztekler, K. & Nowak, W. (2020). Modeling of the Chemical Looping Combustion of Hard Coal and Biomass Using Ilmenite as the Oxygen Carrier, Energies, 13, 5394. DOI:10.3390/en13205394.
Go to article

Authors and Affiliations

Aleksandra Gajda
1
ORCID: ORCID
Przemysław Jodłowski
2
Katarzyna Kozieł
1
ORCID: ORCID
Grzegorz Kurowski
2
Kornelia Hyjek
2
Norbert Skoczylas
3
ORCID: ORCID
Anna Pajdak
1
ORCID: ORCID

  1. Strata Mechanics Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland
  3. AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

With the gradual increase of microplastics in water bodies, it is essential to understand the current treatment processes for their removal. This study aims to investigate the removal of microplastics in synthetic solution by electrocoagulation (EC). The effects of electrode type, contact time (min), agitation speed (rpm) and current density (A/m²) were evaluated using a fractional factorial design. The results showed that the aluminum anode achieved a higher removal of microplastics than the iron anode, reaching 98.04% removal with the aluminum operational configuration within 15 min at 70 rpm and a current density of 20 A/m². A high correlation between the predicted and observed removal was evidenced, with values of R²= 0.99 and adjusted R²= 0.98, indicating a good agreement between the model and the experimental data, confirming the validity and feasibility of the adopted linear model. This study demonstrates that the electrocoagulation process has a great potential for the removal of microplastics.
Go to article

Bibliography

  1. Akarsu; C., Kumbur; H. & Kideys, A.E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Science & Technology, 84, 7, pp. 1648–1662. DOI:10.2166/wst.2021.356
  2. Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 8, pp. 1596-1605.DOI:10.1016/j.marpolbul.2011.05.030
  3. Antunes, J.C., Frias, J.G.L., Micaelo, A.C. Sobral, P. (2013). Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants. Estuarine, Coastal and Shelf Science, 130, pp. 62–69. DOI:10.1016/j.ecss.2013.06.016
  4. Bannick, C.G., Szewczyk, R., Ricking, M., Schniegler, S., Obermaier, N., Barthel, A.K., Altmann, K., Eisentraut, P. & Braun, U. (2019). Development and testing of a fractionated filtration for sampling of microplastics in water. Water Research, 149, pp. 650-658. DOI:10.1016/j.watres.2018.10.045
  5. Barnes, K.A., Galgani, F., Thompson, R.C. & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci., 364, 1526, pp. 1985–1998. https://doi.org/10.1098/rstb.2008.0205
  6. Bhatt, P., Pathak, V.M., Bagheri, A.R. & Bilal, M. (2021). Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. Environmental Research, 200, 111762. https://doi.org/10.1016/j.envres.2021.111762
  7. Cózar, A., Echevarría,F., González-Gordillo, J.I. & Duarte, C.M. (2014). Plastic debris in the open ocean. Proc. Natl. Acad. Sci., 111, 28, pp. 10239–10244. https://doi.org/10.1073/pnas.1314705111
  8. Dong, C-D., Chen, C-W., Chen, Y.C., Chen, H-H., Lee, J-S. & Lin, C-H. (2020). Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. Journal of Hazardous Materials, 385, pp. 121575. https://doi.org/10.1016/j.jhazmat.2019.121575
  9. Ebrahimbabaie, P., Yousefi, K. & Pichtel, J. (2022). Photocatalytic and biological technologies for elimination of microplastics in water: Current status. Science of The Total Environment, 806, pp. 150603. https://doi.org/10.1016/j.scitotenv.2021.150603
  10. Elkhatib, D., Oyanedel-Craver, V. & Carissimi, E. (2021). Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Separation and Purification Technology, 276, 118877. https://doi.org/10.1016/j.seppur.2021.118877
  11. Fu, J., Zhao, Y. & Qiuli Wu, Q. (2007). Optimising photoelectrocatalytic oxidation of fulvic acid using response surface methodology. Journal of Hazardous Materials, 144, 1–2, pp. 499–505. https://doi.org/10.1016/j.jhazmat.2006.10.071
  12. Grbic, J., Nguyen, B., Guo, E., You, J.B., Sinton, D. & Rochman, C.M. (2019). Magnetic Extraction of Microplastics from Environmental Samples. Environmental Science & Technology Letters, 6, 2, pp. 68–72. https://doi.org/10.1021/acs.estlett.8b00671
  13. Gutiérrez, H. & Salazar, V., (2012). Análisis y diseño de experimentos, McGraw Hill, México 2012
  14. Holt, P.K., Barton, G.W. & Mitchell, C.A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59, 3, pp. 355–367. https://doi.org/10.1016/j.chemosphere.2004.10.023
  15. Hu, Y., Zhou, L., Zhu, J. & Gao, J. (2023). Efficient removal of polyamide particles from wastewater by electrocoagulation. Journal of Water Process Engineering, 51, pp. 103417. https://doi.org/10.1016/j.jwpe.2022.103417
  16. Huang, H., Sun, Z., Liu, S., Di, Y., Xu, J., Liu, C., Xu, R., Song, H., Zhan, S. & Wu, J. (2021). Underwater hyperspectral imaging for in situ underwater microplastic detection. Science of The Total Environment, 776, 145960. https://doi.org/10.1016/j.scitotenv.2021.145960
  17. Khandegar, V. & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent – A review. Journal of Environmental Management, 128, pp. 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043
  18. Kim, K. T. & Park, S. (2021). Enhancing Microplastics Removal from Wastewater Using Electro-Coagulation and Granule-Activated Carbon with Thermal Regeneration. Processes, 9, 4, pp. 2 – 15. https://doi.org/10.3390/pr9040617
  19. Lambert, S. & Wagner M. (2016). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145, pp. 265–268. DOI:10.1016/j.chemosphere.2015.11.078
  20. Leslie, H.A., van Velzen, M.J.M., Brandsma, S.H., Vethaak, A.D., Vallejo, J.J.G. & Lamoree, M.H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163, pp. 107199. https://doi.org/10.1016/j.envint.2022.107199
  21. Liu, X., Yuan, W., Di, M., Li, Z. & Wang, J. (2019). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, pp. 176–182. DOI:10.1016/j.cej.2019.01.033
  22. Ma, B., Xue, W., Hu, C., Liu, H., Qu, J. & Li, L. (2019). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 359, pp. 159–167. DOI:10.1016/j.cej.2018.11.155
  23. Malankowska, M., Echaide-Gorrizab, C. & Coronas, J. (2021). Microplastics in marine environment: a review on sources, classification, and potential remediation by membrane technology. Environmental Science: Water Research & Technology, 7, 2, pp. 243–258. DOI:10.1039/D0EW00802H
  24. Perren, W., Wojtasik, D. & Cai, Q. (2018). Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega, 3, 3, pp. 3357–3364. DPOI:10.1021/acsomega.7b02037
  25. Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z. & Zeng, G. (2022). Efficient removal of microplastics from wastewater by an electrocoagulation process. Chemical Engineering Journal, 428, pp. 131161, DOI:10.1016/j.cej.2021.131161
  26. Slootmaekers, B., Carteny, C.C., Belpaire, C., Saverwyns, S., Fremout, W., Blust, R. & Bervoets, L. (2019). Microplastic contamination in gudgeons (Gobio gobio) from Flemish rivers (Belgium). Environmental Pollution, 244, pp. 675–684. DOI:10.1016/j.envpol.2018.09.136
  27. Xu, R., Yang, Z., Niu, Y., Xu, D., Wang, J., Han, J. & Wang, H. (2022). Removal of microplastics and attached heavy metals from secondary effluent of wastewater treatment plant using interpenetrating bipolar plate electrocoagulation. Separation and Purification Technology, 290, pp. 120905. DOI:10.1016/j.seppur.2022.120905
  28. Zailani, L. W. M. & Zin, N. S. M., (2018). Application of Electrocoagulation In Various Wastewater And Leachate Treatment-A Review. IOP Conference Series: Earth and Environmental Science, 140, 012052. https://iopscience.iop.org/article/10.1088/1755-1315/140/1/012052/meta
Go to article

Authors and Affiliations

Alex Pilco-Nuñez
1
Edilberto Hinostroza-Antonio
2
Pablo Diaz-Bravo
2
Wendy Palacios-Salvador
3
Richard Solis-Toledo
3
Jhanover Baldeon-Romero
3

  1. 1Universidad Nacional de Ingeniería, Lima, Peru
  2. ²Universidad Nacional del Callao, Peru
  3. Universidad de Huánuco, Peru
Download PDF Download RIS Download Bibtex

Abstract

Wastewater treatment and the efficient use of sewage sludge biochar are critical in addressing the needs of ever-increasing population in the world. Recently, phosphorus (P) removal from wastewater has become highly relevant and important, primarily to reduce eutrophication in surface waters. Using sewage sludge biochar as an adsorbent for phosphate removal from wastewater offers an opportunity to reuse sewage sludge (SS) and return phosphorus to the biogeochemical cycle. In this study, the efficiency of two phosphate removal methods - batch adsorption and fixed-bed column process – was investigated using pyrolyzed sewage sludge biochar (PSSB) produced at different temperatures (300 °C, 400 °C, 500 °C, 600 °C). In the batch adsorption experiment, direct mixing of 600 °C pyrolyzed sewage sludge biochar with wastewater resulted in a relatively low phosphate removal efficiency (only about 18 %) at an initial phosphate concentration of 100 mg/l. In contrast, the fixed-bed column process, using PSSB as a filter for phosphate adsorption, showed significantly better results. The highest phosphate removal efficiency (up to 90%) was achieved after 30 min of filtration, using an initial phosphate concentration of 30 mg/l initial and biochar pyrolyzed at 600 °C.
Go to article

Bibliography

Almanassra, I.W., Mckay, G., Kochkodan, V., Ali Atieh, M. & Al-Ansari, T. (2021). A state of the art review on phosphate removal from water by biochars. Chemical Engineering Journal, 409, 128211. DOI:10.1016/J.CEJ.2020.128211 Deng, L., Shi, Z., Li, B., Yang, L., Luo, L. & Yang, X. (2014). Adsorption of Cr(VI) and phosphate on Mg-Al hydrotalcite supported kaolin Clay prepared by ultrasound-assisted coprecipitation method using batch and fixed-bed systems. Industrial and Engineering Chemistry Research, 53(18), pp. 7746–7757. DOI:10.1021/ie402917s Havukainen, J., Nguyen, M.T., Hermann, L., Horttanainen, M., Mikkilä, M., Deviatkin, I. & Linnanen, L. (2016). Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Management, 49, pp. 221–229. DOI:10.1016/J.WASMAN.2016.01.020 He, L., Chen, Y., Sun, F., Li, Y., Huang, W. & Yang, S. (2022). Controlled release of phosphorus using lanthanum-modified hydrochar synthesized from water treatment sludge: Adsorption behavior and immobilization mechanism. Journal of Water Process Engineering, 50, 103319, pp. 1−14. DOI:10.1016/j.jwpe.2022.103319. Herzel, H., Krüger, O., Hermann, L. & Adam, C. (2016). Sewage sludge ash — A promising secondary phosphorus source for fertilizer production. Science of The Total Environment, 542, pp. 1136–1143, DOI: 10.1016/J.SCITOTENV.2015.08.059 Jamaludin, N., Rashid, S. A. & Tan, T. (2019). Natural Biomass as Carbon Sources for the Synthesis of Photoluminescent Carbon Dots. Synthesis, Technology and Applications of Carbon Nanomaterials, pp. 109–134. DOI:10.1016/B978-0-12-815757-2.00005-X Januševičius, T., Mažeikienė, A., Danila, V. & Paliulis, D. (2022). The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods. Biomass Conversion and Biorefinery, 1, pp. 1–10. DOI:10.1007/s13399-021-02295y Jourak, A., Frishfelds, V., Lundström, T. S., Herrmann, I.. & Hedström, A. (2011). Modeling of Phosphate Removal by Filtra P in Fixed-bed Columns, https://www.diva-portal.org/smash/get/diva2:1004231/FULLTEXT01.pdf Jozwiakowska, K. & Marzec M. (2020). Efficiency and reliability of sewage purification in long-term exploitation of the municipal wastewater treatment plant with activated sludge and hydroponic system. Archives of Environmental Protection, 46 (3), pp. 30–41. DOI:10.24425/aep.2020.134533 Jung, K. W., Jeong, T. U., Choi, J. W., Ahn, K. H. & Lee, S. H. (2017). Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance. Bioresource Technology, 244, pp. 23–32. DOI:10.1016/J.BIORTECH.2017.07.133 Khanmohammadi, Z., Afyuni, M. & Mosaddeghi, M. R. (2015). Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Management and Research, 33(3), pp. 275-283. DOI:10.1177/0734242X14565210 Li, J., Li, B., Huang, H., Lv, X., Zhao, N., Guo, G. & Zhang, D. (2019). Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Science of The Total Environment, 687, pp. 460–469. DOI:10.1016/J.SCITOTENV.2019.05.400 Liu, J., Huang, Z., Chen, Z., Sun, J., Gao, Y. & Wu, E. (2020). Resource utilization of swine sludge to prepare modified biochar adsorbent for the efficient removal of Pb(II) from water. Journal of Cleaner Production, 257, 120322. DOI:10.1016/J.JCLEPRO.2020.120322 Lv, M.Y., Yu H.X. & Shang, X.Y. (2023). Sludge derived biochar: A review on the influence of synthesis conditions on environmental risk reduction and removal mechanism of wastewater pollutants. Archives of Environmental Protection, 49 (2), pp. 3–15. DOI:10.24425/aep.2023.145892 Ma, Y., Li, P., Yang, L., Wu, L., He, L., Gao, F., Qi, X. & Zhang, Z. (2020). Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal. Ecotoxicology and Environmental Safety, 196, 110550. DOI:10.1016/J.ECOENV.2020.110550 Mekonnen, D.T., Alemayehu, E., Lennartz, B., Unuabonah, E. & Taubert, A. (2021). Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal. Materials, pp. 14(19), 5466. DOI:10.3390/MA14195466 Mo, J., Li, Q., Sun, X., Zhang, H., Xing, M., Dong, B. & Zhu, H. (2024). Capacity and Mechanisms of Phosphate Adsorption on Lanthanum-Modified Dewatered Sludge-Based Biochar. Water, 16, 418, pp. 1−16. DOI:10.3390/w16030418 Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V. & Bui, X.T. (2015). Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study. Science of The Total Environment, 523, pp. 40–49. DOI:10.1016/J.SCITOTENV.2015.03.126 Nobaharan, K., Novair, S.B., Lajayer, B.A. & van Hullebusch, E.D. (2021). Phosphorus Removal from Wastewater: The Potential Use of Biochar and the Key Controlling Factors. Water 2021, 13(4), pp. 517. DOI:10.3390/W13040517 Rangabhashiyam, S., Lins, P.V. dos S., Oliveira, L. M.T. de M., Sepulveda, P., Ighalo, J.O., Rajapaksha, A.U. & Meili, L. (2022). Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environmental Pollution, 293, 118581. DOI:10.1016/J.ENVPOL.2021.118581 Wang, Z., Miao, R., Ning, P., He, L. & Guan, Q. (2021). From wastes to functions: A paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal. Journal of Colloid and Interface Science, 593, pp. 434–446. DOI:10.1016/J.JCIS.2021.02.118 Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Wang, S., Yao, F., Wang, D., Li, X., & Zeng, G. (2018). Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 247, pp. 537–544. DOI:10.1016/J.BIORTECH.2017.09.136 Yin, Q., Liu, M. & Ren, H. (2019). Biochar is produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. Journal of Environmental Management, 249, 109410. DOI:10.1016/J.JENVMAN.2019.109410 Zhang, D., Zhang, K., Hu, X., He, Q., Yan, J. & Xue, Y. (2021). Cadmium removal by MgCl2 modified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis, and fixed bed filtration. Journal of Hazardous Materials, 408, 124860. DOI:10.1016/J.JHAZMAT.2020.124860 Zhou, K., Barjenbruch, M., Kabbe, C., Inial, G. & Remy, C. (2017). Phosphorus recovery from municipal and fertilizer wastewater: China’s potential and perspective. Journal of Environmental Sciences, 52, pp. 151–159. DOI:10.1016/J.JES.2016.04.010
Go to article

Authors and Affiliations

Rasa Vaiškūnaitė
1
ORCID: ORCID

  1. Department of Environmental Protection and Water Engineering,Vilnius Gediminas Technical University, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

An additive based on iron oxides was applied to reduce the amount of produced sludge and to increase the production and quality of biogas. The C/N ratio was 11.0–11.3 and the pH of the sludge mixture was 7.3 before the anaerobic digestion. The determined optimal dose of the additive was 0.35 g/g of sludge dry matter over 20 days. This allowed a reduction in the sludge retention time up to 6–11 days. Consequently, maximum biogas production was reached on average 1.6 times faster, volatile solids degradation increased by 56.7%, biogas production increased by 75%, specific biogas production increased by 11.5%, and methane concentration in the biogas increased by 8.4%–18.2%. When the additive was applied, the quantity of phosphate phosphorus in the supernatant was reduced by up to 19%, and hydrogen sulfide reduction efficiency in the biogas ranged between 55% and 62%. In sludge treatment facilities, using an iron oxide-based additive could reduce the dewatering and drying costs for digested sludge by up to 35% .
Go to article

Bibliography

  1. Agani, G. C., Suanon, F., Dimon, B., Ifon, E. B., Yovo, F., Wotto, V. D., Abass, O. K. & Kumwimba, M. N. (2017). Enhancement of fecal sludge conversion into biogas using iron powder during anaerobic digestion process, American Journal of Environmental Protection, pp. 179-186, DOI:10.11648/j.ajep.20160506.15
  2. Al Mamun, M.R. & Torii, S. (2015). Removal of Hydrogen Sulfide (H2S) from Biogas Using Zero-Valent Iron, Journal of Clean Energy Technologies, 6, pp. 428-432, DOI:10.7763/JOCET.2015.V3.236
  3. Andriamanohiarisoamanana, F.J., Shirai, T., Yamashiro, T., Yasui, S., Iwasaki, M., Ihara, I., Nishida, T., Tangtaweewipat, S. & Umetsu, K. (2018). Valorizing waste iron powder in biogas production: Hydrogen sulfide control and process performances, Journal of Environmental Management, 208, pp. 134–141, DOI:10.1016/j.jenvman.2017.12.012
  4. ATV-DVWK. ATV-DVWK Standards A 131E. (2000). Dimensioning of Single-Stage Activated Sludge Plants, ATV-DVWK, Water, Wastewater, Waste, Hennef, Germany.
  5. Berenjkar, P., Islam, M. & Yuan, Q. (2018). Co-treatment of sewage sludge and mature landfill leachate by anaerobic digestion, International Journal of Environmental Science and Technology, 5, pp. 2465–2474, DOI:10.1007/s13762-018-1889-2
  6. Bizimana, A., Wu, B. & Idriss, A.A. (2021). Analysis of Adapted Sewage Sludge Treatment and Disposal Routes in Bujumbura, Burundi, Open Access Library Journal, 04, pp. 1–23, DOI:10.1007/s11157-011-9244-9
  7. Buta, M., Hubeny, J., Zieliński, W., Harnisz, M. & Korzeniewska, E. (2021). Sewage sludge in agriculture – the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops – a review, Ecotoxicology and Environmental Safety, 214, 112070, DOI:10.1016/j.ecoenv.2021.112070
  8. Cheng, J., Zhu, C., Zhu, J., Jing, X., Kong, F. & Zhang, C. (2020). Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge, Journal of Cleaner Production, 242, p. 118-195, DOI:10.1016/j.jclepro.2019.118195
  9. Dauknys, R., Mažeikienė, A. & Paliulis, D. (2020). Effect of ultrasound and high voltage disintegration on sludge digestion process, Journal of Environmental Management, 270, 110833, DOI:10.1016/j.jenvman.2020.110833
  10. Fang, L., Li, J., Guo, M.Z., Cheeseman, C.R., Tsang, D.C.W., Donatello, S. & Poon, C.S. (2018). Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA), Chemosphere, 193, pp. 278–287, DOI:10.1016/j.chemosphere.2017.11.023
  11. Farghali, M.; Andriamanohiarisoamanana, F. J.; Ahmed, M. M.; Kotb, S.; Yamamoto, Y.; Iwasaki, M.; Yamashiro, T. & Umetsu, K. (2020). Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles, Waste Management, 101, pp. 141–149. DOI:10.1016/J.WASMAN.2019.10.003
  12. Filer, J., Ding, H.H. & Chang, S. (2019). Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research, Water, 5, 921. DOI:10.3390/w11050921
  13. Górka, J. Ł. & Cimochowicz-Rybicka, M. (2019). Water and sewage sludge co-digestion: characteristic of the process and its possible applications. Archives of Environmental Protection, 1, pp. 29-42. DOI:10.2478/aep-2014-0030
  14. Hallaji, S.M., Kuroshkarim, M. & Moussavi, S.P. (2019). Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey, BMC Biotechnology, 19, pp. 1-10. DOI:10.1186/s12896-019-0513-y
  15. Hao, X., Wei, J., van Loosdrecht M. C. M. & Cao, D. (2017). Analysing the mechanisms of sludge digestion enhanced by iron, Water Research, 117, pp. 58-67. DOI:10.1016/j.watres.2017.03.048
  16. Hoang, S. A., Bolan, N., Madhubashani, A. M. P., Vithanage, M., Perera, V., Wijesekara, H., Wang, H., Srivastava, P., Kirkham, M. B., Mickan, B. S., Rinklebe, J. & Siddique, K. H. M. (2022). Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review, Environmental Pollution, 293, 118564. DOI:10.1016/j.envpol.2021.118564
  17. Jain, S., Jain, S., Wolf, I.T., Lee, J. & Tong, Y.W. (2015). A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste, Renewable Sustainable Energy Reviews, C, pp. 142–154. DOI:10.1016/j.rser.2015.07.091
  18. Kim, J., Park, C., Kim, T.H., Lee, M., Kim, S., Kim, S.W. & Lee, J. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, Journal of Bioscience and Bioengineering, 3, pp. 271–275. DOI:10.1016/S1389-1723(03)80028-2
  19. Lamastra, L., Suciu, N.A. & Trevisan, M. (2018). Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer, Chemical and Biological Technologies in Agriculture, 10. DOI:10.1186/s40538-018-0122-3
  20. Latif, M.A., Mehta, C.M. & Batstone, D.J. (2017). Influence of low pH on continuous anaerobic digestion of waste activated sludge, Water Research, 113, pp. 42–49. DOI:10.1016/j.watres.2017.02.002
  21. Lee, H. & Shoda, M. (2008). Stimulation of anaerobic digestion of thickened sewage sludge by iron-rich sludge produced by the fenton method, Journal of Bioscience and Bioengineering, 1, pp. 107–110. DOI:10.1263/jbb.106.107
  22. Li, P., Zhao, H., Cheng, Ch., Hou, T., Shen, D. & Jiao, Y. (2024). A review on anaerobic co-digestion of sewage sludge with other organic wastes for methane production: Mechanism, process, improvement and industrial application. Biomass and Bioenergy, 185, pp. 1-18. DOI:10.1016/j.biombioe.2024.107241
  23. Liew, C.S., Kiatkittipong, W., Lim, J.W., Lam, M.K., Ho, Y.C., Ho, C.D., Ntwampe, S.K.O., Mohamad, M. & Usman, A. (2021). Stabilization of heavy metals loaded sewage sludge: Reviewing conventional to state-of-the-art thermal treatments in achieving energy sustainability. Chemosphere, 277, 130310. DOI:10.1016/j.chemosphere.2021.130310
  24. Ma, W., Xin, H., Zhong, D., Qian, F., Han, H. & Yuan, Y. (2015). Effects of different states of Fe on anaerobic digestion: A review. Journal of Harbin Institute of Technology (New Series), 22, pp. 69–75. DOI:10.11916/J.ISSN.1005-9113.2015.06.010
  25. Meng, L., Li, W., Zhang, S., Zhang, X., Zhao, Y. & Chen, L. (2021). Improving sewage sludge compost process and quality by carbon sources addition. Scientific Reports, 1, 1319, DOI:10.1038/s41598-020-79443-3
  26. Nghiem, L.D., Manassa, P., Dawson, M. & Fitzgerald, S.K. (2014). Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresource Technology, 173, pp. 443–447. DOI:10.1016/j.biortech.2014.09.052
  27. Orhorhoro, E. K., Orhorhoro, O. W. & Ebunilo, P. O. (2016). Analysis of the effect of carbon/nitrogen (C/N) ratio on the performance of biogas yields for non-uniform multiple feed stock availability and composition in Nigeria. International Journal of Innovative Science Engineering and Technology, 5, pp. 119-126.
  28. Ottigmosen, L.M., Kirkelund, G.M. & Jensen, P.E. (2013). Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere, 7, pp. 963–969. DOI:10.1016/j.chemosphere.2013.01.101
  29. Polster, A. & Brummack, J. (2009). Entschwefelung von Biogasanlagen. VDI-Berichte, 2057, pp. 185-193.
  30. Reddy, K., Nasr, M., Kumari, S., Kumar, S., Gupta, S.K., Enitan, A.M. & Bux, F. (2017). Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environmental Science and Pollution Research, 9, pp. 8790–8804. DOI:10.1007/s11356-017-8560-1
  31. Rossle, W. H., & Pretorius, W. A. (2001). A review of characterisation requirements for in-line prefermenters - Paper 1: Wastewater characterisation. Water SA, 27, pp. 405–412. DOI:10.4314/wsa.v27i3.4985
  32. Ruan, R., Cao, J., Li, C., Zheng, D. & Luo, J. (2017). The influence of micro-oxygen addition on desulfurization performance and microbial communities during waste-activated sludge digestion in a rusty scrap iron-loaded anaerobic digester. Energies, 2, 258. DOI:10.3390/en10020258
  33. Smith, J.A. & Carliell-Marquet, C.M. (2009). A novel laboratory method to determine the biogas potential of iron-dosed activated sludge. Bioresource Technology, 5, pp. 1767–1774. DOI:10.1016/j.biortech.2008.10.004
  34. Suschka, J. & Grübel, K. (2017). Low intensity surplus activated sludge pretreatment before anaerobic digestion. Archives of Environmental Protection, 4, pp. 50-57. DOI:10.1515/aep-2017-0038
  35. Szaja, A. & Bartkowska, I. (2024). Implementation of solidified carbon dioxide to anaerobic co-digestion of municipal sewage sludge and orange peel waste. Archives of Environmental Protection, 1, pp. 72–79. DOI:10.24425/aep.2024.149433
  36. Tchobanoglous, G. &d Eddy, M. (2014). Wastewater engineering: treatment and resource recovery. Vol 1, Boston, Mcgraw-Hill.
  37. Tyagi, V.K. & Lo, S.L. (2011). Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up-to-date review. Reviews in Environmental Science and Bio/Technology, 3, pp. 215–242. DOI:10.1007/s11157-011-9244-9
  38. Vongvichiankul, C., Deebao, J. & Khongnakorn, W. (2017). Relationship between pH, Oxidation Reduction Potential (ORP) and Biogas Production in Mesophilic Screw Anaerobic Digester. Energy Procedia, 138, pp. 877–882. DOI:10.1016/j.egypro.2017.10.113
  39. Wang, J., Zhang, Z., Ye, X., Pan, X., Lv, N., Fang, H. & Chen, S. (2020). Enhanced solubilization and biochemical methane potential of waste activated sludge by combined free nitrous acid and potassium ferrate pretreatment. Bioresource Technology, 297, 122376. DOI:10.1016/j.biortech.2019.122376
  40. Wan J., Gu J., Zhao Q. & Liu Y. (2016). COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment. Scientific Reports, 6, 25054. DOI:10.1038/srep25054
  41. Xiao, L., Liu, F., Liu, J., Li, J., Zhang, Y., Yu, J. & Wang, O. (2018). Nano-Fe3O4 particles accelerating electromethanogenesis on an hour-long timescale in wetland soil. Environmental Science, Nano, 2, pp. 436–445. DOI:10.1039/C7EN00577F
  42. Yang, Y., Zhang, Y., Li, Y., Zhao, H. & Peng, H. (2018). Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(III) compounds, Chemical Engineering Journal, 332, pp. 711–716. DOI:10.1016/j.cej.2017.09.133
  43. Ye, Y., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Fu, Q., Wei, W., Ni, B., Cheng, D. & Liu, Y. (2022). A critical review on utilization of sewage sludge as environmental functional materials. Bioresource Technology, 363, 127984. DOI:10.1016/j.biortech.2022.127984
  44. Yesil, H. & Tugtas, A.E. (2019). Removal of heavy metals from leaching effluents of sewage sludge via supported liquid membranes. Science of The Total Environment, 693, 133608. DOI:10.1016/j.scitotenv.2019.133608
  45. Zheng, W., Li, X., Wang, D., Yang, Q., Luo, K., Jing, Y. & Zeng, G. (2013). Remove and recover phosphorus during anaerobic digestion of excess sludge by adding waste iron scrap. Journal of the Serbian Chemical Society, 2, pp. 303–312. DOI:10.2298/JSC120205057Z
Go to article

Authors and Affiliations

Regimantas Dauknys
1
Aušra Mažeikiene
1
Dainius Paliulis
1

  1. Vilnius TECH, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

To achieve high levels of municipal waste recovery through a system employing mechanical-biological waste processing technologies, effective management of the over-sieve fraction of mixed municipal waste (preRDF) is crucial. This preRDF cannot be landfilled due to its combustion heat exceeding 6 MJ/kg. Therefore, thermal treatment of waste and subsequent energy recovery become pivotal in the national waste management system, particularly amidst energy crises and fluctuating energy prices. Waste-derived energy can serve as a valuable renewable energy source. To ascertain the true efficiency of the plant in terms of energy, environmental impact, and economics, it is vital to organize the concepts of energy efficiency for thermal waste treatment plants. The energy efficiency of a waste gasification plant should be comprehensively assessed from three standpoints: energy efficiency of thermal waste treatment (i.e., energy efficiency index), energy efficiency of recovering chemical energy contained in waste (actual energy efficiency of the plant), and the efficiency of renewable energy production. A thermal waste processing plant qualifies as a renewable energy source, when it generates electricity and heat from the biodegradable fraction of waste. This article endeavours to determine the potential contribution of chemical energy from the biodegradable waste fraction, relying on preRDF fraction test results..
Go to article

Bibliography

  1. Budzyń, S. & Tora, B. (20134).Energy and materials utilization of waste – selected technologies developed in cooperation between the Faculty of Energy and Fuels and Faculty of Mining and Geoengineering, AGH University of Science and Technology in Kraków. Scientific Publishing House ‘Paragraph’, Kraków 2014, pp. 9-24. [in Polish]
  2. Ciechelska, A. (2016)Analysis of the effectiveness and sustainability of the Polish municipal waste management system. Research Papers of Wrocław University of Economics, 454, 2016, pp. 31. Publisher: Publishing House of the Wrocław University of Economics, Wrocław 2016. [in Polish]
  3. Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M. & Zhou, Z. (2018). Comparison of Waste-to-Energy technologies of gasification and incineration using life cycle assessment: case studies in Finland, France and China. Journal of Cleaner Production, 203, 287-300. DOI: 10.1016/j.jclepro.2018.08.139
  4. Dz.U.2015.1277. Regulation of the Minister of Economy of July 16, 2015 on the acceptance of waste for landfilling. [in Polish].
  5. Dz.U.2016.108. Regulation of the Minister of Development of 21 January 2016 on the requirements for the thermal treatment of waste and the methods of dealing with waste generated as a result of this process. [in Polish]
  6. Dz.U.2016.847. Regulation of the Minister of Environment of 8 June 2016 on technical criteria for qualifying a part of the energy recovered from waste thermal conversion. [in Polish]
  7. Dz.U.2023.1436. Act of 20 February 2015 on Renewable Energy Sources. [in Polish]
  8. Dz.U.2023.1587. Act of December 14, 2012, on Waste [in Polish].
  9. Famielec, S. & Famielec, J. (2016). Economic and technical determinants of municipal solid waste incineration. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu Research Papers of Wrocław University of Economics Nr 454, Wrocław 2016, pp. 174-185. [in Polish]
  10. Jąderko, K. & Białecka, B. (2016). Technological and logistical model of the energy use of waste. Publisher PA NOVA SA. Gliwice, Gliwice 2016. [in Polish]
  11. Jaglarz, G. & Generowicz, A. (2015). Energy performance of municipal waste after recovery and recycling processes. Economics and Environment, 2 (53), 154‒165. [in Polish]
  12. Jenkins, B.G., Mather, S.B. (1997).Fuelling the demand for alternatives. The Cement Environmental Yearbook, pp. 90–97.
  13. Klimek, P. (2013). Assessment of the energy potential of municipal waste depending on the applied technology of its utilization. Nafta-Gaz, 12, pp. 909-914. [in Polish]
  14. Klojzy-Karczmarczyk, B. & Staszczak, J. (2017). Estimation of the mass of energy fractions in municipal waste generated in areas with different types of buildings. Energy Policy Journal 2017, 20 (2), pp. 143-154. [In Polish]
  15. Kozera-Szałkowska, A. (2013). Value to be recovered "Four Sides of Recycling - Plastics", 1, pp. 348-353. [in Polish]
  16. Kumar, A. & Samadder, S.R. (2017). A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management, 69,pp. 407–422. DOI: 10.1016/j.wasman.2017.08.046
  17. Lorber, K.E., Nelles, M., Tesch, H. & Ragossnig, A. (1999). Energy Recovery from Waste in Incineration Facilities In: Pietruch (ed.): Proceedings of the International Environmental Conference, Koszalin, Poland, May 28 – 30.
  18. M.P.2022.1030. Resolution No. 88 of the Council of Ministers of 1 July 2016 on the National Waste Management Plan 2022. [in Polish]
  19. Piecuch, T. & Dąbrowski, J. (2014). Conceptual and technological design of the Municipal Waste Thermal Treatment Plant for the Central Pomeranian Region. Monograph No. 2.: Central Pomeranian Society for Environmental Protection, Koszalin, Poland, [in Polish]
  20. Primus, A., Chmielniak, T. & Rosik-Dulewska, C. (2021). Concepts of energy use of municipal solid waste. Archives of Environmental Protection, 47 (2), 70–80. DOI:10.24425/aep.2021.137279
  21. Primus, A. & Rosik-Dulewska, C. (2017). Energy production in low-power cogeneration sources using municipal waste gasification technology. Legal and economic conditions. Energy Policy, 20 (3), pp. 79-92. [in Polish]
  22. Primus, A. & Rosik-Dulewska, C. (2018). Fuel potential of the oversized fraction of municipal waste and its role in the national waste management model. The Bulletin of The Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 105, pp. 121-134. [in Polish]
  23. Rajca, P. & Skibiński, A. (2019). Theoretical analysis of the thermal conversion of RDF fuel in the context of Waste Management. Journal of Physics: Conference Series, III Alternative Fuels Forum, 1398 (012012). DOI:10.1088/1742-6596/1398/1/012012
  24. Rajca, P., Skibiński, A., Biniek-Poskart, A. & Zajemska, M. (2022). Review of selected determinants affecting use of municipal waste for energy purposes. Energies, 15 (23), 9057. DOI: 10.3390/en15239057
  25. Santos, S.M., Assis, A.C., Gomes, L., Nobre, C. & Brito, P. (2023). Watse Gasification Technologies: A Brief Overview. Waste, 1, pp. 140-165. DOI: 10.3390/waste1010011
  26. Skorek, J. & Kalina, J. (2005). Gas-fired cogeneration systems. Publisher: WNT, ISBN: 8320431034, [in Polish]
  27. Smol, M., Kulczycka, J., Czaplicka-Kotas, A. & Włóka, D. (2019). Management and monitoring of municipal waste management in Poland in the context of implementing a circular economy (Circular Economy). The Bulletin of The Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 108, pp. 165–184. [in Polish]
  28. Sobol, A. (2019). Circular economy in sustainable development of cities. Economy and Environment, 4 (71), pp. 176-187. DOI: 10.34659/2019/4/56
  29. Socotec Materials - Analysis of the calorific value of municipal waste. Feasibility Study for the Project: Municipal waste management system in Olsztyn. Construction of the Waste Disposal Plant. Warsaw 2008, Socotec Polska Sp. z o.o. [in Polish]
  30. Szpadt, R. & Sebastian, M. (2003). Quality assurance measures for secondary fuels from solid wastes. Environmental Pollution Control, 25 (1), pp. 31-38. [in Polish]
  31. Walendziewski, J., Kałużyński, M. & Surma, A. (2007). Determination of the potential of waste and its type for the production of solid alternative fuels. Scientific and Economic Network "Energy", Project Z/2.02/II/2.6/06/05, Wrocław. [in Polish]
  32. Wasielewski, R. & Bałazińska, M. (2018). Energy recovery from waste in the aspect of qualifications of electricity and heat as coming from renewable energy sources and to participate in the emissions trading system. Energy Policy Journal, 21, pp. 129–142. [in Polish]
  33. Wąsowicz, K., Famielec, S. & Chełkowski, M. (2018). Municipal waste management in modern cities. Publisher: Foundation of the Krakow University of Economics, Kraków. [in Polish]
  34. Wielgosiński, G. T(2020). Thermal treatment of waste. Publisher: Nowa Energia, Racibórz 2020, ISBN: 9788392858256. [in Polish]
  35. Wielgosiński, G., Namiecińska, O. & Saladra, P. (2017). Thermal treatment of municipal waste in Poland in the light of new waste management plans. New Energy, 2 (56), pp. 25-30. [in Polish]
  36. Zaleski, P. & Chawla, Y. (2020). Circular economy in Poland: Profitability analysis for two methods of waste processing in small municipalities. Energies 13 (19), 5166. DOI: 10.3390/en13195166
Go to article

Authors and Affiliations

Arkadiusz Primus
1
Dagmara Buntner
1
Czesława Rosik-Dulewska
2
ORCID: ORCID
Tadeusz Chmielniak
3

  1. INVESTEKO S.A., Świętochłowice, Poland
  2. Institute of Environmental Engineering of the Polish Academy of Sciences in Zabrze, Poland
  3. Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Acid mine drainage has always been of global concern, primarily due to its low pH, high concentration of heavy metals and toxic substances, and serious impact on the surrounding environment and ecology of mines. However, the research progress and hotspots in this field of acid mine drainage processing are still unclear. To better understand the research hotspots and trends of acid mine drainage processing from 2004 to 2023, we used CiteSpace bibliometric software to visually analyze 1142 English-language research articles and reviews from the Web of Science core database. Results indicated that this field has received increas-ing attention from researchers worldwide, especially since 2017. The USA and China stand out as major contributors, yet their international collaboration doesn't match South Africa robust partnerships. Strengthening cooperation with other nations should be a priority for both the USA and China. The University of Quebec and University of South Africa were the most production institution. Vhahangwele Masindi from South Africa was the most active author. The top two core journals in this field were Science of the Total Environment and Water Re-search. Additionally, through keyword co-occurrence, clustering, and burst analysis, it is evi-dent that research on heavy metal mechanisms and resource recovery will be the future re-search hotspots in this field of acid mine drainage. This study provides researchers with an opportunity to understand the hotspots and trends in acid mine drainage research from a bibliometric perspective, and serves as a reference for future studies.
Go to article

Bibliography


  1. Agboola, O. (2019). The role of membrane technology in acid mine water treatment: a review. Korean Journal of Chemical Engineering, 36(9), pp. 1389-1400. DOI:10.1007/s11814-019-0302-2
  2. Ali, I., Basheer, A. A., Mbianda, X.Y., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A. & Grachev, V. (2019). Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environment International, 127: pp. 160-180. DOI:10.1016/j.envint.2019.03.029
  3. Anawar, H. M. (2015). Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. Journal of Environmental Management, 158: pp. 111-121. DOI:10.1016/j.jenvman.2015.04.045
  4. Anekwe, I.M.S. & Isa, Y.M. (2023). Bioremediation of acid mine drainage-Review. Alexandria Engineering Journal, 65, pp. 1047-1075. DOI:10.1016/j.aej.2022.09.053
  5. Aydin, M.I., Yuzer, B., Hasancebi, B. & Selcuk, H. (2019). Application of electrodialysis membrane process to recovery sulfuric acid and wastewater in the chalcopyrite mining industry. Desalination and Water Treatment, 172, pp. 206-211. DOI:10.5004/dwt.2019.25051
  6. Azapagic, A. (2004). Developing a framework for sustainable development indicators for the mining and minerals industry. Journal of Cleaner Production, 12(6), pp. 639-662. DOI:10.1016/s0959-6526(03)00075-1
  7. Benassi, J.C., Laus, R., Geremias, R., Lima, P.L., Menezes, C.T.B., Laranjeira, M.C.M., Wilhelm-Filho, D., Fávere, V.T.R. & Pedrosa, C. (2006). Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers. Archives of Environmental Contamination and Toxicology, 51(4), pp. 633-640. DOI:10.1007/s00244-005-0187-4
  8. Bogush, A. A. & Voronin, V. G. (2011). Application of a Peat-humic Agent for Treatment of Acid Mine Drainage. Mine Water and the Environment, 30(3), pp. 185-190. DOI:10.1007/s10230-010-0132-2
  9. Chen, C. M. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp. 359-377. DOI:10.1002/asi.20317
  10. Chen,G., Ye, Y., Yao, N., Hu, N., Zhang, J. &Huang, Y. (2021). A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. Journal of Cleaner Production 329(20), pp. 1-21. DOI:10.1016/j.jclepro.2021.129666
  11. Edgar, G.J., Stuart-Smith, R.D., Willis, T.J., Kininmonth, S., Baker, S.C., Banks, S., Barrett, N.S., Becerro, M.A., Bernard, A.T.F., Berkhout, J., Buxton, C.D., Campbell, S.J., Cooper, A.T., Davey, Edgar, S.C., Försterra, G., Galván, D.E., Irigoyen, A.J., Kushner, D.J., Moura, R., Parnell, P.E., Shears, N.T., Soler, G., Strain, E.M.A. & Thomson, RJ. (2014). Global conservation outcomes depend on marine protected areas with five key features. Nature 506(7487), pp. 216-220. DOI:10.1038/nature13022
  12. He, Y., Lan, Y., Zhang, H. & Ye, S. (2022). Research characteristics and hotspots of the relationship between soil microorganisms and vegetation: A bibliometric analysis. Ecological Indicators, 141, pp. 1-15. DOI:10.1016/j.ecolind.2022.109145
  13. Jiao, Y., Zhang, C., Su, P., Tang, Y., Huang, Z. & Ma, T. (2023). A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Safety and Environmental Protection, 170, pp. 1240-1260. DOI:10.1016/j.psep.2022.12.083
  14. Johnson, D. B. & Hallberg, K.B. (2005). Acid mine drainage remediation options: a review. Science of The Total Environment, 338(1), pp. 3-14. DOI:10.1016/j.scitotenv.2004.09.002
  15. Joshiba, G.J., Kumar, P.S., Govarthanan, M., Ngueagni, P.T., Abilarasu, A. & Carolin, F. (2021). Investigation of magnetic silica nanocomposite immobilized Pseudomonas fluorescens as a biosorbent for the effective sequestration of Rhodamine B from aqueous systems. Environmental Pollution 269. DOI:10.1016/j.envpol.2020.116173
  16. Kiiskila, J.D., Li, K., Sarkar, D. & Datta, R. (2020). Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage. Chemosphere, 240, 124961. DOI:10.1016/j.chemosphere.2019.124961
  17. Lazareva, E.V., Myagkaya, I.N., Kirichenko, I.S., Gustaytis, M.A. & Zhmodik, S.M. (2019). Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements. Science of The Total Environment, 660, pp. 468-483. DOI:10.1016/j.scitotenv.2018.12.467
  18. Xiao, L. (2008). Experimental research using passive treatment technology SAPS to treat acidic mine waste water. Journal of Water Resources and Water Engineering, 19(2). https://api.semanticscholar.org/CorpusID:113361846
  19. Liu, Y., Xie, X., Wang, S., Hu, S., Wei, L., Wu, Q., Luo, D. & Xiao, T. (2023). Hydrogeochemical evolution of groundwater impacted by acid mine drainage (AMD) from polymetallic mining areas (South China). Journal of Contaminant Hydrology, 259. DOI:10.1016/j.jconhyd.2023.104254
  20. Lo, S-F., Wang, S-Y., Tsai, M-J. & Lin, L-D. (2012). Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research & Design, 90(9), pp. 1397-1406. DOI:10.1016/j.cherd.2011.11.020
  21. Masindi, V., Akinwekomi, V., Maree, J.P. & Muedi, K.L. (2017). Comparison of mine water neutralisation efficiencies of different alkaline generating agents. Journal of Environmental Chemical Engineering, 5(4), pp. 3903-3913. DOI:10.1016/j.jece.2017.07.062
  22. Masindi, V., Foteinis, S. & Chatzisymeon, E. (2022). Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. Journal of Hazardous Materials, 421. DOI:10.1016/j.jhazmat.2021.126677
  23. Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J., Maree, J.P., Tekere, M. & Chatzisymeon, E. (2022). Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological Engineering, 183, 106740. DOI:10.1016/j.ecoleng.2022.106740
  24. McCauley, C.A., O'Sullivan, A.D., Milke, M.W., Weber, P.A. & Trumm, D.A. (2009). Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Research, 43(4), pp. 961-970. DOI:10.1016/j.watres.2008.11.029
  25. Ming, C. J. M. M. (2006). Research on Sulfidization-Precipitation-High Concentration Pulping Treatment of Copper-Containing Acid Mine Drainage. Metal Mine.
  26. Motsi, T., Rowson, N.A. & Simmons, M.J.H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1-2), pp. 42-48. DOI:10.1016/j.minpro.2009.02.005
  27. Mzinyane, N. N. (2022). Adsorption of heavy metals from acid mine drainage using poly (hydroxamic acid) ligand. South African Journal of Chemical Engineering, 42, pp. 318-336. DOI:10.1016/j.sajce.2022.09.007
  28. Nageshwari, K. & Balasubramanian, P. (2022). Evolution of struvite research and the way forward in resource recovery of phosphates through scientometric analysis. Journal of Cleaner Production, 357. DOI:10.1016/j.jclepro.2022.131737
  29. Nishimoto, N., Yamamoto, Y., Yamagata, S., Igarashi, T. & Tomiyama, S. (2021). Acid Mine Drainage Sources and Impact on Groundwater at the Osarizawa Mine, Japan. Minerals 11(9). DOI:10.3390/min11090998
  30. Núñez-Gómez, D., Rodrigues, C., Lapolli, F.R. & Lobo-Recio, M.A. (2019). Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. Journal of Environmental Chemical Engineering, 7(1). DOI:10.1016/j.jece.2018.11.032
  31. Ouyang, W., Wang, Y., Lin, C., He, M., Hao, F., Liu, H. & Zhu, W. (2018). Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Science of the Total Environment, 637, pp. 208-220. DOI:10.1016/j.scitotenv.2018.04.434
  32. Pagnanelli, F., De Michelis, I., Di Muzio, S., Ferella, F. & Vegliò, F. (2008). Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage. Journal of Hazardous Materials, 159(2-3), pp. 567-573. DOI:10.1016/j.jhazmat.2008.02.067
  33. Papirio, S., Villa-Gomez, D.K., Esposito, G., Pirozzi, F. & Lens, P.N.L. (2013). Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review. Critical Reviews in Environmental Science and Technology, 43(23), pp. 2545-2580. DOI:10.1080/10643389.2012.694328
  34. Prasad, B. & Mortimer, R. J. G. (2011). Treatment of Acid Mine Drainage Using Fly Ash Zeolite. Water Air and Soil Pollution, 218(1-4), pp. 667-679. DOI:10.1007/s11270-010-0676-6
  35. Qin, F., Zhu, Y., Ao, T. & Chen, T. (2021). The Development Trend and Research Frontiers of Distributed Hydrological Models-Visual Bibliometric Analysis Based on Citespace. Water, 13(2), 174. DOI:10.3390/w13020174
  36. Qureshi, A., Jia, Y., Maurice, C. & Öhlander, B. (2016). Potential of fly ash for neutralisation of acid mine drainage. Environmental Science and Pollution Research, 23(17), pp. 17083-17094. DOI:10.1007/s11356-016-6862-3
  37. Rahman, M.L., Wong, Z.J., Sarjadi, M.S., Abdullah, M.H., Heffernan, M.A., Sarkar, M.S. & O'Reilly, E. (2021). Poly(hydroxamic acid) ligand from palm-based waste materials for removal of heavy metals from electroplating wastewater. Journal of Applied Polymer Science, 138(2). DOI: 10.1002/app.49671
  38. Ren, J., Zheng, L., Su, Y., Meng, P., Zhou, Q., Zeng, H., Zhang, T. & Yu, H. (2022). Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations. Chemical Engineering Journal, 445, 136778. DOI:10.1016/j.cej.2022.136778
  39. Sephton, M.G., Webb, J.A. & McKnight, S. (2019). Applications of Portland cement blended with fly ash and acid mine drainage treatment sludge to control acid mine drainage generation from waste rocks. Applied Geochemistry, 103, pp. 1-14. DOI:10.1016/j.apgeochem.2019.02.005
  40. Si, M., Chen, Y., Li, C., Lin, Y., Huang, J., Zhu, F., Tian, S. & Zhao, Q. (2023). Recent Advances and Future Prospects on the Tailing Covering Technology for Oxidation Prevention of Sulfide Tailings. Toxics, 11(1), 13. DOI:10.3390/toxics11010011
  41. Sierra-Alvarez, R., Karri, S., Freeman, S. & Field, J.A. (2006). Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors. Water Science and Technology, 54(2), pp. 179-185. DOI:10.2166/wst.2006.502
  42. Skousen, J.G., Ziemkiewicz, P.F. & McDonald, L.M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1), pp. 241-249. DOI:10.1016/j.exis.2018.09.008
  43. Tabelin, C.B., Park, I., Phengsaart, T., Jeon, S., Villacorte-Tabelin, M., Alonzo, D., Yoo, K., Ito, M. & Hiroyoshi, N. (2021). Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling, 170, 105610. DOI:10.1016/j.resconrec.2021.105610
  44. Tabelin, C.B., Veerawattananun, S., Ito, M., Hiroyoshi, N. & Igarashi, T. (2017). Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations. Science of the Total Environment, 580, pp. 687-698. DOI:10.1016/j.scitotenv.2016.12.015
  45. Le, T., Fan,R., Yang, S. & Li, C. (2021). Development and Status of the Treatment Technology for Acid Mine Drainage. Mining Metallurgy & Exploration, 38(1), pp. 315-327. DOI:10.1007/s42461-020-00298-3
  46. Tyulenev, M.A., Gvozdkova, T.N., Zhironkin, S.A. & Garina, E.A. (2017). Justification of Open Pit Mining Technology for Flat Coal Strata Processing in Relation to the Stratigraphic Positioning Rate. Geotechnical and Geological Engineering, 35(1), pp. 203-212. DOI:10.1007/s10706-016-0098-3
  47. Varvara, S., Popa, M., Bostan, R. &Damian, G. (2013). Preliminary considerations on the adsorption of heavy metals from acidic mine drainage using natural zeolite. Journal of Environmental Protection and Ecology, 14(4), pp. 1506-1514.
  48. Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C.W., Ok, Y.S. & Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 252, 126539. DOI:10.1016/j.chemosphere.2020.126539
  49. Yan, T., Xue, J., Zhou, Z. & Wu, Y. (2020). The trends in research on the effects of biochar on soil. Sustainability, 12(18). DOI: 10.3390/su12187810
  50. Yang, M., Lu, C., Quan, X. & Cao, D. (2021). Mechanism of Acid Mine Drainage Remediation with Steel Slag: A Review. Acs Omega, 6(45), pp. 30205-30213. DOI:10.1021/acsomega.1c03504
  51. Zhang, W., Yang, J., Sheng, P., Li, X. & Wang, X. (2014). Potential cooperation in renewable energy between China and the United States of America. Energy Policy, 75, pp. 403-409. DOI: 10.1016/j.enpol.2014.09.016
  52. Zhang, Y., Han, C., Zhang, G., Dionysiou, D.D. & Nadagouda, M.N. (2015). PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chemical Engineering Journal, 268, pp. 170-179. DOI:10.1016/j.cej.2015.01.006
  53. Zhao,Y., Fu,Z., Chen, X. & Zhang, G. (2018). Bioremediation process and bioremoval mechanism of heavy metal ions in acidic mine drainage. Chemical Research in Chinese Universities, 34(1), pp. 33-38. DOI:10.1007/s40242-018-7255-6
  54. Zhou, X. & Zhao, G. (2015). Global liposome research in the period of 1995-2014: a bibliometric analysis. Scientometrics, 105(1), pp. 231-248. DOI:10.1007/s11192-015-1659-6
Go to article

Authors and Affiliations

Meiyan Si
1
Yuntao Zhang
1
Hai Jin
2
Yongliang Long
2
Tao Nie
2
Wei Feng
2
Qingsong Li
2
Yichao Lin
2
Xiaoqian Xu
2
Chunhua Wang
2

  1. Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
  2. Guizhou Research Institute of Coal Mine Design Co.,Ltd., No 48, Dazhi Road, Xibei Street, Huaxi District, Guiyang 550025, China
Download PDF Download RIS Download Bibtex

Abstract

This paper examines the influence of COVID-19-related factors on PM2.5 concentrations (PM2.5) in Singapore, Indonesia, and Thailand from January 2018 to December 2021. Using data from four sources, cluster analysis based on six socioeconomic indices was employed to select these countries for focused analysis. Generalized Additive Mixed Models (GAMM) were applied to assess associations between PM2.5 and COVID-19 factors, including new cases, deaths, vaccinations, stringency index, time series (STOL), and COVID-19 status (dummy variable). Results show that PM2.5 levels in Singapore and Indonesia were significantly impacted by COVID-19 measures, with F-statistics for new cases (22.875, p < 0.001), deaths (12.563, p = 0.012), as well as significant associations for vaccinations (t = 5.976, p < 0.001), stringency index (t = 5.124, p < 0.001), and the dummy variable (t = 6.624, p < 0.001). In contrast, PM2.5 levels in Thailand were unaffected by these factors, likely due to seasonal pollution sources. The model explains 90.3% of the variation in PM2.5 (adjusted R² = 0.872). This paper offers important insights for policymakers on incorporating air quality into health policies and highlights how pandemic responses varied across countries. By examining the impact of COVID-19 factors on PM2.5 in different nations, the study enhances understanding through detailed data and averaging periods. It reveals differences in how countries’ air quality responded to the pandemic, contributing to discussions on environmental management and public health. These findings inform policy decisions and facilitate discussions on better managing environmental and health challenges during global crises.
Go to article

Bibliography

  1. Asian Development Bank. (2020). Basic Statistics 2020. Retrieved March 18, 2021 from https://www.adb.org/publications/basic-statistics-2020
  2. Augustin, N. H., Musio, M., von Wilpert, K., Kublin, E., Wood, S. N. & Schumacher, M. (2009). Modeling Spatiotemporal Forest Health Monitoring Data. Journal of the American Statistical Association, 104(487), pp. 899-911. DOI:10.1198/jasa.2009.ap07058
  3. Barouki, R., Kogevinas, M., Audouze, K., Belesova, K., Bergman, A., Birnbaum, L., Boekhold, S., Denys, S., Desseille, C., Drakvik, E., Frumkin, H., Garric, J., Destoumieux-Garzon, D., Haines, A., Huss, A., Jensen, G., Karakitsios, S., Klanova, J., Koskela, I.-M. & Vineis, P. (2021). The COVID-19 pandemic and global environmental change: Emerging research needs. Environment International, 146, 106272. DOI:10.1016/j.envint.2020.106272
  4. Berkeley Earth. (2020). Regional Average particulate Air Pollution (PM2.5) [PM 2.5]. http://berkeleyearth.org/air-quality/local/Indonesia/
  5. Brömssen, C. v. (2016). Workshop in Generalized Additive Models (GAM). https://www.slu.se/globalassets/ew/org/centrb/statisticsslu/workshops/2016/an-introduction-to-gam.pptx
  6. Chen, C. (2000). Generalized additive mixed models. Communications in Statistics - Theory and Methods, 29(5-6), pp. 1257-1271. DOI:10.1080/03610920008832543
  7. Constantinescu, C. (2019, April 25). Using generalised additive mixed models (gamms) to predict visitors to edinburgh and craigmillar castles. Technical blog from our data science team. https://thedatalab.com/tech-blog/using-generalised-additive-mixed-models-gamms-to-predict-visitors-to-edinburgh-and-craigmillar-castles/
  8. Fahrmeir, L. & Lang, S. (2001). Bayesian Inference for Generalized Additive Mixed Models Based on Markov Random Field Priors. Journal of the Royal Statistical Society. Series C (Applied Statistics), 50(2), pp. 201-220. http://www.jstor.org/stable/2680887
  9. Frączek, K., Bulski, K. & Chmiel, M. (2023). Assessment of exposure to fungal aerosol in the lecture rooms of schools in the Lesser Poland region. Archives of Environmental Protection, vol. 49(No 4), 95-102. DOI:10.24425/aep.2023.148688
  10. Gkatzelis, G. I., Gilman, J. B., Brown, S. S., Eskes, H., Gomes, A. R., Lange, A. C., McDonald, B. C., Peischl, J., Petzold, A., Thompson, C. R. & Kiendler-Scharr, A. (2021). The global impacts of COVID-19 lockdowns on urban air pollution: A critical review and recommendations. Elementa: Science of the Anthropocene, 9(1). DOI:10.1525/elementa.2021.00176
  11. Godłowska, J., Kaszowski, K. & Kaszowski, W. (2022). Application of the FAPPS system based on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser Poland. Archives of Environmental Protection, 48(3), pp. 109-117. DOI:10.24425/aep.2022.142695
  12. Groll, A. & Tutz, G. (2012). Regularization for generalized additive mixed models by likelihood-based boosting. Methods Inf Med, 51(2), pp. 168-177. DOI:10.3414/me11-02-0021
  13. Hastie, T. & Tibshirani, R. (2017). Generalized additive models. Routledge.
  14. Kaewrat, J. & Janta, R. (2021). Effect of COVID-19 Prevention Measures on Air Quality in Thailand. Aerosol and Air Quality Research, 21(3), 200344. DOI:10.4209/aaqr.2020.06.0344
  15. Kotsiou, O. S., Kotsios, V. S., Lampropoulos, I., Zidros, T., Zarogiannis, S. G. & Gourgoulianis, K. I. (2021). PM2.5 Pollution Strongly Predicted COVID-19 Incidence in Four High-Polluted Urbanized Italian Cities during the Pre-Lockdown and Lockdown Periods. International Journal of Environmental Research and Public Health, 18(10), 5088. DOI:10.3390/ijerph18105088
  16. Lee, M. & Finerman, R. (2021). COVID-19, commuting flows, and air quality. Journal of Asian Economics, 77, 101374. DOI:DOI:10.1016/j.asieco.2021.101374
  17. Li, J., Hallsworth, A. G. & Coca‐Stefaniak, J. A. (2020). Changing Grocery Shopping Behaviours Among Chinese Consumers At The Outset Of The COVID‐19 Outbreak. Tijdschrift Voor Economische En Sociale Geografie, 111(3), pp. 574-583. DOI:10.1111/tesg.12420
  18. Liao, Q., Yuan, J., Dong, M., Yang, L., Fielding, R. & Lam, W. W. T. (2020). Public Engagement and Government Responsiveness in the Communications About COVID-19 During the Early Epidemic Stage in China: Infodemiology Study on Social Media Data. J Med Internet Res, 22(5), e18796. DOI:10.2196/18796
  19. Lim, Y. K., Kweon, O. J., Kim, H. R., Kim, T.-H. & Lee, M.-K. (2021). The impact of environmental variables on the spread of COVID-19 in the Republic of Korea. Scientific Reports, 11(1), 5977. DOI:10.1038/s41598-021-85493-y
  20. Liu, Q., Xu, S. & Lu, X. (2021). Association between air pollution and COVID-19 infection: evidence from data at national and municipal levels. Environ Sci Pollut Res Int, 28(28), pp. 37231-37243. DOI:10.1007/s11356-021-13319-5
  21. Lorenzo, J. S. L., Tam, W. W. S. & Seow, W. J. (2021). Association between air quality, meteorological factors and COVID-19 infection case numbers. Environmental Research, 197, 111024. DOI:10.1016/j.envres.2021.111024
  22. Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Hasell, J., Appel, C., Giattino, C. & Rodés-Guirao, L. (2021). A global database of COVID-19 vaccinations. Nature Human Behaviour, 5(7), pp. 947-953. DOI:10.1038/s41562-021-01122-8
  23. Meo, S. A., Abukhalaf, A. A., Alessa, O. M., Alarifi, A. S., Sami, W. & Klonoff, D. C. (2021). Effect of Environmental Pollutants PM2.5, CO, NO2, and O3 on the Incidence and Mortality of SARS-CoV-2 Infection in Five Regions of the USA. International Journal of Environmental Research and Public Health, 18(15), 7810. DOI:10.3390/ijerph18157810
  24. The World Air Quality Index Project. (2022). Air Quality Historical Data Platform. https://aqicn.org/data-platform/register
  25. Tuerlinckx, F., Rijmen, F., Verbeke, G. & De Boeck, P. (2006). Statistical inference in generalized linear mixed models: A review. 59(2), pp. 225-255. DOI:10.1348/000711005X79857
  26. Valdés Salgado, M., Smith, P., Opazo, M. A. & Huneeus, N. (2021). Long-Term Exposure to Fine and Coarse Particulate Matter and COVID-19 Incidence and Mortality Rate in Chile during 2020. International Journal of Environmental Research and Public Health, 18(14), 7409. https://www.mdpi.com/1660-4601/18/14/7409
  27. Wang, J., Wang, J. X. & Yang, G. S. (2020). The Psychological Impact of COVID-19 on Chinese Individuals. Yonsei Med J, 61(5), pp. 438-440. DOI:10.3349/ymj.2020.61.5.438
  28. Webster, K. (2020). How COVID 19 changed consumers’ daily lives. Retrieved August 4, 2021 from https://www.pymnts.com/coronavirus/2020/consumer-spending-behavior-covid19-study/
  29. Weisberg, H. F. (1992). Central tendency and variability. Sage Publications.
  30. Wetchayont, P. (2021). Investigation on the Impacts of COVID-19 Lockdown and Influencing Factors on Air Quality in Greater Bangkok, Thailand. Advances in Meteorology, 6697707. DOI:10.1155/2021/6697707
  31. Wong, W. M., Tzeng, S.-Y., Mo, H.-F. & Su, W. (2024). Predicting air quality trends in Malaysia’s largest cities: the role of urban population dynamics and COVID-19 effects. Archives of Environmental Protection, 50(2), pp. 65-74. DOI:10.24425/aep.2024.150553
  32. Wood, S. N. (2006). Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics, 62(4), pp. 1025-1036. DOI:10.1111/j.1541-0420.2006.00574.x
  33. Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(1), pp. 3-36. DOI:10.1111/j.1467-9868.2010.00749.x
  34. Wood, S. N. (2017). Generalized Additive Models: An introduction with R (2nd ed.). Taylor & Francis. (DOI:10.1201/9781315370279)
Go to article

Authors and Affiliations

Wong Ming Wong
1
Shian-Yang Tzeng
2
ORCID: ORCID
Hao-Fan Mo
3
ORCID: ORCID
Wunhong Su
4
ORCID: ORCID

  1. Krirk University, Thailand
  2. Quanzhou University of Information Engineering, China
  3. JinWen University of Science and Technology, Taiwan
  4. Hangzhou Dianzi University, China
Download PDF Download RIS Download Bibtex

Abstract

The advanced type of cyclone was applied to separate wood particulate matter from the air. The cyclone was designed in the laboratory of Vilnius TECH. A series of experimental studies was conducted both in the lab and under industrial conditions. These studies aimed to specify the air velocity and aerodynamic resistance in the experimental and pilot six-channel cyclone with spiral casings and curvilinear semi-rings. Air treatment efficiency was also determined. The highest air treatment efficiency achieved using experimental cyclone was 91.4%, while the pilot cyclone achieved an efficiency of 94. 5%. The industrial and experimental cyclones were found to have similar air treatment efficiency
Go to article

Bibliography

  1. Baltrėnas, P. & Chlebnikovas, A. (2019). Removal of fine solid particles in aggressive gas s in a newly designed multi-channel cyclone, Powder technology, 356, pp. 480-492. DOI:10.1016/j.powtec.2019.08.018
  2. Baltrėnas, P., Crivellini, A., Leonavičienė, T. & Chlebnikovas, A. (2022). Investigation on particulate matter and gas processes in the advanced multi-channel cyclone-separator with secondary gas inlets, Environmental engineering research, 27, 1, pp. 1-13. DOI:10.4491/eer.2020.550
  3. Baltrėnas, P. & Baltrėnaitė, E. (2018). The experimental study on the principal aerodynamic characteristics and their influence on the efficiency in a cylindrical two-level six-channel cyclone to remove dissimilar types of particles, International Journal of Environmental Research, 12, 4, pp. 459-469. DOI:10.1007/s41742-018-0104-0
  4. Baltrėnas, P. & Chlebnikovas, A. (2018). The investigation of the structure and operation of a multi-channel cyclone, separating fine solid particles from an aggressive dispersed gas and vapour, Powder technology, 333, pp. 327-338. DOI:10.1016/j.powtec.2018.04.043
  5. Baltrėnas, P. & Chlebnikovas, A. (2016). Numerical study of the aerodynamic parameters in a two-level multichannel cyclone, Separation Science and Technology, 51, 12, pp. 2105-2113. DOI:10.1080/01496395.2016.1201112
  6. Bernardo, S., Mori, M., Peres, A.P. & Dionisio, R.P. (2006). 3-D computational fluid dynamics for gas and gas-particle s in a cyclone with different inlet section angles, Powder Technology, 162, 3, pp. 190–200. DOI:10.1016/j.powtec.2005.11.007
  7. Cheberyachko, S., Cheberyachko, Y., Naumov, M. & Deryugin, O. (2022). Development of an algorithm for effective design of respirator half-masks and encapsulated particle filters, International Journal of Occupational Safety and Ergonomics, 28, 2, pp. 1145-1159. DOI:10.1080/10803548.2020.1869429
  8. Chlebnikovas, A., Paliulis, D., Kilikevičienė, K. & Kilikevičius, A. (2022). Experimental research of gaseous emissions impact on the performance of new-design cylindrical multi-channel cyclone with adjustable half-rings, Sustainability, 14, 2, pp. 1-20. DOI:10.3390/su14020902
  9. Chlebnikovas, A., Kilikevičius, A., Selech, J., Matijošius, J., Kilikevičienė, K., Vainorius, D., Passerini, G. & Marcinkiewicz, J. (2021). The numerical modeling of gas movement in a single inlet new generation multi-channel cyclone separator, Energies, 14, 23, pp. 1-18. DOI:10.3390/en14238092
  10. Chlebnikovas, A. (2021). Experimental investigation of a one-level eight-channel cyclone-separator incorporating quarter-rings, Hemijska industrija, 75, 4, pp. 241-251. DOI:10.2298/HEMIND210307024C
  11. Chlebnikovas, A. & Kilikevičius, A. (2023). Study on gas flow parameters and fractional removal efficiency of ultrafine particulate matter in newly developed electro cyclone-filter, Atmosphere, 14, 3, 527. DOI:10.3390/atmos14030527
  12. Duran, J.Z. & Caldona, E.B. (2020). Design of an activated carbon equipped-cyclone separator and its performance on particulate matter removal, Particulate Science and Technology, 38, 6, pp. 694-702. DOI:10.1080/02726351.2019.1607637
  13. El-Emam, M.A., Shi, W. & Zhou, L. (2019). CFD-DEM simulation and optimization of gas-cyclone performance with realistic macroscopic particulate matter, Advanced Powder Technology, 30, 11, pp. 2686-2702. DOI:10.1016/j.apt.2019.08.015
  14. El-Emam, M.A., Zhou, L., Shi, W. & Han, C. (2021). Performance evaluation of standard cyclone separators by using CFD–DEM simulation with realistic bio-particulate matter, Powder Technology, 385, pp. 357-374. DOI:10.1016/j.powtec.2021.03.006
  15. Janta-Lipińska, S. & Shkarovskiy, A. (2020). Investigations of nitric oxides reduction in industrial-heating boilers with the use of the steam injection method, Archives of Environmental Protection, 46, 2, pp. 100-107. DOI:10.24425/aep.2020.133480
  16. Jasevičius, R., Kruggel-Emden, H. & Baltrėnas, P. (2017). Numerical simulation of the sticking process of glass-microparticles to a flat wall to represent pollutant-particles treatment in a multi-channel cyclone, Particuology, 32, pp. 112-131. DOI:10.1016/j.partic.2016.09.009
  17. Karjalainen, A., Leppänen, M., Ruokolainen, J., Hyttinen, M., Miettinen, M., Säämänen, A. & Pasanen P. (2022). Controlling flour dust exposure by an intervention focused on working methods in Finnish bakeries: a case study in two bakeries, International Journal of Occupational Safety and Ergonomics, 28, 3, pp. 1948-1957. DOI:10.1080/10803548.2021.1943867
  18. Keet, C.A., Keller, J.P. & Peng, R.D. (2018). Long-term coarse particulate matter exposure is associated with asthma among children in Medicaid, American journal of respiratory and critical care medicine, 197, 6, pp. 737-746. DOI:10.1164/rccm.201706-1267OC
  19. Olszowski, T. (2015). Concentration Changes Of PM Under Liquid Precipitation Conditions, Ecological Chemistry and Engineering S, 22, 3, pp. 363-378. DOI:10.1515/eces-2015-0019
  20. Primus, A., Chmielniak, T. & Rosik-Dulewska, C. (2021). Concepts of energy use of municipal solid waste, Archives of Environmental Protection, 47, 2, pp. 70-80. DOI:10.24425/aep.2021.137279
  21. Vaišis, V., Chlebnikovas, A. & Jasevičius, R. (2023). Numerical study of the flow of pollutants during air purification, taking into account the use of eco-Friendly material for the filter—Mycelium, Applied Sciences, 13, 3, 1703. DOI:10.3390/app13031703
  22. Vaitiekūnas, P., Petraitis, E., Venslovas, A. & Chlebnikovas, A. (2014). Air stream velocity modelling in multichannel spiral cyclone separator, Journal of Environmental Engineering and Landscape Management, 22, 3, pp. 183-193. DOI:10.3846/16486897.2014.931283
  23. Wasielewski, R., Wojtaszek, M. & Plis, A. (2020). Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler, Archives of Environmental Protection, 46, 2, pp. 58-67. DOI:10.24425/aep.2020.133475
  24. Werner, M., Kryza, M. & Dore, A.J. (2016). Spatial and chemical patterns of PM-differences between a maritime and an inland country, Ecological Chemistry and Engineering S, 23, 1, pp. 61-69. DOI:10.1515/eces-2016-0004
  25. Zamani, A., Khanjani, N., Bagheri Hosseinabadi, M., Ranjbar Homghavandi, M. & Miri, R. (2021). The effect of chronic exposure to flour dust on pulmonary functions, International Journal of Occupational Safety and Ergonomics, 27, 2, pp. 497-503. DOI:10.1080/10803548.2019.1582853
  26. Zuo, B., Liu, C., Chen, R., Kan, H., Sun, J., Zhao, J., Wang, C., Sun, Q. & Bai, H. (2019). Associations between short-term exposure to fine particulate matter and acute exacerbation of asthma in Yancheng, China, Chemosphere, 237, pp. 124497. DOI:10.1016/j.chemosphere.2019.124497
Go to article

Authors and Affiliations

Inga Jakštoniene
1
Dainius Paliulis
2
Albertas Venslovas
3
Sergii Plashykhin
4

  1. Utenos Kolegija / Higher Education Institution, Lithuania
  2. Vilnius TECH, Lithuania
  3. JSC "Molėtų Švara", Lithuania
  4. National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the effect of the type of road surface (asphalt and concrete) and the presence of noise barriers (acoustic screens) on the magnetic susceptibility and chemical composition of road dust collected from national roads and motorways in central and southern Poland. Four roads with asphalt surfaces and four with concrete surfaces were selected for the study. Samples were taken at three control points: in the space between noise barriers, in the space without barriers and at road exits. Magnetic susceptibility measurements and elemental composition analysis (using an energy dispersive X-ray fluorescence spectrometer) were carried out. The results showed high variability with no clear differences between samples taken from asphalt and concrete roads. Magnetic susceptibility values were higher for road dust taken from asphalt pavements near noise barriers and motorway exits, while for open space samples the susceptibility values were about 1.3 times higher for dust from concrete pavements. A similar relationship was observed for the elemental composition. The results showed no clear differences between samples taken from asphalt and concrete roads. The location of the sampling point had a greater influence on the results: the surface of noise barriers, open spaces or motorway exits. Calculated enrichment factors indicated an extremely high enrichment of dust in elements such as Cr, Cu and Zn, a very high enrichment in Pb only for dust collected at motorway exits, and a significant and moderate enrichment in other elements.
Go to article

Bibliography

  1. Abbasi, S., Keshavarzi, B., Moore, F. & Mahmoudi M.R. (2018). Fractionation, source identification and risk assessment of potentially toxic elements in street dust of the most important center for petrochemical products, Asaluyeh County, Iran, Environmental Earth Sciences, 77, art. no. 673. DOI:10.1007/s12665-018-7854-z
  2. Achad, M., Caumo, S., de Castro Vasconcellos, P., Bajano, H., Gomez, D. & Smichowski, P. (2018). Chemical markers of biomass burning: Determination of levoglucosan, and potassium in size-classified atmospheric aerosols collected in Buenos Aires, Argentina by different analytical techniques, Microchemical Journal, 139, pp. 181–187. DOI:10.1016/j.microc.2018.02.016
  3. Adamiec, E., Jarosz-Krzemińska, E., Brzoza-Woch, R., Rzeszutek,M., Bartyzel, J., Pełech-Pilichowski, T. & Zyśk, J. (2023). The geochemical and fractionation study on toxic elements in roaddust collected from the arterial roads in Kraków, Archives of Environmental Protection, 49, 2, pp. 104–110. DOI:10.24425/aep.2023.145902
  4. Baensch-Baltruschat, B., Kocher, B., Stock, F.& Reifferscheid, G. (2020). Tyre and road wear particles (TRWP) - A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment, Science of The Total Environment, 733, 137823. DOI:10.1016/j.scitotenv.2020.137823
  5. Barbieri, M. (2016). The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination, Journal of Geology & Geophysics, 5, 237. DOI:10.4172/2381-8719.1000237
  6. Bourliva, A., Papadopoulou, L. & Aidona, E. (2016). Study of road dust magnetic phases as the main carrier of potentially harmful trace elements, Science of the Total Environment, 15, 553, pp. 380-391. DOI:10.1016/j.scitotenv.2016.02.149.
  7. Bućko, M.S., Magiera, T., Pesonen, L.J. & Janus, B. (2010). Magnetic, Geochemical, and Microstructural Characteristics of Road Dust on Roadsides with Different Traffic Volumes – Case Study from Finland, Water Air Soil Pollution, 209, pp. 295–306. DOI:10.1007/s11270-009-0198-2
  8. Dearing, J.A., 1994. Environmental Magnetic Susceptibility. Using the Bartington MS2 System. Chi Publishing, Kenilworth, England. ISBN 0 9523409 09.
  9. GDDKiA - General Directorate for National Roads and Motorways (2020). Archiving and analysis of data from continuous traffic measurement stations from 2018-2020 (https://www.archiwum.gddkia.gov.pl/pl). (in Polish)
  10. Guda, A.M., El Kammar, A.M., Abu Salem, H.S., Abu Khatita. A.M., Mohamed A.M., El-Hemaly, I.A., Abd Elaal, E.M., Odah, H.H. & Appel, E. (2024). Integrated geochemical and magnetic potentially toxic elements assessment: a statistical solution discriminating anthropogenic and lithogenic magnetic signals in a complex area of the southeast Nile Delta, Environmental Monitoring and Assessment, 196, 272 DOI:10.1007/s10661-024-12408-5
  11. Gunawardana C., Goonetilleke A., Egodawatta P., Dawes L. & Kokot S. (2012). Source characterisation of road dust based on chemical and mineralogical composition, Chemosphere 87, 2, pp. 163–170, DOI:10.1016/j.chemosphere.2011.12.012
  12. Harrison, R.M., Allan, J., Carruthers, D., Heal, M.R., Lewis, A.C., Marner, B., Murrells, T. & Williams, A. (2021). Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: a review, Atmospheric Environment, 262, 118592. DOI:10.1016/J.ATMOSENV.2021.118592
  13. Hoffmann, V., Knab, M. & Appel, E. (1999). Magnetic susceptibility mapping of roadside pollution, Journal of Geochemical Exploration, 66, 1–2, pp. 313–326. DOI:10.1016/S0375-6742(99)00014-X
  14. Iwanejko, R., Bajer, J. (2012). Application of mathematical models for predicting the failure rate of water supply networks on the example of Krakow, Wydawnictwo Politechniki Krakowskiej, Kraków. (in Polish)
  15. Jordanova, D., Jordanova, N. & Petrov, P. (2014). Magnetic susceptibility of road deposited sediments at a national scale – relation to population size and urban pollution, Environmental Pollution, 189, pp. 239–251.
  16. Khan, R.K. & Strand, M.A. (2018). Road dust and its effect on human health: a literature review, Epidemiology and Health, 10, 40, art. no. 2018013. DOI:10.4178/epih.e2018013
  17. Kim, W., Doh, S.J., Park, Y.H. & Yun, S.T. (2007). Two-year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea, Atmospheric Environment, 41, pp. 7627–7641. DOI:10.1016/j.atmosenv.2007.05.050
  18. Kupka, D., Kania, M., Pietrzykowski, M. & Łukasik, A. (2021). Multiple Factors Influence the Accumulation of Heavy Metals (Cu, Pb, Ni, Zn) in Forest Soils in the Vicinity of Roadways, Water, Air, & Soil Pollution, 232, 194. DOI:10.1007/s11270-021-05147-7
  19. Łuczak, K. & Kusza, G. (2019). Magnetic susceptibility in the soils along communication routes in the town of Opole, Journal of Ecological Engineering, 20, 2, pp. 234–238. DOI:10.12911/22998993/99/82
  20. Marie, D.C., Chaparro, M.A.E., Gogorza, C.S.G., Navas, A. & Sinito, A.M. (2010). Vehicle derived emissions and pollution on the road Autovia2 investigated by rockmagnetic parameters: a case of study from Argentina, Studia Geophysica et Geodaetica, 54, pp. 135–152. DOI:10.1007/s11200-010-0007-9
  21. Petrovský, E. & Elwood, B.B. (1999). Magnetic monitoring of air, land and water pollution. in: Quaternary Climates, Environments and Magnetism, Maher, B. & Thompson, R. (Eds.). Cambridge Univ. Press, Cambridge, U.K., pp. 279–322.
  22. Rachwał, M., Wawer, M., Jabłońska, M., Rogula-Kozłowska, W. & Rogula-Kopiec, P. (2020) Geochemical and Mineralogical Characteristics of Airborne Particulate Matter in Relation to Human Health Risk, Minerals, 10, 866. DOI:10.3390/min10100866
  23. Reimann, C. & de Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry, Environmental Science & Technology, 34, pp. 5084–5091. DOI:10.1021/es001339o
  24. Rogula-Kozłowska, W., Penkała, M., Bihałowicz, J. S., Ogrodnik, P., Walczak, A. & Iwanicka, N. (2023). Elemental Composition of the Ultrafine Fraction of Road Dust in the Vicinity of Motorways and Expressways in Poland – Asphalt Versus Concrete Surfaces, Journal of Ecological Engineering, 24, 11, pp. 82–90. DOI:10.12911/22998993/171377
  25. Rybak, J., Wróbel, M., Pieśniewska, A., Rogula-Kozłowska, W. & Majewski, G. (2023). Possible Health Effects of Road Dust in Winter: Studies in Poland, Applied Sciences, 13, 7444. DOI:10.3390/ app13137444
  26. Starzomska, A. & Strużewska, J. (2024). A six-year measurement-based analysis of traffic-related particulate matter pollution in urban areas: the case of Warsaw, Poland (2016-2021), Archives of Environmental Protection, 50, 2, pp. 75–84. DOI:10.24425/aep.2024.150554
  27. Szuszkiewicz, M., Łukasik, A., Magiera, T. & Mendakiewicz M. (2016). Combination of geo-pedo- and technogenic magnetic and geochemical signals in soil profiles – diversification and its interpretation: a new approach, Environmental Pollution, 214, pp. 464–477. DOI:10.1016/j.envpol.2016.04.044
  28. Vlasov, D., Ramirez, O. & Luhar, A. (2022). Road dust in Urban and Industrial Environments: Sources, Pollutants, Impacts, and Management, Atmosphere, 13, 4, 607, DOI:10.3390/atmos13040607
  29. Wagner, S., Funk, C.W., Müller, K. & Raithel, D.J. (2024). The chemical composition and sources of road dust, and of tire and road wear particles–A review, Science of The Total Environment, 926, 171694. DOI:10.1016/j.scitotenv.2024.171694
  30. Wang, G., Chen, J., Zhang, W., Chen, Y., Ren, F., Fang, A. & Ma, L. (2019). Relationship between magnetic properties and heavy metal contamination of street dust samples from Shanghai, China, Environmental Science and Pollution Research, 26, pp. 8958–8970. DOI:10.1007/s11356-019-04338-4
  31. Wawer, M., Magiera, T., Jabłońska, M., Kowalska, J. & Rachwał, M. (2020). Geochemical characteristics of solid particles deposited on experimental plots established for traffic pollution monitoring in different countries, Chemosphere, 260, 127575. DOI:10.1016/j.chemosphere.2020.127575
  32. Wawer, M., Rachwał, M. & Kowalska, J. (2017). Impact of noise barriers on the dispersal of solid pollutants from car emissions and their deposition in soil, Soil Science Annual,68, 1, pp. 19–26. DOI:10.1515/ssa-2017-0003
  33. Xie, S., Dearing, J.A., Boyle, J.F., Bloemendal, J. & Morse, A.P. (2001). Association between magnetic properties and element concentrations of Liverpool street dust and its implications, Journal of Applied Geophysics, 48, pp. 83–92. DOI:10.1016/S0926-9851(01)00081-7
Go to article

Authors and Affiliations

Marzena Rachwał
1
ORCID: ORCID
Magdalena Penkała
2
Wioletta Rogula-Kozłowska
1
ORCID: ORCID
Małgorzata Wawer-Liszka
3
Aneta Łukaszek-Chmielewska
1
Joanna Rakowska
1

  1. Fire University, Warsaw, Poland
  2. National Academy of Applied Sciences, Chełm, Poland
  3. Institute of Environmental Engineering of the Polish Academy of Sciences, Zabrze, Poland

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Reviewers

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more