Applied sciences

Archives of Electrical Engineering

Content

Archives of Electrical Engineering | 2022 | Early Access |

Download PDF Download RIS Download Bibtex

Abstract

A new double stator permanent magnet machine having two sets of alternating current (AC) windings in separate stators is proposed in this study. The proposed machine is appropriate for low-speed direct-drive applications. 2D- and 3D-finite element analysis (FEA) is adopted in the result predictions. The considered machine elements are: coil and phase flux linkage, coil and phase induced-electromotive force (EMF), copper loss, current density and torque characteristics. The analysis shows that the studied permanent magnet (PM) machine has better electromagnetic performance than its single-stator equivalent. Moreover, the proposed machine has potential for higher reliability if the separate stators are used independently. The effect of design parameters on open-circuit flux linkage and induced-electromotive force, as well as on the average electromagnetic torque of the proposed double stator machine is also presented. It is observed that for each of the investigated design variables, there is a need to select the optimal value in order to achieve the best average torque. The investigated design parameters are: the split ratio, magnet thickness, rotor radial thickness, inner stator tooth-width, rotor inner and outer iron-width/pitch ratio, and stator yoke size.
Go to article

Authors and Affiliations

Chukwuemeka Chijioke Awah
1
ORCID: ORCID

  1. Michael Okpara University of Agriculture Umudike, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

Magnetic hysteresis occurs in most electrical engineering devices once soft ferromagnetic materials are exposed to relatively high temperatures. According to several scientific studies, magnetic properties are strongly influenced by temperature. The development of models that can accurately describe the thermal effect on ferromagnetic materials is still an issue that inspires researchers. In this paper, the effect of temperature on magnetic hysteresis for ferromagnetic materials is investigated using a self-developed numerical method based on the Preisach distribution function identification. It employs a parameter depending on both temperature and the Curie temperature. This approach is of the macroscopic phenomenological type, where the variation of the magnetization (in direct connection with the Preisach triangle) is related to the observed macroscopic hysteretic behavior. The isotropic character of the material medium is predominant. The technique relies on a few experimental data extracted from the first magnetization curve provided by metallurgists. The ultimate goal is to provide a simple and robust magnetic behavior modeling tool for designers of electrical devices. Temperature is introduced at the stage of identifying the distribution function of the Preisach model. This method is validated by the agreement between the experimental data and the simulation results. The developed method is very accurate and efficient in modeling the hysteresis of ferromagnetic materials in engineering particularly for systems with ferromagnetic components and electromagnetic-thermal coupling.
Go to article

Authors and Affiliations

Leila Chelghoum
1
ORCID: ORCID

  1. University Hadj Lakhdar Batna1, Batna, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Climate change is driving the transformation of energy systems from fossil to renewable energies. In industry, power supply systems and electro-mobility, the need for electrical energy storage is rising sharply. Lithium-based batteries are one of the most widely used technologies. Operating parameters must be determined to control the storage system within the approved operating limits. Operating outside the limits, i.e., exceeding or falling below the permitted cell voltage, can lead to faster aging or destruction of the cell. Accurate cell information is required for optimal and efficient system operation. The key is high-precision measurements, sufficiently accurate battery cell and system models, and efficient control algorithms. Increasing demands on the efficiency and dynamics of better systems require a high degree of accuracy in determining the state of health and state of charge (SOC). These scientific contributions to the above topics are divided into two parts. In the first part of the paper, a holistic overview of the main SOC assessment methods is given. Physical measurement methods, battery modeling, and the methodology of using the model as a digital twin of a battery are addressed and discussed. In addition, adaptive methods and artificial intelligence methods that are important for SOC calculation are presented. Part two of the paper presents examples of the application areas and discusses their accuracy.
Go to article

Authors and Affiliations

Marcel Hallmann
1
ORCID: ORCID
Christoph Wenge
2
ORCID: ORCID
Przemyslaw Komarnicki
1
ORCID: ORCID

  1. Magdeburg–Stendal University of Applied Sciences, Germany
  2. Fraunhofer IFF Magdeburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

Aiming at the problem of DC voltage control deviation and instability caused by a large-scale renewable energy access VSC–MTDC system, this paper combines voltage margin control and droop control. A strategy for controlling collaborative optimization in a sparsely distributed communication network has been proposed. Firstly, the distributed modeling of the system is carried out by combining MAS technology with small signal modeling. Then, a distributed model predictive controller is designed for a single droop control converter station. On this basis, a distributed cooperative optimization control strategy is proposed. According to the DC voltage deviation, the system adopts different control methods to control the receiving converter station. Finally, based on PSCAD/EMTDC and MATLAB co-simulation platforms, a six-terminal flexible HVDC system is built to verify the effectiveness of the control strategy under different conditions such as input power fluctuation, any converter station out of operation and system communication failure.
Go to article

Authors and Affiliations

Jingye Li
1
Haiying Dong
2

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
  2. School of New Energy and Power Engineering, Lanzhou Jiaotong University, China

Instructions for authors

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

This page uses 'cookies'. Learn more