Domengès, B., Celis, M.M., Moisy, F., Lacaze, J. & Tonn, B. (2021). On the role of impurities on spheroidal graphite degeneracy in cast irons. Carbon. 172, 529-541 https://doi.org/10.1016/J.CARBON.2020.10.030.
Valle, N., Theuwissen, K., Sertucha, J. & Lacaze, J. (2012). Effect of various dopant elements on primary graphite growth. IOP Conference Series: Materials Science and Engineering. 27(1), 012026, 1-6. https://doi.org/10.1088/1757-899X/27/1/012026.
Mrvar, P., Petrič, M. & Terčelj, M. (2023). Thermal fatigue of spheroidal graphite cast iron. TMS Annual Meeting & Exhibition. 406-415. https://doi.org/10.1007/978-3-031-22524-6_37.
Fourlakidis, V., Hernando, J.C., Holmgren, D. & Diószegi, A. (2023). Relationship between thermal conductivity and tensile strength in cast irons. International Journal of Metalcasting. 17, 2862-2867. https://doi.org/10.1007/s40962-023-00970-6.
Wang, L., Liu, H., Huang, C., Yuan, Y., Yao, P., Huang, J. & Han, Q. (2023). A methodology to predict thermal crack initiation region of tool for high-speed milling compacted graphite iron based on three-dimensional transient thermal stress field model. The International Journal of Advanced Manufacturing Technology. 125, 2065-2075. https://doi.org/10.1007/s00170-023-10832-4.
Coffin, L.F. & Wesley, R.P. (1954). Apparatus for study of effects of cyclic thermal stresses on ductile metals. Journal of Fluids Engineering. 76, 923-930. https://doi.org/10.1115/1.4015019.
Seifert, T. & Riedel, H. (2010). Mechanism-based thermomechanical fatigue life prediction of cast iron. Part I: Models. International Journal of Fatigue. 32, 1358-1367. https://doi.org/10.1016/J.IJFATIGUE.2010.02.004.
Amaro, R.L., Antolovich, S.D., Neu, R.W., Fernandez-Zelaia, P. & Hardin, W. (2012). Thermomechanical fatigue and bithermal–thermomechanical fatigue of a nickel-base single crystal superalloy. International Journal of Fatigue. 42, 165-171. https://doi.org/10.1016/J.IJFATIGUE.2011.08.017.
Boto, F., Murua, M., Gutierrez, T., Casado, S., Carrillo, A., & Arteaga, A. (2022). Data driven performance prediction in steel making. Metals. 12(2), 172, 1-19. https://doi.org/10.3390/met12020172.
Li, W., Chen, H., Guo, J., Zhang, Z., Wang, Y. (2022). Brain-inspired multilayer perceptron with spiking neurons. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18-24 June 2022 (pp. 773-783). https://doi.org/10.1109/CVPR52688.2022.00086. New Orleans, LA, USA: IEEE.
Shu, X., Zhang, S., Li, Y. & Chen, M. (2022). An anomaly detection method based on random convolutional kernel and isolation forest for equipment state monitoring. Eksploatacja i Niezawodność – Maintenance and Reliability. 24(4), 758-770. https://doi.org/10.17531/EIN.2022.4.16.
Wu, X., Kang, H., Yuan, S., Jiang, W., Gao, Q. & Mi, J. (2023). Anomaly detection of liquid level in mold during continuous casting by using forecasting and error generation. Applied Sciences. 13(13), 7457, 1-16. https://doi.org/10.3390/app13137457.
Liu, F.T., Ting, K.M., Zhou, Z.H. (2008). Isolation forest. In Proceedings - IEEE International Conference on Data Mining, ICDM, 15-19 December 2008 (pp. 413-422). https://doi.org/10.1109/ICDM.2008.17.
Seliya, N., Abdollah Zadeh, A., Khoshgoftaar, T.M. (2021). A literature review on one-class classification and its potential applications in big data. Journal of Big Data. 8, 1-31 https://doi.org/10.1186/s40537-021-00514-x.
Abhik, R. & Xaviora, M. (2014). Evaluation of properties for Al.-SiC reinforced metal matrix composite for brake pads. Procedia Engineering. 97, 941-950. DOI: 10.1016/j.proeng.2014.12.370.
Zakaria, H.M. (2014). Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Engineering Journal. 5(3), 831-838. https://doi.org/10.1016/j.asej.2014.03.003.
Singla, M., Dwivedi, D., Singh, L. & Chavla, V. (2009). Development of aluminum based silicon carbide particulate metal matrix composite. Journal of Minerals and Materials Characterization and Engineering. 8(6), 455-467. DOI: 10.4236/jmmce.2009.86040.
Nuruzzaman, D., Praveen, R. & Raghuraman, S. (2016). Processing and mechanical properties of aluminum- silicon carbide metal matrix composites. IOP Conference Series: Materials Science and Engineering. 114(1), 012123, 11-17. DOI: 10.1088/1757-899X/114/1/012123.
Baisane, V. P., Sable, Y. S., Dhobe, M. M. & Sonawane, P. M. (2015). Recent development and challenges in processing of ceramics reinforced Al matrix composite through stir casting process: A Review. International Journal of Engineering and Applied Sciences. 2(10), 257814.
Taha, M.A. & Zawrah M.F. (2017). Effect of nano ZrO2 on strengthening and electrical properties of Cu- matrix nanocomposites prepared by mechanical alloying, Ceramics International. 43(15), 12698-12704. DOI: 10.1016/j.ceramint.2017.06.153.
Samal, C.P., Parihar, J.S. & Chaira, D, (2013). The effect of milling and sintering techniques on mechanical properties of Cu-graphite metal matrix composite prepared by powder metallurgy route. Journal of Alloys and Compounds. 569, 95-101, DOI: doi.org/10.1016/j.jallcom.2013.03.122.
Wang, C., Lin, H., Zhang, Z. & Li W. (2018). Fabrication, interfacial characteristics and strengthening mechanism of ZrB2 microparticles reinforced Cu composites prepared by hot pressing sintering. Journal of Alloys and Compounds. 748, 546-552. https://doi.org/10.1016/j.jallcom.2018.03.169.
Kumar, G., Rao, C. & Selvaraj, N. (2011). Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites- a review. Journal of Minerals and Materials Characterization and Engineering. 10(1), 59-91. DOI: 10.4236/jmmce.2011.101005.
Leszczyńska-Madej, B. (2013). The effect of sintering temperature on microstructure and properties of Al-SiC composites. Archives of Metallurgy and Materials. 58(1), 43-48. DOI: 10.2478/v10172-012-0148-7.
Kargul, M. & Konieczny, M. (2020). Fabrication and characteristics of copper-intermetallics composites. Archives of Foundry Engineering. 20(3), 25-30. 10.24425/afe.2020.133325.
Krüger, C. & Mortensen, A. (2013). In situ copper- alumina composites. Materials Science and Engineering: A. 585, 396-407. https://doi.org/10.1016/j.msea.2013.07.074.
Sulima, I., Kowalik, R., Stępień, M. & Hyjek, P. (2024). Effect of ZrB2 content on properties of copper matrix composite. Materials. 17(24), 6105. https://doi.org/10.3390/ma17246105.
Chakthin, S., Morakotjinda, M., Yodkaew, T., Torsangtum, N., Krataithong, R., Siriphol, P., Coovattanachai, O., Vetayanugul, B., Thavarungkul, N., Poolthong, N. & Tongsri, R. (2008). Influence of carbides on properties of sintered Fe-base composites. Journal of Metals, Materials and Minerals. 18(2), 67-70.
Bandura, L., Franus, M., Panek, R., Woszuk, A. & Franus W. (2015). Characterization of zeolites and their use as adsorbents of petroleum substances. Przemysł Chemiczny. 94(3). DOI: 10.15199/62.2015.3.11. (in Polish).
Król, M., Mozgawa, W. & Pichór W. (2008). Application of clinoptilolite to heavy metal cations immobilization and to obtaining autoclaved building materials. Materiały Ceramiczne. 60(2), 71-80. (in Polish).
Łach, M. (2010). Structure of metal matrix composites with an addition of tuff. Archives of Foundry Engineering. 10(3), 135-140.
Łach, M., Mikuła, J. & Hebda M. (2016). Thermal analysis of the by-products of waste combustion. Journal of Thermal Analysis and Calorimetry. 125(3), 1035-1045. DOI: 10.1007/s10973-016-5512-9.
Mikuła, J., Łach, M. & Kowalski J.S. (2015). Copper matrix composites reinforced with volcanic tuff. Metalurgija. 54(1), 143-146.
Ciciszwili, G.W., Andronikaszwili, G.N., Kirow Ł.D. (1990). Zeolity naturalne. Warszawa: WNT.
Gottardi, G., & Galli, E. (1985). Zeolites of the heulandite group. In Natural zeolites (pp. 256-305). Berlin, Heidelberg: Springer Berlin Heidelberg.
Nanbin, H., Dianyue, G., Bekkum, H., Flanigen, E., Jacobs, P. & Jansen J. (2001). Introduction to Zeolite Science and Practice. New York: Elsevier.
Kocich, R., Opela, P. & Marek, M. (2023). Influence of structure development on performance of copper composites processed via intensive plastic deformation. Materials. 16(13), 4780. https://doi.org/10.3390/ma16134780.
Kargul, C., Konieczny, M. & Borowiecka-Jamrozek J. (2018). The effect of the addition of zeolite particles on the performance characteristics of sintered copper matrix composites. Tribologia. 282(6), 51-62. DOI: 10.5604/01.3001.0012.8421.
Borowiecka-Jamrozek, J. & Depczyński W. (2017). The effect of the addition of zeolite on the properties of a sintered copper-matrix composite. In 26th International Conference on Metallurgy and Materials, 24th - 26th May 2017. Brno, Czech Republic.
Kumar, K., Kumar, L. & Gill, H. (2024). Role of carbide-based thermal-sprayed coatings to prevent failure for boiler steels: a review. Journal of Failure Analysis and Prevention. 24(4), 1628-1663. DOI:10.1007/s11668-024-01974-y.
Rodolpho, V., Silveira, L., Cruz, J. & Pukasiewicz, A. (2023). Cavitation resistance of FeMnCrSi coatings processed by different thermal spray processes. Hybrid Advances. 5, 100125, 1-18. DOI: 10.1016/j.hybadv.2023.100125.
Cheng, F.T., Shi, P. & Man, H.C. (2001). Correlation of cavitation erosion resistance with indentation-derived properties for a NiTi alloy. Scripta Materialia. 45(9), 1083-1089. https://doi.org/10.1016/S1359-6462(01)01143-5.
Stachowiak, G.B. & Stachowiak, G.W. (2010). Tribological characteristics of WC-based claddings using a ball-cratering method. International Journal of Refractory Metals and Hard Materials. 28(1), 95-105. https://doi.org/10.1016/j.ijrmhm.2009.07.015.
Murthy, J.K.N. & Venkataraman, B. (2006). Abrasive wear behaviour of WC–CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes. Surface and Coatings Technology. 200(8), 2642-2652, https://doi.org/10.1016/j.surfcoat.2004.10.136.
Yang, X., Zhang, J. & Li, G. (2016). Cavitation erosion behaviour and mechanism of HVOF-sprayed NiCrBSi–(Cr3C2–NiCr) composite coatings. Surface Engineering. 34(3), 211-219. https://doi.org/10.1080/02670844.2016.1258770.
Matikainen, V., Koivuluoto, H. & Vuoristo, P. (2020). A study of Cr3C2-based HVOF-and HVAF-sprayed coatings: Abrasion, dry particle erosion and cavitation erosion resistance. Wear. 446-447, 203188, 1-11. https://doi.org/10.1016/j.wear.2020.203188.
Silveira, L.L., Pukasiewicz, A.G.M., de Aguiar, D.J.M., Zara, A.J. & Björklund, S. (2019). Study of the corrosion and cavitation resistance of HVOF and HVAF FeCrMnSiNi and FeCrMnSiB coatings. Surface and Coatings Technology. 374, 910-922. https://doi.org/10.1016/j.surfcoat.2019.06.076.
Nowakowska, M., Łatka, L., Sokołowski, P., Szala, M., Toma, F. & Walczak, M. (2022). Investigation into microstructure and mechanical properties effects on sliding wear and cavitation erosion of Al2O3–TiO2 coatings sprayed by APS, SPS and S-HVOF. Wear. 508-509, 204462, 1-15. https://doi.org/10.1016/j.wear.2022.204462.
Odhiambo, J.G., Li, W., Zhao, Y. & Li, C. (2019). Porosity and its significance in plasma-sprayed coatings. Coatings. 9(7), 460, 1-19. https://doi.org/10.3390/coatings9070460.
Sun, P., Fang, Z.Z., Zhang, Y. & Xia Y. (2017). Review of the methods for production of spherical Ti and Ti alloy powder. JOM: the journal of the Minerals, Metals & Materials Society. 69, 1853-1860. DOI: https://doi.org/10.1007/s11837-017-2513-5.
Matikainen, V., Koivuluoto, H., Vuoristo, P., Schubert, J. & Houdková, Š. (2018). Effect of nozzle geometry on the microstructure and properties of HVAF-sprayed WC-10Co4Cr and Cr3C2-25NiCr coating. Journal od Thermal Spray Technology. 27(4), 680-694. DOI: 10.1007/s11666-018-0717-z.
Houdková, Š., Zahálka, F., Kašparová, M. & Berger, L.M. (2011). Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement. Tribology Letters. 43(2), 139-154. DOI: 10.1007/s11249-011-9791-9.
Lugscheider, E., Barimani, C., Eckert, P. & Eritt, U. (1996). Modeling of the APS plasma spray process. Computational Materials Science. 7(1-2), 109-114. https://doi.org/10.1016/S0927-0256(96)00068-7.
Wang, J., Wang, L., Lu, H., Du, J., Qi, X., Lu, L., Zhao, Y., Liu, Z. & Meng, W. (2025). Enhanced erosion resistance of Cr3C2-TiC-NiCrCoMo coatings: experimental and numerical investigation of erosion mechanisms. Coatings. 15(3), 294, 1-25. DOI: 10.3390/coatings15030294.
Houdková, Š., Česánek, Z., Smazalová, E. & Lukáč, F. (2018). The high-temperature wear and oxidation behavior of CrC-based HVOF coatings. Journal of Thermal Spray Technology. 27(1), 179-195. DOI: 10.1007/s11666-017-0637-3.
Padture, N.P., Gell, M., Jordan, E.H. (2002). Thermal barrier coatings for gas-turbine engine applications. Science. 296(5566), 280-284. DOI: 10.1126/science.1068609.
Weeks, M.D., Subramanian, R., Vaidya, A. & Mumm, D.R. (2015). Defining optimal morphology of the bond coat–thermal barrier coating interface of air-plasma sprayed thermal barrier coating systems. Surface and coating technology. 273, 50-59. DOI: 10.1016/j.surfcoat.2015.02.012.
Sampath, S., Schulz, U., Jarligo, M.O. & Kuroda, S. (2012). Processing science of advanced thermal-barrier systems. MRS Bulletin. 37(10), 903-910. DOI: 10.1557/mrs.2012.233.
Mutter, M., Mauer, G., Mücke, R., Guillon, O. & Vaßen, R. (2017). Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coating. Surface and coating technology. 318, 157-169. https://doi.org/10.1016/j.surfcoat.2016.12.061.
McPherson, R. (1989). A review of microstructure and properties of plasma sprayed ceramic coatings. Surface and coating technology. 39-40(1), 173-181. https://doi.org/10.1016/0257-8972(89)90052-2.
Metzger, D., Jarrett New, K. & Dantzig, J. (2001). A sand surface element for efficient modeling of residual stress in casting. Applied Mathematical Modelling. 25(10), 825-842. https://doi.org/10.1016/S0307-904X(01)00017-8.
James, M.N., Hughes, D.J., Chen, Z., Lombard, H., Hattingh, D.G., Asquith, D., Yates, J.R. & Webster, P.J. (2007). Residual stresses and fatigue performance. Engineering Failure Analysis. 14(2), 384-395. https://doi.org/10.1016/j.engfailanal.2006.02.011.
Rossini, N.S., Dassisti, M., Benyounis, K.Y. & Olabi, A.G. (2012). Methods of measuring residual stresses in components. Materials & Design. 35, 572-588. https://doi.org/10.1016/j.matdes.2011.08.022.
Shet, C. & Deng, X. (2003). Residual stresses and strains in orthogonal metal cutting. International Journal of Machine Tools and Manufacture. 43(6), 573-587. https://doi.org/10.1016/S0890-6955(03)00018-X.
Tabatabaeian, A., Ghasemi, A.R., Shokrieh, M.M., Marzbanrad, B., Baraheni M. & Fotouhi M. (2022). Residual stress in engineering materials: a review. Advanced engineering materials. 24(3), 2100786, 1-28. https://doi.org/10.1002/adem.202100786.
Jun, T.-S. & Korsunsky, A.M. (2010). Evaluation of residual stresses and strains using the eigenstrain reconstruction method. International Journal of Solids and Structures. 47(13), 1678-1686. https://doi.org/10.1016/j.ijsolstr.2010.03.002.
Wyatt, J.E., Berry, J.T. & Williams, A.R. (2007). Residual stresses in aluminum castings. Journal of materials processing technology. 191(1-3), 170-173. https://doi.org/10.1016/j.jmatprotec.2007.03.018.
Carrera, E., Rodríguez, A., Talamantes, J., Valtierra, S. & Colás, R. (2007). Measurement of residual stresses in cast aluminium engine blocks. Journal of materials processing technology. 189(1-3), 206-210. https://doi.org/10.1016/j.jmatprotec.2007.01.023.
Guan, J., Dieckhues, G.W. & Sahm, P.R. (1994) Analysis of residual stresses and cracking of γ-TiAl castings. Intermetallics. 2(2), 89-94. https://doi.org/10.1016/0966-9795(94)90002-7.
Skarbiński, M. (1957). Construction of Castings. Warszawa: PWT.
Training materials from Vishay.
Maj, M. (2024). The formation of the strength of castings including stress and strain analysis. Materials. 17(11), 2484, 1-19. https://doi.org/10.3390/ma17112484.
Maj, M. (2012). Fatigue endurance of selected casting alloys. Katowice-Gliwice: Archives of Foundry Engineering.
Wolna, M. (1993). Elastooptic Materials. Warsaw: Wydawnictwo Naukowe PWN.
Jakubowicz, A., Orłoś, Z. (1972), Strength of Materials. Warszawa: Wydawnictwa Naukowo-Techniczne.
Orłoś, Z. (1977). Experimental Analysis of Deformations and Stresses [Doświadczalna analiza odkształceń i naprężeń.]; Warszawa: PWN. (in Polish)
Stachurski, W., Siemieniec, A. (2005). Structural Studies of Castings Using Elastooptics Methods. Kraków: WN AKAPIT.
Siemieniec, A. (1977). Elastooptics. Kraków: Wydawnictwo AGH. (in Polish).
Zandman, F., Redner, S., & Dally, J. W. (1977). Photoelastic coatings (SESA Monograph No. 3). Iowa State University Press.
Ulutan, D., Ulutan, B., Erdem, A. & Lazoglu, I. (2007). Analytical modelling of residual stresses in machining. Journal of Materials Processing Technology. 183(1), 77-87. https://doi.org/10.1016/j.jmatprotec.2006.09.032.
Raptis, K.G., Costopoulos, Th.Ν., Papadopoulos, G.,Α. & Tsolakis, Α.D. (2010). Rating of spur gear strength using photoelasticity and the finite element method. American Journal of Engineering and Applied Sciences. 3(1), 222-231. ISSN 1941-7020.
Umezaki, E. & Terauchi, Sh. (2002). Extraction of isotropic points using simulated isoclinics obtained by photoelasticity-assisted finite element analysis. Optics and lasers in engineering. 38(1-2), 71-85. https://doi.org/10.1016/S0143-8166(01)00158-0.
Marle Ramachandra, P., Sungar, S., Mohan Kumara, G.C. (2022). Stress analysis of a gear using photoelastic method and Finite element method. Materials Today: Proceedings. 65(8), 3820-3828. https://doi.org/10.1016/j.matpr.2022.06.579.
Corby Jr, T.W., Nickola Wayne, E. (1997). Residual strain measurement using photoelastic coatings. Optics and Lasers in Engineering. 27(1), 111-123. https://doi.org/10.1016/S0143-8166(95)00012-7.
Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A. & Ul Haq, M.I. (2022). 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers. 3, 33-42. https://doi.org/10.1016/j.susoc.2021.09.004.
Upadyay, M., Sivarupan, T. & El Monsori, M. (2017). 3D rapid for sand casting – A review Journal of Manufacturing Processes. 29, 211-220. https://doi.org/10.1016/j.jmapro.2017.07.017.
Gruszka, D., Dańko, R., Dereń, M. & Wodzisz, A. (2024) Analysis of influence of sand matrix on properties of moulding compounds made with furan resin intended for 3D printing. Archives of Foundry Engineering. 24(2), 17-24, DOI: 10.24425/afe.2024.149267.
Wang, Y., long Yu R., kui Yin S., Tan R. & Chun Lou Y. (2021). Effect of gel time of 3D sand printing binder system on quality of sand mold/core. China Foundry. 18(6), 581-586. DOI: 10.1007/s41230-021-1085-8.
Bryant, N., O’Dell, J., Kowalsky, J. & Thiel, G. (2023). Real-time measurement of mold and core quality in chemically bonded sands. American Foundry Society. 18(1), 14-22. DOI: 10.1007/s40962-023-01206-3.
Qian, X.W., Wan, P., Yin, Y.J., Qi, Y.Y., Ji, X.Y., Shen, X.U., Li, Y.C. & Zhou, J.X. (2022). Gas evolution characteristics of three kinds of no-bake resin-bonded sands for foundry in production. China Foundry. 19(2), 140-148. DOI: 10.1007/s41230-022-1031-4.
Major-Gabryś, K., Hosadyna-Kondracka, M., Polkowska, A. & Warmuzek, M. (2022). Effect of the biodegradable component addition to the molding sand on the microstructure and properties of ductile iron Castings. Materials. 15(4), 1552, 1-14. DOI: 10.3390/ma15041552.
Halejcio, D. & Major-Gabryś, K. (2024). The use of 3D printed sand molds and cores in the castings production. Archives of Foundry Engineering. 24(1), 32-39. DOI: 10.24425/afe.2024.149249.
Halejcio, D. & Major-Gabryś, K. (2024). The comparison of chosen - bonded with the use of classical and dedicated for 3D printing furfuryl binder - molding sands’ properties as a basis for development a new inorganic system. Archives of Foundry Engineering. 24(4), 49-55. DOI: 10.24425/afe.2024.151309.
Manual for industrial-grade 3D printing machine casting sand for AJS 300 A by Kocel [pdf].
Dziubański, M., Kiljański, T., Sęk, J. (2014). Theoretical foundations and measurement methods of rheology. Łódź: Monografie Politechniki Łódzkiej. (in Polish).
Kwok, D.Y., Neumann, A.W. (1999) Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science. 81(3), 167-249. DOI: 10.1016/S0001-8686(98)00087-6.
Markert, B., Monastyrskyy, B., Ehlers, W. (2008) Fluid penetration effects in porous media contact.- Continuum Mech. Thermodyn. 20(5), 303-315. DOI: 10.1007/s00161-008-0083-z.
Zych, J. (2004). Non-destructive studies of the kinetics of changes in the properties of molding sands in the mold surface layer. Archiwum Technologii Maszyn i Automatyzacji. 24(1), 213-221. (in Polish).
Matonis, N. & Zych, J. (2023). Kinetics of binding process of furan moulding sands, under conditions of forced air flow, monitored by the ultrasonic technique. Archives of Foundry Engineering. 23(4), 93-98. DOI: 10.24425/afe.2023.146683.
Matonis, N. & Zych, J. (2022). Plasticity changes of moulding sands with chemical binders caused by increasing the hardening degree. Archives of Foundry Engineering. 22(2), 71-76. DOI: 10.24425/afe.2022.140227.
Jakubski, J. (2006). Tendency of selected moulding sands to deform at high temperature. PhD Thesis, AGH Kraków. (in Polish).
Grabarczyk, A., Major-Gabryś, K., Jakubski, J., Dobosz, S., Bolibruchowa, D. & Pastircak, R. (2023) Tests of mechanical and thermal deformation of moulding sands produced in various technologies. Archives of Metallurgy and Materials. 68(3) 933-937. DOI: 10.24425/amm.2023.145456.
Soiński, M.S. & Jakubus A. (2021). The leading role of aluminium in the growing production of castings made of the non-ferrous alloys. Archives of Foundry Engineering. 21(3), 33-42. DOI: 10.24425/afe.2021.136110.
Modern Casting. Industry Outlook: Sales Expected to Keep Growing. January 2023. 33-35.
Battaglia, E., Bonollo, F., Ferro, P. & Fabrizi, A. (2018). Effect of heat treatment on commercial AlSi12Cu1(Fe) and AlSi12(b) aluminum alloy die castings. Metallurgical and Materials Transactions A. 49(5), 1631-1640. DOI: 10.1007/s11661-018-4544-0.
Ji, S., Watson, D., Fan, Z. (2017). X-Ray computed tomographic investigation of high pressure die castings. Light Metals 2017. The Minerals, Metals & Materials Series. Springer, Cham. DOI:10.1007/978-3-319-51541-0_104.
Casting Source Magazine. (2015). Improving Surface Finishing of Die Castings. Retrieved March 3, 2025, from https://www.castingsource.com/articles/2015/11/01/improving-surface-finishing-die-castings?utm_source=chatgpt.com.
Khandelwal, H. & Ravi, B. (2024). Effect of varying part geometry and mold constraints on dimensional deviations of sand cast parts. International Journal on Interactive Design and Manufacturing. 19, 4973-4986. https://doi.org/10.1007/s12008-024-02118-0.
Tabor A., Rączka J.S. (1998). Casting design and mold technologies. Kraków: Ed. Fotobit. (in Polish).
Santos Jr, M. C., Machado, A. R., Sales, W. F., Barrozo, M. A. & Ezugwu, E. O. (2016). Machining of aluminum alloys: a review. The International Journal of Advanced Manufacturing Technology. 86(9), 3067-3080. https://doi.org/10.1007/s00170-016-8431-9.
König, W. & Erinski, D. (1983). Machining and machinability of aluminium cast alloys. CIRP Annals. 32(2), 535-540. https://doi.org/10.1016/S0007-8506(07)60180-2.
Jakubus, A. & Soiński, M.S. (2019). The influence of the shape of graphite precipitates on the cast iron abrasion resistance. Archives of Foundry Engineering. 19(4), 87-90. DOI: 10.24425/afe.2019.129635.
Stradomski, G., Krupop, M., Jakubus, A., Nadolski, M. (2018). The resistance of thermal shock of the 21CrMoV5-7 steel. In METAL 2018 - 27th International Conference on Metallurgy and Materials, Conference Proceedings, 23-25 May 2018 (pp. 873 – 878). Brno, Czech Republic.
Stradomski, G., Gzik, S., Jakubus, A. & Nadolski. M. (2018). The assessment of resistance to thermal fatigue and thermal shock of cast iron used for glass moulds. Archives of Foundry Engineering. 18(3), 173-178. DOI: 10.24425/123621.
Jakubus, A., Soiński, M.S., Stradomski, G., Nadolski, M. & Mróz, M. (2025). The effect of austempering temperature on the matrix morphology and thermal shock resistance of compacted graphite cast iron. Materials. 18(10), 2200, 1-17. https://doi.org/10.3390/ma18102200.
Jaworski, J., Kluz, R. & Trzepieciński, T. (2016). Research on accuracy of automatic system for casting measuring. Archives of Foundry Engineering. 16(3), 49-54. DOI: 10.1515/afe-2016-0048.
DIN EN 1706:2021-10 Aluminium and aluminium alloys - Castings - Chemical composition and mechanical properties
PN-EN ISO 1:2016-12. Normalna temperatura odniesienia dla specyfikacji właściwości geometrycznych i wymiarowych.
Reinshaw (2024). Retrieved December 6, 2024, from https://www.renishaw.com/pl/.
Soiński, M.S. & Jakubus A. (2021). The leading role of aluminium in the growing production of castings made of the non-ferrous alloys. Archives of Foundry Engineering. 21(3), 33-42. DOI: 10.24425/afe.2021.136110.
Modern Casting. Industry Outlook: Sales Expected to Keep Growing. January 2023. 33-35.
Battaglia, E., Bonollo, F., Ferro, P. & Fabrizi, A. (2018). Effect of heat treatment on commercial AlSi12Cu1(Fe) and AlSi12(b) aluminum alloy die castings. Metallurgical and Materials Transactions A. 49(5), 1631-1640. DOI: 10.1007/s11661-018-4544-0.
Ji, S., Watson, D., Fan, Z. (2017). X-Ray computed tomographic investigation of high pressure die castings. Light Metals 2017. The Minerals, Metals & Materials Series. Springer, Cham. DOI:10.1007/978-3-319-51541-0_104.
Casting Source Magazine. (2015). Improving Surface Finishing of Die Castings. Retrieved March 3, 2025, from https://www.castingsource.com/articles/2015/11/01/improving-surface-finishing-die-castings?utm_source=chatgpt.com.
Khandelwal, H. & Ravi, B. (2024). Effect of varying part geometry and mold constraints on dimensional deviations of sand cast parts. International Journal on Interactive Design and Manufacturing. 19, 4973-4986. https://doi.org/10.1007/s12008-024-02118-0.
Tabor A., Rączka J.S. (1998). Casting design and mold technologies. Kraków: Ed. Fotobit. (in Polish).
Santos Jr, M. C., Machado, A. R., Sales, W. F., Barrozo, M. A. & Ezugwu, E. O. (2016). Machining of aluminum alloys: a review. The International Journal of Advanced Manufacturing Technology. 86(9), 3067-3080. https://doi.org/10.1007/s00170-016-8431-9.
König, W. & Erinski, D. (1983). Machining and machinability of aluminium cast alloys. CIRP Annals. 32(2), 535-540. https://doi.org/10.1016/S0007-8506(07)60180-2.
Jakubus, A. & Soiński, M.S. (2019). The influence of the shape of graphite precipitates on the cast iron abrasion resistance. Archives of Foundry Engineering. 19(4), 87-90. DOI: 10.24425/afe.2019.129635.
Stradomski, G., Krupop, M., Jakubus, A., Nadolski, M. (2018). The resistance of thermal shock of the 21CrMoV5-7 steel. In METAL 2018 - 27th International Conference on Metallurgy and Materials, Conference Proceedings, 23-25 May 2018 (pp. 873 – 878). Brno, Czech Republic.
Stradomski, G., Gzik, S., Jakubus, A. & Nadolski. M. (2018). The assessment of resistance to thermal fatigue and thermal shock of cast iron used for glass moulds. Archives of Foundry Engineering. 18(3), 173-178. DOI: 10.24425/123621.
Jakubus, A., Soiński, M.S., Stradomski, G., Nadolski, M. & Mróz, M. (2025). The effect of austempering temperature on the matrix morphology and thermal shock resistance of compacted graphite cast iron. Materials. 18(10), 2200, 1-17. https://doi.org/10.3390/ma18102200.
Jaworski, J., Kluz, R. & Trzepieciński, T. (2016). Research on accuracy of automatic system for casting measuring. Archives of Foundry Engineering. 16(3), 49-54. DOI: 10.1515/afe-2016-0048.
DIN EN 1706:2021-10 Aluminium and aluminium alloys - Castings - Chemical composition and mechanical properties
PN-EN ISO 1:2016-12. Normalna temperatura odniesienia dla specyfikacji właściwości geometrycznych i wymiarowych.
Reinshaw (2024). Retrieved December 6, 2024, from https://www.renishaw.com/pl/.
Reichardt, A., Shapiro, A.A., Otis, R., Dillon, R.P., Borgonia, J.P., McEnerney, B.W., Hosemann, P. & Beese, A.M. (2021). Advances in additive manufacturing of metal-based functionally graded materials. International Materials Reviews. 66(1), 1-29. DOI: 10.1080/09506608.2019.1709354.
Charan, M.S., Naik, A.K., Kota, N., Laha, T. & Roy, S. (2022). Review on developments of bulk functionally graded composite materials. International Materials Reviews. 67(8), 797-863. DOI: 10.1080/09506608.2022.2026863.
Ogawa, T., Watanabe, Y., Sato, H., Kim I.S. & Fukui, Y. (2006). Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method. Composites Part A: Applied Science and Manufacturing. 37(12), 2194-2200. DOI: 10.1016/J.COMPOSITESA.2005.10. 002.
Heidary, D.S.B. & Akhlaghi, F. (2011). Theoretical and experimental study on settling of SiC particles in composite slurries of aluminum A356/SiC. Acta Materialia. 59(11), 4556-4568. https://doi.org/10.1016/J.ACTAMAT.2011.03.077.
Verma, R.K., Parganiha, D. & Chopkar, M. (2021). A review on fabrication and characteristics of functionally graded aluminum matrix composites fabricated by centrifugal casting method. SN Applied Science. 3(2), 1-29 DOI: /10.1007/s42452-021-04200-8
Jackowski, J. & Szymański, P. (2012). The structure of centrifugally cast composite casting. Composites theory and practice. 12(1), 66-71.
Dolata-Grosz, A., Śleziona, J., Wieczorek, J. & Dyzia, M. (2002). Layered structure of AK12-Al2O3 and AK12- SiC composites formed by the centrifugal casting. KOMPOZYTY (COMPOSITES). 5, 305-308.
Wang, K., Zhang, Z.M., Yu, T., He, N.J. & Zhu, Z.Z. (2017). The transfer behavior in centrifugal casting of SiCp/Al composites. Journal of Materials Processing Technology. 242, 60-67. DOI: 10.1016/j.jmatprotec.2016.11.019. https://doi.org/10.1016/j.jmatprotec.2016.11.019.
Tęcza, G. (2012). Changes in abrasive wear resistance during miller test of Cr-Ni cast steel with Ti carbides formed in the alloy matrix. Archives of Foundry Engineering. 21(4), 110-115. DOI: 10.24425/afe.2021.139758.
Maziarz, W., Wójcik, A., Chulist, R., Bigos, A., Kurtyka, P., Szymański, Ł., Jimenez Zabaleta, A., García de Cortázar, M. & Olejnik, E.(2024). Microstructure and mechanical properties of Al/TiC and Al/(Ti,W)C nanocomposites fabricated via in situ casting method. Journal of Materials Research and Technology. 28, 1852-1863. DOI: 10.1016/j.jmrt.2023.12.126.
Sobula, S., Olejnik, E. & Tokarski, T. (2017). Wear resistance of TiC reinforced cast steel matrix composite. Archives of Foundry Engineering. 17(1), 143-146. DOI: 10.1515/afe-2017-0026.
Maziarz, W., Wójcik, A., Bobrowski, P., Bigos, A., Szymański, Ł., Kurtyka, P., Rylko, N. & Olejnik, E. (2019). SEM and TEM studies on in-situ cast Al-TiC composites. Materials Transactions. 60(5), 714-717. DOI: 10.2320/matertrans.MC 201806
David Raja Selvam, J., Dinaharan, I., Rai, R.S. & Mashinini, P.M. (2019). Dry sliding wear behaviour of in-situ fabricated TiC particulate reinforced AA6061 aluminium alloy. Tribology-Materials, Surfaces & Interfaces. 13(1), 1-11. DOI: 10.1080/17515831.2018.1550971.
Kennedy, A.R., Weston, D.P. & Jones, M.I. (2001). Reaction in Al–TiC metal matrix composites. Materials Science and Engineering A. 316(1-2), 32-38. DOI: 10.1016/S0921-5093(01)01228-X.
Verma, R.K., Biswas, P. & Chopkar, M.K. (2023). Simulation and experimental investigation of centrifugal-cast functionally graded aluminum-B4C composite. Materials and Manufacturing Processes. 38(13), 1729-1743. DOI: 10.1080/ 10426914.2023.2176879.
Dolata, A.J., Golak, S. & Ciepliński, P. (2017). The Eulerian multiphase model of centrifugal casting process of particle reinforced Al matrix composites. Composites. Theory and Practice. 17(4), 200-205.
Nakayama, Y. (2018). Introduction to Fluid Mechanics (2-nd Edition). Elsevier. Retrieved July 7, 2025, from https://app.knovel.com/hotlink/pdf/id:kt011PH782/introduction-fluid-mechanics/beginning-fluid-mechanics. ISBN: 978-0-08-102437-9.
Nakamura, M. & Kimura, K. (1991). Elastic constants of TiAl3 and ZrAl3 single crystals. Journal of Materials Science, 26(8), 2208-2214. DOI: 10.1007/BF00549190.
Khuengpukheiw, R., Veerapadungphol, S., Kunla, V. & Saikaew, C. (2022). Influence of sawdust ash addition on molding sand properties and quality of iron castings. Archives of Foundry Engineering. 22(4), 53-64. DOI: 10.24425/afe.2022.143950.
Nayak, R. K. & Jatin, S. (2023). Development of A356 alloy green sand mold casting process using Narmada Riverbed sand in India: Design of experiment and optimization. International Journal of Metalcasting. 17(2), 1296-1307. DOI: 10.1007/s40962-022-00855-0.
Sadarang, J. & Nayak, R.K. (2021). Utilization of fly ash as an alternative to silica sand for green sand mould casting process. Journal of Manufacturing Processes. 68, 1553-1561. DOI: 10.1016/j.jmapro.2021.06.077.
Munusamy, P., Balaji, R. & Sivakandhan, C. (2017). Analysis of sand mold using industrial powders and fly ash. International Journal of Mechanical Engineering and Technology. 8(1), 292-303.
Karunakaran, P., Jegadheesan, C., Dhanapal, P. & Sengottuvel, P. (2014). Sugar industry fly ash: an additive for molding sand to make aluminium castings. Russian Journal of Non Ferrous Metals. 55(3), 247-253. DOI: 10.3103/S1067821214030079.
Kumar, P., Gaindhar, J. L. & Holi, S. (1998). Effect of flyash addition on the quality of AI-11%Si alloy castings produced by l/-process. Journal of Manufacturing Science and Engineering. 120(4), 722-727. DOI: 10.1115/1.2830212.
Garcia-Tapia, G., Jhaveri, S., Saenz-Valadez, A. A. et al. (2010). Patent number: WO2010080583A1, PCT/US2009/068670.
Rangan, P. R., Tumpu, M. & Thoengsal, J. (2023). A preliminary study of alkali-activated pozzolan materials produced with sodium hydroxide activator. International Journal of Engineering Trends and Technology. 71(6), 375-382. DOI: 10.14445/22315381/IJETT-V71I7P236.
Palaniappan, J. (2017). Study on type C coal fly ash as an additive to molding sand for steel casting. Journal of The Institution of Engineers (India): Series D. 98(1), 139-145. DOI: 10.1007/s40033-016-0115-y.
Davis, J.R. (1993). Aluminum and aluminum alloys. Materials Park, OH: ASM International.
Saeid S., Saeid, M. (2007). Effect of material structure on machining characteristics of hypereutectic Al-Si Alloy. M.Sc. thesis, University of Technology Malaysia.
Vencl, A., Bobic, I., Arostegui, S., Bobic, B., Marinković, A. & Babić, M. (2010). Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC+ graphite particles. Journal of alloys and compounds, 506(2), 631-639.
Sajjadi, S.A., Ezatpour, H.R. & Parizi. M.T. (2011). Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al₂O₃ composites fabricated by stir and compo-casting processes. Materials & Design. 34, 106-111. https://doi.org/10.1016/j.matdes.2011.07.037.
Ramesh, C.S., Keshavamurthy, R., Channabasappa, B.H. & Pramod. S. (2009). Microstructure and mechanical properties of Ni–P coated Si₃N₄ reinforced Al6061 composites. Journals of Materials Science and Engineering: A. 502(1-2), 99-106. https://doi.org/10.1016/j.msea.2008.10.012.
Moya, J.S., Lopez-Esteban, S. & Pecharromán. C. (2007). The challenge of ceramic/metal microcomposites and nanocomposites. Progress in Materials Science. 52(7), 1017-1090. https://doi.org/10.1016/j.pmatsci.2006.09.003.
Srinivasarao, B., Suryanarayana, C., Oh-ishi, K. & Hono, K. (2009). Microstructure and mechanical properties of Al-Zr nanocomposite materials. Materials Science and Engineering: A. 518,(1-2), 100-107. https://doi.org/10.1016/j.msea.2009.04.032.
Jayashree, P. K., Shankar, M. G., Kini, A., Sharma, S. S. & Shetty, R. (2013). Review on effect of silicon carbide (SiC) on stir cast aluminium metal matrix composites. International Journal of Current Engineering and Technology. 3(3), 1061-1071.
Stefanescu, D. M., Dhindaw, B. K., Kacar, S. A. & Moitra, A. (1988). Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites. Metallurgical Transactions A. 19(11), 2847-2855. DOI:10.1007/BF02645819.
Singh, M., Bhandari, D. & Goyal, K. (2020). A review of the mechanical performance of nanoparticles reinforced aluminium matrix nanocomposites. Materials Today: Proceedings. 46(9), 3198-3204. https://doi.org/10.1016/j.matpr.2020.11.191.
Lakshmikanthan, A., Udayagiri, S. B., Koppad, P. G., Gupta, M., Munishamaiah, K. & Bontha, S. (2020). The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. Journal of Materials Research and Technology. 9(3), 6434-6452. https://doi.org/10.1016/j.jmrt.2020.04.027.
Nagaral, M., Deshapande, R. G., Auradi, V., Boppana, S. B., Dayanand, S. & Anilkumar, M. R. (2021). Mechanical and wear characterization of ceramic boron carbide-reinforced Al2024 alloy metal composites. Journal of Bio- and Tribo-Corrosion. 7(19), 1-12.
Ravikumar, M., Reddappa, H. N., Suresh, R., Babu, E. R. & Nagaraja, C. R. (2021). Study on micro - nano sized Al₂O₃ particles on mechanical, wear and fracture behavior of Al7075 metal matrix composites. Frattura ed Integrità Strutturale. 15(58), 166-178. https://doi.org/10.3221/IGF-ESIS.58.12.
Kumar, V.V., Muruga, D.B.N. & Jayabalakrishnan, J. (2019). Analysis of gravity die casted aluminium parts using MAGMA. International Journal of Trendy Research in Engineering and Technology. 3(4), 1-5.
Rodhan, Z.K., Abd-Ali, N.K., Al-Nesrawy. S.H. (2024). The influence of filler loading on the mechanical characteristics of synthetic rubber composites filled with waste fiber. Inn Proceedings of International Conference on Environment and Sustainability. Springer.
Rodhan, Z.K., Al-Nesrawy, S.H., Abd-Ali. N.K. (2024). Effect of waste fiber content on vulcanization properties for synthetic rubber composites. Indian Journal of Environmental Protection. 43(14), 1310-1315.
Michalek, K., Tkadlecková, M., Socha, L., Gryc, K., Saternus, M., Pieprzyca, J. & Merder, T. (2018). Physical modelling of degassing process by blowing of inert gas. Archives of Metallurgy and Materials. 63(2), 987-992. DOI: 10.24425/122432.
Pietrowski, S. (2001). Al-Si alloys. Łódź: Lodz University of Technology Publishing House. (in Polish).
Zhao, L., Pan, Y., Liao, H., Wang, Q. (2012). Degassing of aluminum alloys during re-melting. Materials Letters. 66(1), 328-331. https://doi.org/10.1016/j.matlet.2011.09.012.
Samuel, A.M. & Samuel, F.H. (1992). Review. Various aspects involved in the production of low-hydrogen aluminium castings. Journal of Materials Science. 27(24), 6533-6563. https://doi.org/10.1007/BF01165936.
Puga, H., Barbosa, J., Seabra, E., Ribeiro, S., Prokic, M. (2009). New trends in aluminium degassing—A comparative study. In Proceedings of the Fourth International Conference on Advances and Trends in Engineering Materials and Their Applications, 1-4 September 2009 (pp. 1-5). Hamburg, Germany.
Eskin, D., Alba-Baena, N., Pabel, T. & da Silva, M. (2015). Ultrasonic degassing of aluminium alloys: Basic studies and practical implementation. Materials Science and Technology. 31(1), 79-84. https://doi.org/10.1179/1743284714Y.000000058.
Puga, H., Barbosa, J., Gabriel, J., Seabra, E., Ribeiro, S. & Prokic, M. (2011). Evaluation of ultrasonic aluminium degassing by piezoelectric sensor. Journal of Materials Processing Technology. 211(6), 1026-1033. https://doi.org/10.1016/j.jmatprotec.2011.01.003.
Abramov, V.O., Abramova, A.V., Bayazitov, V.M., Nikonov, R.V. & Cravotto, G. (2021). Pores-free aluminium alloy by efficient degassing ultrasonic treatments. Applied Acoustics. 184, 108343, 1-12. https://doi.org/10.1016/j.apacoust.2021.108343.
Ren,Y., Chen, H., Ma, W., Lei, Y. & Zeng, Y. (2021). Purification of aluminium-silicon alloy by electromagnetic directional solidification: Degassing and grain refinement. Separation and Purification Technology. 277, 119459, 1-8. https://doi.org/10.1016/j.seppur.2021.119459.
Rundquist, V., Paci, M. & Von Gal, R. (2019). The Development of an ultrasonic degassing process for aluminium casting. Materials Today: Proceedings. 10(2), 288-295. https://doi.org/10.1016/j.matpr.2018.10.408.
Alba-Baena, N., Eskin, D. (2016). Kinetics of ultrasonic degassing of aluminum alloys. In Sadler, B.A. (Eds), Light Metals 2013. The Minerals, Metals & Materials Series (pp. 957-962). Springer, Cham. doi.org/10.1007/978-3-319-65136-1_162.
Xu, H., Meek, T.T. & Han, Q. (2007). Effects of ultrasonic field and vacuum on degassing of molten aluminum alloy. Materials Letters. 61(4-5), 1246-1250. https://doi.org/10.1016/j.matlet.2006.07.012.
Lazaro-Nebreda, J., Patel, J.B. & Fan, Z. (2021). Improved degassing efficiency and mechanical properties of A356 aluminium alloy castings by high shear melt conditioning (HSMC) technology. Journal of Materials Processing Technology. 294, 117146. https://doi.org/10.1016/j.jmatprotec.2021.117146.
Popescu, G., Gheorghe, I., Dănilă, F. & Petru, M. (1996). Vacuum degassing of aluminum alloys. Materials Science Forum. 217-222, 147-152.
Reddy, B.M., Nallusamy, T. (2021). Degassing of Aluminum Metals and Its Alloys in Non-ferrous Foundry. In Kumaresan, G., Shanmugam, N.S., Dhinakaran, V. (Eds.), Advances in Materials Research (pp. 637-644). Springer, Singapore.
Socha, L., Prášil, T., Gryc, K., Sviželová, J., Nováček, P. (2022). Physical modelling of aluminum melt degassing in low-pressure die casting conditions. In 31st International Conference on Metallurgy and Materials METAL, 18-19 May 2022 (pp. 785-791). Brno, Czech Republic.
Władysiak, R. (2024). Quality control of liquid aluminium alloy using thermal imaging camera. Archives of Foundry Engineering. 17(1), 135-140. DOI: 10.24425/afe.2024.149261.
Puga, H., Barbosa, J., Tuan, N.Q. & Silva, F. (2014). Effect of ultrasonic degassing on performance of Al-based components. Transactions of Nonferrous Metals Society of China. 24(11), 3459-3464. https://doi.org/10.1016/S1003-6326(14)63489-0.
Shih, T. S., & Weng, K. Y. (2004). Effect of a degassing treatment on the quality of Al-7Si and A356 Melts —degassing diffusers. Materials Transactions, The Japan Institute of Metals, 45(6), 1852-1858. https://doi.org/10.2320/matertrans.45.1852.
Aluminum Degassing Methods & Measurements, A Modern Casting Staff Report. Modern Casting.
PN-EN 1706: 2011. Aluminum and aluminum alloys. Castings. Chemical composition and mechanical properties.
Belov, N.A., Eskin, D.G., Aksenov, A.A. (2005). Multicomponent Phase Diagrams. Applications for commercial aluminum alloy. Oxford: Elsevier.
Glazoff, M., V., Khvan, A. & Zolotorevsky, V.S. (2018). Casting Aluminum Alloys. Their physical and mechanical metallurgy. Butterworth-Heinemann.
Belov, N., Aksenov, A.A., Eskin, D.G. (2002). Iron in aluminum alloys. London: Impurity and alloying elements. CRC Press.
Szymczak, T. (2019). The effect of Cr, Mo, V, and W on the crystallization process and mechanical properties of hypoeutectic Al-Si alloys. Łódź: Publishing House of Technical University of Lodz. (in Polish).
Pietrowski, S. (1993). Crystallization of metallic materials. Łódź: Publishing House of Technical University of Lodz. (in Polish).
Górny, Z. (1992). Non-ferrous metal casting alloys. Warsaw: Scientific and Technical Publishing House. (in Polish).
Shankar, S., Riddle, Y.W. & Makhlouf, M.M. (2004). Eutectic solidification of aluminum silicon alloys. Metallurgical and Materials Transactions A. 35(9), 3038-3043. https://doi.org/10.1007/s11661-004-0048-1.
Dinnis, C.M., Dahle, A.K. & Taylor, J.A. (2005). Three-dimensional analysis of eutectic grains in hypoeutectic Al–Si alloys. Materials Science and Engineering A. 392(1-2), 440-448. https://doi.org/10.1016/j.msea.2004.10.037.
Dahle, A.K., Nogita, K., McDonald, S.D., Dinnis, C. & Lu, L. (2005), Eutectic modification and microstructure development in Al–Si alloys. Materials Science and Engineering A. 413-414, 243-248. https://doi.org/10.1016/j.msea.2005.09.055
Czerwiński, F. (2008). Magnesium Injection Molding. New York: Springer.
Martynenko, N. S., Luk’Yanova, E. A., Morozov, M. M., Yusupov, V. S., Dobatkin, S. V. & Estrin, Y. Z. (2018). Study of the structure, mechanical properties and corrosion resistance of magnesium alloy WE43 after rotary swaging. Metal Science and Heat Treatment. 60(3), 253-258. DOI 10.1007/s11041-018-0269-3.
Mengucci, P., Barucca, G., Riontino, G., Lussana, D., Massazza, M., Ferragut, R. & Aly, E. H. (2008). Structure evolution of a WE43 Mg alloy submitted to different thermal treatment. Materials Science and Engineering: A. 479(1-2), 37-44. https://doi.org/10.1016/j.msea.2007.06.016.
Kang, H., Huang, Z.H., Wang, S.C., Yan, H., Chen, R.S. & Huang, J.C. (2020). Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy II: Aging at 250 and 300 °C. Journal of Magnesium and Alloys. 8(1), 103-110. DOI.org/10.1016/j.jma.2019.11.012.
Nie, J.F. & Muddle B.C. (2000). Characterization of strengthening precipitate phases in a Mg-Y-Nd alloy. Acta Materialia. 48(8), 1691-1703. DOI 10.1016/S1359-6454(00)00013-6.
Beladi, H. & Bernett, M.R. (2007). Influence of aging pre-treatment on the compressive deformation of WE54 alloy. Materials Science and Engineering A. 452-453, 306-312. DOI /10.1016/j.msea.2006.10.125.
Friedrich, H. & Schumann, S. (2001). Research for a “new age of magnesium” in the automotive industry. Journal of Materials Processing Technology. 117(3), 276-281. DOI 10.1016/S0924-0136(01)00780-4
Friedrich, H.E., Mordike, B.L. (2006). Magnesium Technology: Metallurgy, Design, Data, Applications. Berlin - Heidelberg: Springer.
Matweb. (2023). Retrieved December 11, 2023, from http://www.matweb.com/search/DataSheet.aspx?MatGUID=4b8a8c13cf354fc5893a40cf8eca022c&ckck=1.
Mraied, H., Wangb, W. & Cai, W. (2019). Influence of chemical heterogeneity and microstructure on the corrosion resistance of biodegradable WE43 magnesium alloys. Journal of Materials Chemistry B. 7(41), 6399-6411. DOI.org/10.1039/C9TB00388F.
Elektron WE-43. (2005-2006). Magnesium Elektron: Service & Innovation in Magnesium, 467.
Pekguleryuz, M. O., & Kaya, A. A. (2003). Creep resistant magnesium alloys for powertrain applications. Advanced Engineering Materials. 5(12), 866–878.
Yang, Z., Li, J.P., Zhang, J.X., Lorimer, G.W. & Robson, J. (2008). Review on research and development of magnesium alloys. Acta Metallurgica Sinica (English Letters). 21(5), 313-328. DOI: 10.1016/S1006-7191(08)60054-X.
Yu, K., Li, W. & Wang, R. (2005). Mechanical properties and microstructure of as-cast and extruded Mg-(Ce, Nd)-Zn-Zr alloys. Journal Central South University Technology. 12(5), 499-502. DOI: 10.1007/s11771-005-0110-1.
Avedesian, M., Baker, H. (1999). Magnesium and Magnesium Alloys. ASM Speciality Handbook.
Kiełbus, A. (2007). The influence of solution treatment time on the microstructure of WE43 magnesium alloy. Acta Metallurgica Slovaca. 13, 653-657.
Antion C., Donnadieu P., Perrard F., Deschamps, A., Tassin, C. & Pisch, A. (2003). Hardening precipitation in Mg-4Y-3RE alloy. Acta Materialia. 51(18), 5335-5348. DOI: 10.1016/S1359-6454(03)00391-4.
Santos, T., Vilaça, P. & Quintino, L. (2008). Developments in ndt for detecting imperfections in friction stir welds in aluminium alloys. Welding in the World. 52(9), 30-37. https://doi.org/10.1007/BF03266666.
Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Temple-Smith P., Dawes, C.J. (1991). GB Patent Application nr 9125978.8. Friction Stir Butt Welding. Int. Patent Application no. PCT/GB92/02203.
Zadroga, L., Pietras, A., Papkala, H. (2003). Study and research on the conditions of joining dissimilar materials by modern friction welding methods. Report on the research work no Bb-96. Welding Institute. Gliwice.
Wang Q, Tong X., Wu G., Zhan J. Qi F., Zhang L., Liu W. (2023). Microstructure and strengthening mechanism of TIG welded joints of a Mg-Nd-Gd alloy: Effects of heat input and pulse current. Materials Science and Engineering: A. 869, 144816, 1-18. DOI.org/10.1016/j.msea.2023.144816.
Peter, I., Rosso, M. (2018). Investigations on Tungsten Inert Gas Welded Magnesium Alloy In 7th International Conference on Advanced Materials and Structures – AMS, 28–31 March 2018. Romania, DOI 10.1088/1757-899X/416/1/012030.
Adamiec J. (2010). Weldability od magnesium alloy, Monography. Gliwice, Poland: Silesian University of Technology.
Palanivel S., Nelaturu P., Glass B. & Mishra R.S. (2015). Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Materials & Design (1980-2015). 65, 934-952. DOI.org/10.1016/j.matdes.2014.09.082.
Li, J., Zhang, DT., Chai, F. & Zhang, W. (2020). Microstructures and mechanical properties of WE43 magnesium alloy prepared by friction stir processing. Rare Metals. 39, 1267-1272 https://doi.org/10.1007/s12598-014-0306-3.
Wu, B., Yusof, F., Li, F., Abdul Razak, B. B., Bin Muhamad, M. R., Badruddin, I. A., Hussien, M.,Kamangar, S. & Ibrahim, M. Z. (2024). Influence of friction stir processing parameters on microstructure, hardness and corrosion resistance of biocompatible Mg alloy WE43. Arabian Journal for Science and Engineering. 49, 1897-1911. DOI.org/10.1007/s13369-023-08037-8.
Klenam, D. E. P., Ogunwande, G. S., Omotosho, T., Ozah, B., Maledi, N. B., Hango, S. I., Fabuyide, A.A., Mohlala, L., van der Marwe, J.W. & Bodunrin, M.O. (2021). Welding of magnesium and its alloys: an overview of methods andprocess parameters and their effects on mechanical behaviour and structural integrity of the welds. Manufacturing Review. 8, 29, 1-32. DOI.org/10.1051/mfreview/2021028.
Chen, H., Zhu, Z., Zhu, Y., Sun, L., & Guo, Y. (2023). Solid-state welding of aluminum to magnesium alloys. A review. Metals. 13(8), 1410, 1-23. DOI.org/10.3390/ met13081410.
Adamiec J., Zadroga L. & Chabko T. (2008). Sucture and properties of the AZ91 magnesium alloy welds created with the use of Friction Stir Welding (FSW). Inżynieria Materiałowa. 29(4), 320-325.
Luty G. & Gałaczyński T. (2018). Joining technologies for aerospace structures, Part 2, Linear Friction Stir Welding (FSW). Projektowanie i Konstrukcje Inżynierskie. 11(134). (in Polish).
Threadgill, P.L., Leonard, A.J., Shercliff, H.R. & Withers, P.J. (2009). Friction stir welding of aluminum alloys. International Materials Reviews. 54(2), 49-93. https://doi.org/10.1179/174328009X411136.
Salih, O.S., Neate, N., Ou, H. & Sun, W. (2020). Influence of process parameters on the microstructural evolution and mechanical characterisations of friction stir welded Al-Mg-Si alloy. Journal of Materials Processing Technology. 275, 116366, 1-14. https://doi.org/10.1016/j.jmatprotec.2019.116366.
Radisavljevic, I., Zivkovic, Z., Radovic, N. & Grabulov, V. (2013). Influence of FSW parameters on formation quality and mechanical properties of Al 2024-T351 butt welded joints. Transactions of Nonferrous Metals Society of China. 23(12), 3525-3539. https://doi.org/10.1016/S1003-6326(13)62897-6.
Retrieved March 18, 2025, from http://www.twi.co.uk/technical-knowledge/published-papers/friction-stir-welding-of-magnesium-alloys-march-2003/
Yang, Q., Xiao, B.L. & Ma, Z.Y. (2012). Influence of process parameters on microstructure and mechanical properties of friction-stir-processed Mg-Gd-Y-Zr Casting. Metallurgical and Materials Transactions A. 43(6), 2094-2109. https://doi.org/10.1007/s11661-011-1076-2.
Feng, A.H. & Ma, Z.Y. (2009). Microstructural evolution of cast Mg–Al–Zn during friction stir processing and subsequent aging. Acta Materialia. 57(14), 4248-4260. https://doi.org/10.1016/j.actamat.2009.05.022.
Badkoobeh, F., Mostaan, H., Rafiei, M., Bakhsheshi-Rad, H.R. & Berto, F. (2021). Friction stirwelding/processing of Mg-based alloys: a critical review on advancements and challenges. Materials. 14(21), 6726, 1-35. https://doi.org/10.3390/ma14216726.
Singh, K., Singh, G. & Singh H. (2018). Review on friction stir welding of magnesium alloys. Journal of Magnesium and Alloys. 6(4), 399-416. https://doi.org/10.1016/j.jma.2018.06.001.
Khan, Y.S., Abidi, M.H., Malik, W., Lone, N.F., Aboudaif, M.K. & Mohammed, M.K. (2023). Effect of traverse speed variation on microstructural properties and corrosion behavior of friction stir welded WE43 Mg alloy joints. Materials. 16(14), 4902, 1-14. DOI.org/10.3390/ma16144902.
Węglowska, A., Matusiak, J., Miara, D., Pietrzak, J. (2022). Research on the Friction Stir Welding process of cast magnesium alloys intended for operation at elevated temperatures. Research report no. BW-52/22 (Bb136). Łukasiewicz Research Network – Upper Silesian Institute of Technology, Gliwice, Poland.
Thakur, N. & Harvinder, L. (2015). Experimental comparison of tig and friction stir welding processes for aluminium 6063-T6. International Journal on Emerging Technologies. 6(2), 189-194.
Singh, G., Kang, A.S., Singh, K. & Singh, J. (2017). Experimental comparison of friction stir welding process and TIG welding process for 6082-T6 aluminium alloy. Materials Today Proceedings. 4(2), 3590-3600. https://doi.org/10.1016/j.matpr.2017.02.251.
Yan, J.-B. & Xie, J. (2017). Experimental studies on mechanical properties of steel reinforcements under cryogenic temperatures. Construction and Building Materials. 151, 661–672. DOI.org/10.1016/j.conbuildmat.2017.06.123.
Dang, W., Zhang, W., Yi, Y., Huang, S., He, H. & Zhang, J. (2024). Influence of retrogression temperature and time on microstructure, mechanical properties and corrosion behaviours of cryogenically-deformed 7A85 aluminium alloy. Transactions of Nonferrous Metals Society of China. 34(2), 392-407. DOI.org/10.1016/S1003-6326(23)66406-4.
Barthélémy, H., Weber, M. & Barbier, F. (2017). Hydrogen storage: Recent improvements and industrial perspectives. International Journal of Hydrogen Energy. 42(11), 7254-7262. DOI:10.1016/j.ijhydene.2016.03.178.
Mekonnin, A. S. & Wacławiak, K. (2025). Investigation of material properties under cryogenic conditions: a review. Zeszyty Naukowe. Organizacja i Zarządzanie/Politechnika Śląska. DOI.org/10.29119/1641-3466.2025.216.22.
Luo, D., Liu, M., Jiang, X., Yu, Y., Zhang, Z., Feng, X. & Lai, C. (2022). Effect of yttrium-based rare earth on inclusions and cryogenic temperature impact properties of offshore engineering steel. Crystals. 12(3), 305, 1-16. DOI.org/10.3390/cryst12030305.
Mekonnin, A.S., Wacławiak, K., Humayun, M., Zhang, S. & Ullah, H. (2025). Hydrogen storage technology, and its challenges: a review. Catalysts. 15(3), 260, 1-38. DOI.org/10.3390/catal15030260.
Sápi, Z. & Butler R. (2020). Properties of cryogenic and low temperature composite materials–A review. Cryogenics. 111, 103190, 1-18. DOI.org/10.1016/j.cryogenics.2020.103190.
Qiu, Y., Yang, H., Tong, L. & Wang, L. (2021). Research progress of cryogenic materials for storage and transportation of liquid hydrogen. Metals. 11(7), 1101, 1-13. DOI.org/10.3390/met11071101.
de Rosso, E., dos Santos, C.A. & Garcia A. (2022). Microstructure, hardness, tensile strength, and sliding wear of hypoeutectic Al–Si cast alloys with small Cr additions and Fe-impurity content. Advanced Engineering Materials. 24(8), 2001552, 1-13. DOI.org/10.1002/adem.202001552.
Jin, M., Lee, B., Yoo, J., Jo, Y. & Lee S. (2024). Cryogenic deformation behaviour of aluminium alloy 6061-T6. Metals and Materials International. 30(6), 1492-1504. DOI: 10.1007/s12540-023-01594-5.
Kahrıman, F. & Zeren, M. (2017). Microstructural and mechanical characterization of Al-0.80 Mg-0.85 Si-0.3 Zr alloy. Archives of Foundry Engineering. 17(4), 73-78. DOI: 10.1515/afe-2017-0133.
Nguyen, T. D., Singh, C., Kim, Y. S., Han, J. H., Lee, D. H., Lee, K., Harjo, S. & Lee, S. Y. (2024). Mechanical properties of base metal and heat-affected zone in friction-stir-welded AA6061-T6 at ultra-low temperature of 20 K. Journal of Materials Research and Technology. 31, 1547-1556. DOI.org/10.1016/j.jmrt.2024.06.165.
Hirsch, J. (2014). Recent development in aluminium for automotive applications. Transactions of Nonferrous Metals Society of China. 24(7), 1995-2002. https://doi.org/10.1016/S1003-6326(14)63305-7.
Verstraete, D., Hendrick, P., Pilidis, P. & Ramsden, K. (2010). Hydrogen fuel tanks for subsonic transport aircraft, International Journal of Hydrogen Energy. 35(20), 11085-11098. DOI.org/10.1016/j.ijhydene.2010.06.060.
Yan, J.-B., Kong, G. & Zhang L. (2023). Low-temperature tensile behaviours of 6061-T6 aluminium alloy: tests, analysis, and numerical simulation. Structures. 56, 105054, 1-17. DOI.org/10.1016/j.istruc.2023.105054.
Xi, R., Xie, J. & Yan, J.-B. (2024). Evaluations of low-temperature mechanical properties and full-range constitutive models of AA 5083-H112/6061-T6. Construction and Building Materials. 411, 134520, 1-14. DOI.org/10.1016/j.conbuildmat.2023.134520.
Kumar, M., Sotirov, N., Grabner, F., Schneider, R. & Mozdzen, G. (2017). Cryogenic forming behaviour of AW-6016-T4 sheet. Transactions of Nonferrous Metals Society of China. 27(6), 1257-1263. DOI: 10.1016/S1003-6326(17)60146-8.
Gruber, B., Grabner, F., Falkinger, G., Schökel, A., Spieckermann, F., Uggowitzer, P. J., & Pogatscher, S. (2020). Room temperature recovery of cryogenically deformed aluminium alloys. Materials & design. 193, 108819, 1-13. DOI.org/10.1016/j.matdes.2020.108819.
Park, D.-H., Choi, S.-W., Kim, J.-H. & Lee, J.-M. (2015). Cryogenic mechanical behaviour of 5000-and 6000-series aluminium alloys: Issues on application to offshore plants. Cryogenics. 68, 44-58. DOI.org/10.1016/j.cryogenics.2015.02.001.
Tiwari, S., Biswas, P., Mandal, N. & Roy, S. (2025). Effect of SiC Particle Size and content on the mechanical and tribological properties of porous Si3N4-SiC Composites fabricated following a facile low-temperature processing route. Ceramics International. 51(14), 19508-19523. DOI.org/10.1016/j.ceramint.2025.02.126.
Jayashree, P., Gowrishankar, M., Sharma, S., Shetty, R., Hiremath, P. & Shettar, M. (2021). The effect of SiC content in aluminum-based metal matrix composites on the microstructure and mechanical properties of welded joints. Journal of Materials Research and Technology. 12, 2325-2339. DOI.org/10.1016/j.jmrt.2021.04.015.
Lijay, K.J., Selvam, J.D.R., Dinaharan, I. & Vijay S. (2016). Microstructure and mechanical properties characterization of AA6061/TiC aluminum matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate. Transactions of Nonferrous Metals Society of China. 26(7), 1791-1800. DOI.org/10.1016/S1003-6326(16)64255-3.
Kurzawa, A. & Kaczmar, J. (2017). Bending strength of EN AC-44200–Al2O3 composites at elevated temperatures. Archives of Foundry Engineering. 17(1), 103-108. DOI: 10.1515/afe-2017-0019.
Kurzawa, A. & Kaczmar, J. (2017). Impact strength of composite materials based on EN AC-44200 matrix reinforced with Al2O3 particles. Archives of Foundry Engineering. 17(3), 73-78. DOI: 10.1515/afe-2017-0094.
Sahin, Y. (2003). Preparation and some properties of SiC particle reinforced aluminium alloy composites. Materials & design. 24(8), 671-679. DOI.org/10.1016/S0261-3069(03)00156-0.
Wysocki, J., Grabian, J. & Przetakiewicz, W. (2007). Continuous drive friction welding of cast AlSi/SiC (p) metal matrix composites. Archives of Foundry Engineering. 7(1), 47-52.
Ozden, S., Ekici, R. & Nair, F. (2006). Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing. 38(2), 484-494. DOI:10.1016/j.compositesa.2006.02.026.
Aybarc, U., Dispinar, D. & Seydibeyoglu, M.O. (2018). Aluminum metal matrix composites with SiC, Al2O3 and graphene–review. Archives of Foundry Engineering. 18(2), 5-10. DOI. 10.24425/122493.
Li, R., Pan, Z., Zeng, Q. & Xiaoli, Y. (2022). Influence of the interface of carbon nanotube-reinforced aluminium matrix composites on the mechanical properties–a review. Archives of Foundry Engineering. 22(1), 23-36. DOI 10.24425/afe.2022.140213.
Ozben, T., Kilickap, E. & Cakır, O. (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of Materials Processing Technology. 198(13), 220-225. DOI:10.1016/j.jmatprotec.2007.06.082.
Pawar, P. & Utpat, A.A. (2014). Development of aluminium based silicon carbide particulate metal matrix composite for spur gear. Procedia materials science. 6, 1150-1156. DOI: 10.1016/j.mspro.2014.07.187.
Sampath, D., Akid, R. & Morana, R. (2018). Estimation of crack initiation stress and local fracture toughness of Ni-alloys 945X (UNS N09946) and 718 (UNS N07718) under hydrogen environment via fracture surface topography analysis. Engineering Fracture Mechanics. 191, 324-343. DOI.org/10.1016/j.engfracmech.2017.12.010.
Macek, W., Branco, R., Podulka, P., Kopec, M., Zhu, S.-P. & Costa, J.D. (2023). A brief note on entire fracture surface topography parameters for 18Ni300 maraging steel produced by LB-PBF after LCF. Engineering Failure Analysis. 153, 107541, 1-17. DOI.org/10.1016/j.engfailanal.2023.107541.
Kobayashi T. & Shockey, D.A. (2010). Fracture surface topography analysis (FRASTA)—development, accomplishments, and future applications. Engineering fracture mechanics. 77(12), 2370-2384. DOI.org/10.1016/j.engfracmech.2010.05.016.
Sirata, G.G., Wacławiak, K. & Dyzia, M. (2022). Mechanical and microstructural characterization of aluminium alloy, EN AC-Al Si12CuNiMg. Archives of Foundry Engineering. 22(3), 34-40. DOI.10.24425/afe.2022.140234.
Sirata, G., Wacławiak, K. & Dolata, A. (2024). Microstructure and Mechanical Properties of the EN AC-AlSi12CuNiMg Alloy and AlSi Composite Reinforced with SiC Particles. Archives of Foundry Engineering. 24(2), 50-59. DOI.10.24425/afe.2024.149271.
Liu, Y., Jia, L., Wang, W., Jin, Z. & Zhang, H. (2023). Reinforcing Al matrix composites by novel intermetallic/SiC interface and transition structure. Journal of Materials Research and Technology. 26, 164-175. DOI.org/10.1016/j.jmrt.2023.07.166.
Gruber, B., Weißensteiner, I., Kremmer, T., Grabner, F., Falkinger, G., Schökel, A., Spieckermann, F., Schäublin, R., Uggowitzer, P. & Pogatscher, S. (2020). Mechanism of low temperature deformation in aluminium alloys. Materials Science and Engineering: A. 795, 139935, 1-11. DOI.org/10.1016/j.msea.2020.139935.
Wendt, U. (2021). Engineering materials and their properties. In K.-H. Grote & H. Hefazi (Eds.), Springer Handbook of Mechanical Engineering (2nd ed., pp. 233–292). Springer Cham. https://doi.org/10.1007/978-3-030-47035-7_8.
Park D.-Y. & Niewczas, M. (2018). Plastic deformation of Al and AA5754 between 4.2 K and 295 K. Materials Science and Engineering: A. 491(1-2), 88-102. https://doi.org/10.1016/j.msea.2008.01.065.
Dawson, S., Hollinger, I., Robbins, M., Daeth, J., Reuter, U. & Schultz, H. (2001). The effect of metallurgical variables on the machinability of compacted graphite iron. SAE Transactions. 110(5), 334-352.
Behera, A., Mishra, S.C. (2012). New solution for property improvement of automobile parts. Proceedings of Advances in Simulation & Optimization Techniques in Mechanical Engineering (NASOME-2012), 1-5.
Guesser, W., Schroeder, T. & Dawson, S. (2001). Production Experience with compacted graphite iron automotive components. AFS Transactions. 109, 01-071, 1-11.
Qiu, H. & Chen, Z. (2007). The forty years of vermicular graphite cast iron development in China (Part III). China Foundry. 4, 261-269.
Liu, J. & Ding, N.X. (1985). Effect of type and amount of treatment alloy on compacted graphite produced by the Flotret process. AFS Transactions. 93, 675-688.
Dawson, S. & Schroeder, T. (2004). Practical applications for compacted graphite iron. AFS Transactions. 47(5), 1-9.
Charoenvilaisiri, S., Stefanescu, D.M., Ruxanda, R. & Piwonka, T.S. (2002). Thin wall compacted graphite iron castings. AFS Transactions. 2, 176, 1113-1130.
Sofroni, L., Riposan, I., Chira, I. (1974). Some considerations on the crystallization features of cast irons with intermediate-shaped graphite (vermicular type). In Proceedings of the 2nd International Symposium on the Metallurgy of Cast Iron, Geneva, 1976 (pp. 179-196).
Podrzucki, C., Wojtysiak, A. (1988). Unalloyed ductile iron. Part II cast iron with vermicular graphite. Cracow: AGH Ed..
Górny, M. (2010). Structure formation of ultra-thin wall ductile iron castings. Cracow: Akapit Ed.
Zhou, J. (2011). Vermicular graphite cast iron (I). China Foundry. 8(1), 154-164.
Li, K., Zhang, X., Wang, Y. & Liu, J. (2024). Influence of cooling rate on microstructure and mechanical properties of thin-walled compacted graphite iron. Journal of Materials Science & Technology. 98, 200-208.
Kowalski, M., Nowak, P. & Wójcik, A. (2024). Solidification behavior of thin-walled compacted graphite iron castings. Archives of Metallurgy and Materials. 69(2), 451-458.
Riposan, I., Chisamera, M., Kelley, R., Barstow, M. & Naro, R.L. (2003). Magnesium-sulfur relationships in ductile and compacted graphite cast irons as influenced by late sulfur additions. AFS Transactions. 111(03-093), 869-883.
Shy, Y., Hsu, C., Lee, S. & Hou, C. (2000). Effects of titanium addition and section size on microstructure and mechanical properties of compacted graphite cast iron. Materials Science and Engineering A. 278(1-2), 54-60. https://doi.org/10.1016/S0921-5093(99)00599-7.
Chen, Z., Li, X. & Wang, B. (2023). Role of titanium in controlling graphite morphology in compacted graphite iron. International Journal of Cast Metals Research. 36(3), 190-198.
Nowak, A. & Olejnik, B. (2024). Thermal conductivity of compacted graphite iron: recent advances and future perspectives. Archives of Foundry Engineering. 24(1), 35-42.
Zielinski, J. & Kowalczyk, M. (2024). Mechanical properties of compacted graphite iron under different cooling conditions. Archives of Foundry Engineering. 24(2), 112-120.
Wróbel, P. & Szymański, A. (2024). Control of graphite morphology in compacted graphite iron: a review of recent developments. Metallurgy and Foundry Engineering. 50(1), 5-14.
Nowak, K.J. & Wiśniewski, M. (2024). Influence of inoculation on microstructure and properties of thin-walled iron castings. Metallurgy and Foundry Engineering. 50(2), 121-130.
Zeng, D., Zhang, Y., Liu, J., He, H. & Hong, X. (2008). Characterization of titanium–containing compounds in gray iron. Tsinghua Science and Technology. 13(2), 127-131. https://doi.org/10.1016/S1007-0214(08)70022-1.
Myszka, D., Karwiński, A., Leśniewski, W. & Wieliczko, P. (2007). Influence of the type of ceramic moulding materials on the top layer of titanium precision castings. Archives of Foundry Engineering. 7(1), 153-156. ISSN (1897-3310).
Górny, M., Kawalec, M., Sikora, G. & Lopez, H. (2014). Effect of cooling rate and titanium additions on microstructure of thin-walled compacted graphite iron castings. ISIJ International. 54(10), 2288-2293. https://doi.org/10.2355/isijinternational.54.2288.
Bell, L.E. (2008). Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 321(5895), 1457-1461. https://doi.org/10.1126/science.1158899.
Królicka, A., Hruban, A. & Mirowska, A. (2012). Modern thermoelectric materials - literature review. Materiały Elektroniczne. 40, 19-34. (in Polish).
Paczkowski, P., Wojciechowski, W., Kopyciński, D. (2024). Control of casting structure and production of electricity by means of a chill with thermoelectric modules. In ICT/ECT 2024: 40th International and 20th European Conference on Thermoelectrics, 30-June – 4 July 2024 (pp. 440). Krakow, Poland.
Parashchuk, T., Knura, R., Cherniushok, O. & Wojciechowski, K. (2022). Ultralow lattice thermal conductivity and improved thermoelectric performance in Cl-doped Bi2Te3–xSex alloys. ACS Applied Materials & Interfaces. 14(29), 33567-33579. https://doi.org/10.1021/acsami.2c08686.
Knura, R., Maksymuk, M., Parashchuk, T. & Wojciechowski, K. (2024). Achieving high thermoelectric conversion efficiency in based stepwise legs through bandgap tuning and chemical potential engineering. Dalton Transactions. 53, 123-135.
Cherniushok, O., Parashchuk, T., Snyder, J. & Wojciechowski, K. (2025). Discovery of a new Cu-based chalcogenide with high near room temperature: low-cost alternative for the based thermoelectric. Advanced Materials. 37(18), 2420556, 1-12. https://doi.org/10.1002/adma.202420556.
Keawprak, N., Lao-Ubol, S., Eamchotchawalit, C. & Sun, Z.M. (2011). Thermoelectric properties of Bi2SexTe3− x prepared by Bridgman method. Journal of Alloys and Compounds. 509(38), 9296-9301. https://doi.org/10.1016/j.jallcom.2011.06.116.
Krishna, A., Vijayan, N., Singh, B., Thukral, K. & Maurya, K.K. (2016). Crystalline perfection and mechanical investigations on vertical Bridgman grown Bismuth telluride (Bi2Te3) single crystals for thermoelectric applications. Materials Science and Engineering: A. 657, 33-37. https://doi.org/10.1016/j.msea.2016.01.033.
Kuznetsov, V.L., Kuznetsova, L.A., Kaliazin, A.E. & Rowe, D.M. (2002). High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation. Journal of Materials Science. 37(14), 2893-2897. https://doi.org/10.1023/A:1016092224833.
Yan, X., Tang, N., LIU, X., SHUI, G., Xu, Q., & Liu, B. (2015). Modeling and simulation of directional solidification by LMC process for nickel base superalloy casting. Acta Metallurgica Sinica. 51(10), 1288-1296. DOI: 10.11900/0412.1961.2015.00338.
Madhavan, A.S., Thomas, K.A., & Rajith, L. (2025). Electrochemical characterization and discharge performance of AZ31, AZ61 and AZ91 alloys as anodes for seawater battery. Journal of Power Sources. 628, 235863, 1-13. https://doi.org/10.1016/j.jpowsour.2024.235863.
Marodkar, A.S., Patil, H., Chavhan, J. & Borkar, H. (2023). Effect of gravity die casting, squeeze casting and extrusion on microstructure, mechanical properties and corrosion behaviour of AZ91 magnesium alloy. Materials Today: Proceedings. 1-9. https://doi.org/10.1016/j.matpr.2023.03.053.
Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Tao, H., Zhang, Y., He, Y., Jiang, Y. & Bian, Y. (2010). Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia. 6(2), 626-640. https://doi.org/10.1016/j.actbio.2009.06.028.
Cai, S., Lei, T., Li, N. & Feng, F. (2012). Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Materials Science and Engineering C. 32(8), 2570-2577. https://doi.org/10.1016/j.msec.2012.07.042.
Bankoti, A.K.S., Mondal, A.K., Perugu, C.S., Ray, B.C. & Kumar, S. (2017). Correlation of microstructure and electrochemical corrosion behavior of squeeze-cast Ca and Sb added AZ91 Mg alloys Metallurgical and Materials Transactions A. 48(10), 5106-5121, https://doi.org/10.1007/s11661-017-4244-1.
Yang, J., Peng, J., Nyberg, E.A. & Pan, F.S. (2016). Effect of Ca addition on the corrosion behavior of Mg–Al–Mn alloy. Applied Surface Science. 369, 92-100, https://doi.org/10.1016/j.apsusc.2016.01.283.
Powell, B.R., Krajewski, P.E. & Luo, A.A. (2010). Magnesium alloys for lightweight powertrains and automotive structures. Materials, Design and Manufacturing for Lightweight Vehicles. 80, 114-173. https://doi.org/10.1533/9781845697822.1.114.
Staiger, M.P. Pietaka, A.M., Huadmaia, J. & Dias, G. (2006) Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. 27(9), 1728-1734. https://doi.org/10.1016/j.biomaterials.2005.10.003.
Song, G. & Atrens, A. (2003). Understanding magnesium corrosion—a framework for improved alloy performance. Advanced Engineering Materials. 5(12), 837-858. https:// doi.org/10.1002/adem.200310405.
Saidov, S., Tselovalnik, Y. V., Belov, V. D. & Bazhenov, V. E. (2021). Comparison of castability, mechanical, and corrosion properties of Mg-Zn-Y-Zr alloys containing LPSO and W phases. Transactions of Nonferrous Metals Society of China. 31, 1276–1290. https://doi.org/10.1016/S1003-6326(21)65577-2.
Li, Z., Peng, Z., Qi, K., Li, H., Qiu, Y. & Guo, X. (2020). Microstructure and corrosion of cast magnesium alloy ZK60 in NaCl solution. Materials. 13(17), 3833, 1-21. https://doi.org/10.3390/ma13173833.
Song, G.L., Atrens, A. & Dargusch, M. (1998). Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science. 41(2), 249-273. https://doi.org/10.1016/S0010-938X(98)00121-8.
Song, G.L., Atrens, A., St John, D., Li, Z. (2000). Magnesium alloys and their applications. Germany: Wiley–VCH: Weinheinm.
Mordike, B.L. & Ebert, T. (2001). Magnesium properties — applications — potential. Materials Science and Engineering A. 302(1), 37-45. https://doi.org/10.1016/S0921-5093(00)01351-4.
Marodkar, A.S., Patil, H., Borkar, H. & Behl, A. (2023). Effect of squeeze casting and combined addition of calcium and strontium on microstructure and mechanical properties of AZ91 magnesium alloy. International Journal of Metalcasting. 17, 2252-2270. https://doi.org/10.1007/s40962-022-00943-1.
Urtekin, L., Ozerkan, H.B., Cogun, C., Genc, A., Esen, Z. & Bozkurt, F. (2021). Experimental investigation on wire electric discharge machining of biodegradable AZ91 Mg alloy. Journal of Materials Engineering and Performance. 30(10), 7752-7761. https://doi.org/ 10.1007/s11665-021-05939-2.
Czerwinski, F. (2014). Controlling the ignition and flammability of magnesium for aerospace applications. Corrosion Science. 86, 1-16, https://doi.org/10.1016/ j.corsci.2014.04.047.
Huang, S.J., Diwan Midyeen, S., Subramani, M. & Chiang, C.C. (2021). Microstructure evaluation, quantitative phase analysis, strengthening mechanism and influence of hybrid reinforcements (b-SiCp, Bi and Sb) on the collective mechanical properties of the AZ91 magnesium matrix. Metals. 11(6), 898, 1-21. https://doi.org/10.3390/met11060898.
Tolouie, E. & Jamaati, R. (2018). Effect of β–Mg17Al12 phase on microstructure, texture and mechanical properties of AZ91 alloy processed by asymmetric hot rolling. Material Science Engineering A. 738, 81-89. https://doi.org/10.1016/j. msea.2018.09.086.
Lv, X., Deng, K.K., Wang, C.J., Nie, K.B., Shi, Q.X. & Liang, W. (2022). The corrosion properties of AZ91 alloy improved by the addition of trace submicron SiCp.
Materials Chemistry and Physics. 286, 126143, 1-14. https://doi.org/10.1016/j.matchemphys.2022.126143.
Song, G.L. & Atrens, A. (1999). Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials. 1(1), 11-33. https://doi.org/10.1002/(SICI)1527-2648(199909)1:1%3C11::AID-ADEM11%3E3.0.CO;2-N.
Koc, E. (2019). Corrosion behaviour of as cast β-Mg17Al12 phase in 3.5 wt% NaCl solution. Acta Physica Polonica. 135(5), 881-883. https://doi.org/10.12693/ APhysPolA.135.881.
Ambat, R., Aung, N.N. & Zhou, W. (2000). Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science. 42(8), 1433-1455. https://doi.org/10.1016/S0010-938X(99)00143-2.
Zhang, T., Li, Y. & Wang, F. (2006). Roles of b phase in the corrosion process of AZ91D magnesium alloy. Corrosion Science. 48(5), 1249-1264. https://doi.org/ 10.1016/j.corsci.2005.05.011.
Song, G. (2013). Corrosion behavior and prevention strategies for magnesium (Mg) alloys. Corrosion prevention of magnesium alloys. 3-37. https://doi.org/10.1533/9780857098962.1.3.
Song, Y.L., Liu, Y.H., Wang, S.H., Yu, S.R. & Zhu, X.Y. (2007). Effect of cerium addition on microstructure and corrosion resistance of die cast AZ91 magnesium alloy, Materials and Corrosion. 58(3), 189-192. https://doi.org/10.1002/maco.200603988.
Okamoto, H. (1994). Comment on Mg–Zn (magnesium–zinc). Journal of Phase Equilibria. 15(1), 129-130. https://doi.org/10.1007/BF02667700.
Boehlert, C.J. & Knittel, K. (2006). The microstructure, tensile properties, and creep behavior of Mg-Zn alloys containing 0-4.4 wt.% Zn. Materials Science and Engineering: A. 417(1-2), 315-321. https://doi.org/10.1016/j.msea.2005.11.006.
Dmitruk, A., Naplocha, K., Żak, A. & Strojny-Nędza, A. (2024). Refinement of the manufacturing route and evaluation of the reinforcement effect of MAX phases in Al alloy matrix composite materials. Archives of Foundry Engineering. 24(1), 141-148. https://doi.org/10.24425/afe.2024.149262.
Kapłon, H., Dmitruk, A. & Naplocha, K. (2023). Investment casting of AZ91 magnesium open-cell foams. Archives of Foundry Engineering. 23(1), 11-16. https://doi.org/10.24425/afe.2023.144274.
Cubides, Y., Ivan Karayan, A., Vaughan, M.W., Karaman, I. & Castaneda, H. (2020). Enhanced mechanical properties and corrosion resistance of a fine-grained Mg-9Al-1Zn alloy: the role of bimodal grain structure and β-Mg17Al12 precipitates. Materialia. 13, 100840, 1-19. https://doi.org/10.1016/j.mtla.2020.100840.
Zhang, Y., Wu, G., Liu, W., Zhang, L., Pang, S., Wang, Y. & Ding, W. (2014). Effects of processing parameters and Ca content on microstructure and mechanical properties of squeeze casting AZ91–Ca alloys. Materials Science and Engineering A. 595, 109-117. https://doi.org/10.1016/j.msea.2013.12.014.
Bai, J., Sun, Y., Xue, F. & Qiang, J. (2012). Microstructures and creep properties of Mg–4Al–(1–4) La alloys produced by different casting techniques. Materials Science and Engineering A. 552, 472-480. https://doi.org/10.1016/j.msea.2012.05.072.
Yu, H., Chen, S.N., Yang, W., Zhang, Y.L. & Chen, S.H. (2014). Effects of rare element and pressure on the microstructure and mechanical property of AZ91D alloy. Journal of Alloys and Compounds. 589, 479-484. https://doi.org/10.1016/j.jallcom.2013.12.019.
Xin, Y., Liu, C., Zhang, X., Tang, G., Tian, X. & Chu, P. (2007). Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. Journal of Materials Research. 22, 2004-2011. https://doi.org/10.1557/jmr.2007.0233.
Pattnaik, S., Karunakar, D.B. & Jha, P.K. (2012). Developments in investment casting process—A review. Journal of Materials Processing Technology. 212(11), 2332-2348. https://doi.org/10.1016/j.jmatprotec.2012.06.003.
Karwiński, A. & Żółkiewicz, Z. (2014). The research of properties of experimental ceramic layers. Archives of Metallurgy and Materials. 59(2), 703-705. DOI: 10.2478/amm-2014-0115.
Ashton, M.C., Sharman, S.G. & Brookes, A.J. (1984). The replicast CS (Ceramic Shell) process. Materials & Design. 5(2), 66-75. https://doi.org/10.1016/0261-3069(84)90159-6.
Karwiński, A., Haratym, R., Biernacki, R. & Soroczyński, A. (2014). Investment casting vs replicast cs considered in terms of the ceramic mould making and dimensional accuracy of castings. Archives of Foundry Engineering. 14(1), 45-48. DOI: 10.2478/afe-2014-0011.
Technology card: Moplen HP500N
Technical documentation: Plastronfoam B20
Technical documentation: Injection moulder ARBURG ALLROUNDER 320 C 500-170 Golden Edition
Technical documentation: printer 3D Zortrax M200
Technical documentation: Z-HIPS, the material dedicated to the applied printer
Technical documentation: The thermal plotter Megaplot P60
Pisarek, B.P., Rapiejko, C., Szymczak, T. & Pacyniak, T. (2017). Effect of alloy additions on the structure and mechanical properties of the AlSi7Mg0. 3 alloy. Archives of Foundry Engineering. 17(1), 137-142. DOI: 10.1515/afe-2017-0025.
Technical documentation: Factory of gear reducers and geared motors
Technical documentation: The electric furnace APE 800
Pacyniak, T., Gumienny, G., Szymczak, T. & Kurowska, B. (2017). Hypoeutectic Al-Si alloy doped with chromium, tungsten and molybdenum designated for pressure die casting. Archives of Metallurgy and Materials. 62(2), 1629-1635. DOI: 10.1515/amm-2017-0249.
Rapiejko, C., Pisarek, B. & Pacyniak, T. (2014). Effect of Cr and V alloy additions on the microstructure and mechanical properties of AM60 magnesium alloy. Archives of Metallurgy and Materials. 59(2), 771-775. DOI: 10.2478/amm-2014-0128.
Rapiejko, C., Pisarek, B., Czekaj, E. & Pacyniak, T. (2014). Analysis of AM60 and AZ91 alloy crystallisation in ceramic moulds by thermal derivative analysis (TDA). Archives of Metallurgy and Materials. 59(4), 1449-1455. DOI: 10.2478/amm-2014-0246.
Rapiejko, C., Pisarek, B., Czekaj, E. & Pacyniak, T. (2014). Analysis of the crystallization of AZ91 alloy by thermal and derivative analysis method intensively cooled in ceramic shell. Archives of Foundry Engineering. 14(1), 97-102. DOI: 10.2478/afe-2014-0022.
Szymczak, T., Pisarek, B., Rapiejko, C., Władysiak, R., Just, P., Kaczorowski, R., Gumienny, G., Januszewicz, B., Piątkowski, J. & Sinelnikov, V. (2025). The effect of Sr, Ti, and B on the crystallization process and mechanical properties of the AlSi9Cu3(Fe) alloy. Materials. 18(4), 882, 1-36. https://doi.org/10.3390/ma18040882.
PN-EN 1706:2011. Aluminum and aluminum alloys. Castings. Chemical composition and mechanical properties.
Allen, J. Romilly. (1904). Celtic spirals from the book Celtic art in pagan and Christian times. Retrieved October 1, 2025, from https://archive.org/details/celticartpagan00alleiala.
Technological documentation of the foundry „ARMATURA”. Lodz, Poland.
Béranger, M., Morin, G., Saanouni, S., Koster, A. & Maurel, V. (2018). Fatigue of automotive engine cylinder heads – A new model based on crack propagation. In the 12th International Fatigue Congress (FATIGUE 2018), 27 May -1 June 2018 (pp.1-7). France: MATEC Web Conf. 165, 10013. DOI: 10.1051/matecconf/201816510013.
Choi, G.H., Choi, K.H., Lee, J.T., Song, Y.S., Ryu, Y. & Cho, J.W. (1997). Analysis of combustion chamber temperature and heat flux in a DOHC engine. SAE Technical Papers. 106, 970895, 1499-1507. DOI: https://doi.org/10.4271/970895.
Natesan, E., Eriksson, S., Ahlström, J. & Persson, C. (2020). Effect of temperature on deformation and fatigue behaviour of A356–T7 Cast aluminium alloys used in high specific power IC engine cylinder heads. Materials. 13(5), 1202, 1-27. DOI: https://doi.org/10.3390/ma13051202.
Su, X., Zubeck, M., Lasecki, J., Engler-Pinto, C.C., Tang, C., Sehitoglu, H. & Allison, J. (2002). Thermal fatigue analysis of cast aluminum cylinder heads. SAE Transactions. 111, 418-424. http://www.jstor.org/stable/44718668.
Mendes, A. & Cardoso, A. (2007). Structural analysis of the aluminum cylinder head for a high-speed diesel engine. SAE Technical Papers. 2007-01-2562. DOI: https://doi.org/10.4271/2007-01-2562.
Pesce, F. C., Vassallo, A., Beatrice, C., Di Blasio, G., Belgiorno, G., Avolio, G., Kastner, O. & Leuteritz, U. (2016). Exceeding 100 kW/l milestone: the next step towards defining high performance diesel engines. In the 25th Aachen Colloquium Automobile and Engine Technology, 10-12 October (pp.159-183). Aachen, Germany.
Liu, L., Yan Peng, Y., Wenzheng Zhang, W. & Xiuzhen Ma, X. (2023). Concept of rapid and controllable combustion for high power-density diesel engines. Energy Conversion and Management. 276, 116529, 1-16. https://doi.org/10.1016/j.enconman.2022.116529.
Cooper, A., Stodart, A., Hancock, D., Duke, S., Miller, J. & Reader, S. (2019). Development of two new high specific output 3 cylinder engines for the global market with capacities of 1.2l and 1.5l. SAE Technical Paper. 2019-01-1193. https://doi.org/10.4271/2019-01-1193.
Wasserbäch, T., Osborne, R., Luchansky, K. & Alt, M. (2019). New spark ignition engines. Sonderprojekte ATZ/MTZ . 24(1), 38. DOI: https://doi.org/10.1007/s41491-019-0011-5.
Sjölander, E. & Seifeddine, S. (2012). The influence of natural ageing on the artificial ageing response of Al-Si-Cu-Mg casting alloys. La Metallurgia Italiana. 11-12, 39-43.
Zhao, X., Huang, W., Ren, P., Xia, P., Kuang, J. & Tang, J. (2025). Research on stress distribution and dispersion of cylinder head. Journal of Physics: Conference Series. 2992, 012033, 1-13. DOI:10.1088/1742-6596/2992/1/012033.
Shojaefard, M.H., Ghaffarpour, M.R., Noorpoor, A.R. & Alizadehnia S. (2006). Thermomechanical Analysis of an Engine Cylinder Head. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 220(5), 627-636. DOI:10.1243/09544070JAUTO182.
Wang, Q., Bobel, A., Walker, M., Hess, D., Doty, H. & Gerard, D (2025). Evaluation of two new cast aluminum alloys for high performance cylinder heads. International Journal of Metalcasting. 19, 52-58. https://doi.org/10.1007/s40962-024-01341-5
Peng Hu, P., Lei Pan, L. & Chen, X.-G. (2024). Elevated-temperature performances of Al-Si-Cu casting alloys for cylinder head applications. Materials Characterization. 218(1), 114484, 1-14. https://doi.org/10.1016/j.matchar.2024.114484.
Campbell, J. (2011). Complete casting handbook: metal casting processes, metallurgy, techniques and design. Oxford: Elsevier.
Langmayr, F. & Zieher, F. (2004).Thermomechanik in Zylinderköpfen, Ventiltrieb und Zylinderkopf. VDI Berichte. 1813, 227-243.
Tillová, E., Chalupová, M., Kuchariková, L., Belan, J., & Závodská, D. (2018). Selection of optimal solution heat treatment of the casting cylinder heads. In MATEC Web of Conferences (Vol. 157, pp. 02053). EDP Sciences.
Yuan Li, Y., Jinxiang Liu, J., Qiang Zhang, Q. & Weiqing Huang, W. (2012). Casting defects and microstructure distribution characteristics of aluminum alloy cylinder head with complex structure. Materials Today Communications. 27, 102416, 1-11. https://doi.org/10.1016/j.mtcomm.2021.102416.
Willkomm, J., Kuhlbach, K., Merget, D., Wagner, M., Reich, S., Ziegler, S. & Schleifenbaum, J. H. (2021). Design and manufacturing of a cylinder head by laser powder bed Fusion. IOP Conference Series: Materials Science and Engineering. 1097, 012021, 1-9. DOI: 10.1088/1757-899X/1097/1/012021.
Gray, J., Depcik, C., Sietins, J. M., Kudzal, A., Rogers, R. & Cho, K. (2023). Production of the cylinder head and crankcase of a small internal combustion engine using metal laser powder bed fusion. Journal of Manufacturing Processes. 97, 100-114. https://doi.org/10.1016/j.jmapro.2023.04.054.
Camicia, G. & Timelli, G. (2016). Grain refinement of gravity die cast secondary AlSi7Cu3Mg alloys for automotive cylinder heads. Transactions of Nonferrous Metals Society of China. 26(5), 1211-1221. DOI: /10.1016/S1003-6326(16)64222-X.
Dillibabu, S. P., Vasudevan, B., Megaraj, M., Palanivel, A., Durvasulu, R. & Manjunathan, K. (2023). Aluminum and its alloys in automotive and aerospace applications review Available to Purchase. AIP Conference Proceedings. 2766(1), 020027. https://doi.org/10.1063/5.0139311.
Alam T, & Ansari, A.H. (2017). Review on Aluminum and Its Alloys for automotive applications. International Journal of Advanced Technology in Engineering and Science. 5, 278-294. ISSN (2348-7550).
Hao, Z., Ju, Y. & Chen, L. (2023). Тhe use of aluminium and magnesium alloys in automotive lightweight technologies. Journal of Mechanical Science and Technology. 37, 4615-4622. https://doi.org/10.1007/s12206-023-0712-2.
Baser, T. A., Umay, E. & Akıncı, V. (2022). New trends in aluminum die casting alloys for automotive applications. The Eurasia Proceedings of Science Technology Engineering and Mathematics. 21, 79-87. https://doi.org/10.55549/epstem.1227541.
Sourav, Patil, S., Chandra, N., Kumar, N., Kumar, D. & Shetty, R. P. (2024). Analysis of mechanical properties of casted aluminium alloy for automotive safety application. Engineering Proceedings. 59(1), 157, 1-12. https://doi.org/10.3390/engproc2023059157.
Niu, G., Wang, Y., Zhu, L., Ye, J. & Mao, J. (2022). Fluidity of casting Al–Si series alloys for automotive light-weighting: a systematic review. Materials Science and Technology. 38(13), 902-911. DOI:10.1080/02670836.2022.2068274.
Mahton, Y., Jha, V. & Saha, P. (2024). Effect of heat treatment on microstructure, mechanical, and corrosion properties of Al 319.0 alloy. International Journal of Metalcasting. 18, 512-529. https://doi.org/10.1007/s40962-023-01030-9.
Vandersluis, E., Lombardi, A., Ravindran, C., Bois-Brochu, A., Chiesa, F. & MacKay, R. (2015). Factors influencing thermal conductivity and mechanical properties in 319 Al alloy cylinder heads. Materials Science & Engineering: A. 648, 401-411. https://doi.org/10.1016/j.msea.2015.09.091.
Natesan, E., Meyer, K. A., Eriksson, S., Ahlström, J. & Persson, C. (2020). Effects of dwell time on the deformation and fatigue behaviour of A356-T7 cast aluminium alloys used in high specific power ic engine cylinder heads. Materials. 13(12), 2727, 1-27. https://doi.org/10.3390/ma13122727.
Kaufman, J.G. & Rooy, E.L. (2004). Aluminium Casting Alloys. In J.G. Kaufman & E.L. Rooy (Eds.), Aluminum alloy castings: properties, processes, and applications (pp. 17-19). ASM International. Materials Park, OH.
Akar, N., Sahin, O. & Kilicli, V. (2025). Effect of two-step solution treatments on the microstructure and mechanical properties of B357 aluminum alloy. International Journal of Metalcasting. 19(1), 544-558. https://doi.org/10.1007/s40962-024-01320-w.
Rakhmonov, J., Liu, K., Pan, L., Breton, F. & Chen, X.G. (2020). Enhanced mechanical properties of high-temperature-resistant Al–Cu cast alloy by microalloying with Mg. Journal of Alloys and Compounds. 827, 154305, 1-9. DOI: 10.1016/j.jallcom.2020.154305.
Li, D., Liu, K., Rakhmonov, J. & Chen, X.G. (2021). Enhanced thermal stability of precipitates and elevated-temperature properties via microalloying with transition metals (Zr, V and Sc) in Al–Cu 224 cast alloys. Materials Science & Engineering: A. 827, 142090, 1-12. DOI: 10.1016/j.msea.2021.142090.
Jeong, C.-Y. (2013). High temperature mechanical properties of Al–Si–Mg–(Cu) alloys for automotive cylinder heads. Materials Transactions. 54(4), 588-594. https://doi.org/10.2320/matertrans.M2012285.
Tzeng, Y. C., Chengn, V. S., Nieh, J. K., Bor, H. Y. & Lee, S. L. (2017). Microstructure and thermal stability of A357 alloy with and without the addition of Zr. Journal of Materials Engineering and Performance. 26(11), 5511-5518. DOI: 10.1007/s11665-017-2921-2.
Menargues, S., Martín, E., Baile, M.T. & Picas, J.A. (2015). New short T6 heat treatments for aluminium silicon alloys obtained by semisolid forming. Materials Science and Engineering: A. 621, 236-242, https://doi.org/10.1016/j.msea.2014.10.078.
Pezda, J. & Jezierski, J. (2020). Non-standard T6 heat treatment of the casting of the combustion engine cylinder head. Materials. 13(18), 4114, 1-13. DOI: 10.3390/ma13184114.
Akhtar, M., Qamar, S. Z., Muhammad, M. & Nadeem, A. (2018). Optimum heat treatment of aluminum alloy used in manufacturing of automotive piston components. Materials and Manufacturing Processes. 33(16), 1874-1880. https://doi.org/10.1080/10426914.2018.1512128.
Dong, Z. Q., Wang, J. G., Guan, Z. P., Ma, P. K., Zhao, P., Li, Z. J., Lu, T.S. & Yan, R. F. (2021). Effect of short t6 heat treatment on the thermal conductivity and mechanical properties of different casting processes Al-Si-Mg-Cu alloys. Metals. 11(9), 1450, 1-11. https://doi.org/10.3390/met11091450.
VDI/VDE 2634 Blatt 2:2002-08: Optical 3D-measuring systems - Optical systems based on area scanning.
Pezda, J. (2015). Effect of shortened heat treatment on change of the Rm tensile strength of the 320.0 aluminum alloy. Archives of Foundry Engineering. 15(1), 75-78.
PN-EN ISO 6892-1:2010P: Metals. Tensile test. Part 1: Room temperature test method.
ISO 6506-1:2014. Metallic materials - Brinell hardness test - Part 1: Test method.
Chaudhury, S.K., Apelian, D., Meyer, P. Massinon, D. & Morichon, J. (2015). Fatigue performance of fluidized bed heat treated 319 alloy diesel cylinder heads. Metallurgical and Materials Transactions A. 46(7), 3015-3027. DOI: 10.1007/s11661-015-2901-9.
Samuel, F.H. (1998). Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al–Si–Cu–Mg (319) alloys during solution heat treatment. Journal of Materials Science. 33, 2283-2297. https://doi.org/10.1023/A:1004383203476.
Sokolowski, J. H., Djurdjevic, M. B., Kierkus, C. A., & Northwood, D. O. (2001). Improvement of 319 aluminum alloy casting durability by high temperature solution treatment. Journal of Advanced Materials Processing Technology. 109(1-2), 174-180. https://doi.org/10.1016/S0924-0136(00)00793-7.
Mao, H., Bai, X., Song, F., Song, Y., Jia, Z., Xu, H., & Wang, Y. (2022). Effect of Cd on mechanical properties of Al-Si-Cu-Mg alloys under different multi-stage solution heat treatment. Materials. 15(15), 5101, 1-14. https://doi.org/10.3390/ma15155101.
Matvija, M., Kuchariková, L., Tillová, E., Chalupová, M. & Belan, J. (2017). Study of the precipitation hardening process in recycled Al-Si-Cu cast alloys. Archives of Metallurgy and Materials. 62(1), 397-403. DOI: 10.1515/amm-2017-0062.
Morin, S., Elgallad, E. M., Doty, H. W., Valtierra, S. & Samuel, F. H. (2016). Effect of Mg content and heat treatment on the mechanical properties of low pressure die-cast 380 alloy. Advances in Materials Science and Engineering. 2016(1), 7841380, 1-12, http://dx.doi.org/10.1155/2016/7841380.
Mičian, M., Kantoríková, E., Borowiecka-Jamrozek, J. & Kasińska, J. (2025). Analysis of heat treatment of AlSi7Cu0.5Mg alloy. Materials. 18(4), 733, 1-19. https://doi.org/10.3390/ma18040733.
Wang, R., Gonzalez, C. B., Stauder, B., Gutierrez, R. F., Albu, M., Sommadossi, S., Povoden-Karadeniz, E. & Poletti, M. C (2024). Influence of the heat treatment path on the precipitation sequence in an AlSi7Cu0.5Mg-alloy. Journal of Alloys and Compounds. 990, 174450, 1-13. https://doi.org/10.1016/j.jallcom.2024.174450.
Doty, H. W., Samuel, E., Samuel, A. M., Songmene, V. & Samuel, F. H. (2025). Effect of melt treatment and heat treatment on the performance of aluminum cylinder heads. Materials. 18(5), 1024, 1-25. https://doi.org/10.3390/ma18051024.
Robles Hernandez, F.C., Herrera Ramírez, J.M. & Mackay, R. (2017). Al-Si Alloys: Applications in the Automotive and Aerospace Industries. Springer International Publishing: Cham, Switzerland.
Huang, Z-X., Yan, H. & Wang, Z.-W. (2018). Microstructure and mechanical properties of strontium-modified ADC12 alloy processed by heat treatment. Journal of Central South University. 25(6), 1263-1273. https://doi.org/10.1007/s11771-018-3823-7.
Maghini, D., Bogdanoff, T., Fortini, A. & Merlin, M. (2025). In-situ investigation of a heat-treated AlSi7Cu3Mg cast alloy: influence of solidification rate on the cyclic fatigue behaviour. Materials Science and Engineering, A. 936, 148370, 1-16. DOI: https://doi.org/10.1016/j.msea.2025.148370.
De Mori, A., Timelli, G., Berto, F. & Fabrizi, A. (2020). High temperature fatigue of heat treated secondary AlSi7Cu3Mg alloys. International Journal of Fatigue. 138, 105685, 1-10. https://doi.org/10.1016/j.ijfatigue.2020.105685.
Camicia, G. & Timelli, G. (2016). Grain refinement of gravity die cast secondary AlSi7Cu3Mg alloys for automotive cylinder heads. Transactions of Nonferrous Metals Society of China. 26(5), 1211-1221. https://doi.org/10.1016/S1003-6326(16)64222-X.
Mohamed, A.M.A. & Samuel, F.H. (2012). A review on the heat treatment of Al-Si-Cu/Mg casting alloys. In F.Czerwinski (Eds.), Heat Treatment - Conventional and Novel Applications (pp. 55-72). InTech.
Wang, J., Zhu, J., Liu, Y., Peng, H. & Su, X. (2018). Effect of spheroidization of eutectic Si on mechanical properties of eutectic Al-Si alloys. Journal of Materials Research. 33(12), 1-9. DOI: 10.1557/jmr.2018.144.
Kolokoltsev, V., Konopka, Z., Petrochenko, E. (2013). Special cast iron. Types, casting, heat treatment, properties. Częstochowa: Politechniak Częstochowska. (in Polish).
Ngqase, M. & Pan, X. (2020). An overview on types of white cast irons and high chromium white cast irons. Journal of Physics: Conference Series. 1495, 012023. DOI: 10.1088/1742-6596/1495/1/012023.
Purba, R.H., Shimizu, K., Kusumoto, K., Todaka, T., Shirai, M., Hara, H. & Ito, J. (2021). Erosive wear characteristics of high-chromium based multi-component white cast irons. Tribology International. 159, 106982, 1-9. https://doi.org/10.1016/j.triboint.2021.106982.
DeMello, J.D.B., Durand-Charre, M. & Hamar-Thibault, S. (1983). Solidification and solid state transformations during cooling of chromium-molybdenum white cast irons. Metallurgical Transactions A. 14(9), 1793-1801. https://doi.org/10.1007/BF02645549.
Studnicki, A., Kilarski, J., Przybył, M., Suchoń, J. & Bartocha, D. (2006). Wear resistance of chromium cast iron–research and application. Journal of Achievements in Materials and Manufacturing Engineering, 16(1-2), 63-73.
Studnicki A., Dojka, R., Gromczyk, M. & Kondracki, M. (2016). Influence of titanium on crystallization and wear resistance of high chromium cast iron. Archives of Foundry Engineering. 16(1), 17-23. DOI: 10.1515/afe-2016-0014.
Tian, H.H., Addie, G.R. & Pagalthivarthi, K.V. (2005). Determination of wear coefficients for erosive wear prediction through Coriolis wear testing. Wear. 259(1-6), 160-170. https://doi.org/10.1016/j.wear.2005.02.097.
Tabrett, C.P., Sare, I.R. & Ghomashchi, M.R. (1996). Microstructure-property relationships in high chromium white iron alloys. International Materials Reviews. 41(2), 59-82. https://doi.org/10.1179/imr.1996.41.2.59.
Kopyciński, D. (2015). Shaping the structure and mechanical properties of cast iron intended for use in difficult conditions (selected issues). Katowice-Gliwice: Archives of Foundry Engineerung. (in Polish).
Sobczak, J. (2013). Foundryman's Handbook, Vol. 1, Contemporary Foundry. Kraków: Wydawnictwo Stowarzyszenia Technicznego Odlewników Polskich. (in Polish).
Goto, I., Fukuchi, K. & Kurosawa, K. (2023). Effects of solidification conditions on the microstructural morphologies and strengths of hypereutectic high-chromium white cast iron castings. Materials Science and Engineering: A. 886, 145692, 1-15. https://doi.org/10.1016/j.msea.2023.145692.
Bedolla-Jacuinde, A., Guerra, F.V., Guerrero-Pastran, A.J., Sierra-Cetina, M.A. & Valdez-Medina S. (2021). Microstructural effect and wear performance of high chromium white cast iron modified with high boron contents. Wear. 476, 203675, 1-10. https://doi.org/10.1016/j.wear.2021.203675.
Barutçuoğlu, B., Koç, F. G., Erişir, E. & Karaarslan, G. (2025). The effect of tempering temperature on microstructure and wear behavior of tungsten and boron alloyed Ni-Hard 4 white cast irons. International Journal of Metalcasting. 19(1), 480-495. https://doi.org/10.1007/s40962-024-01322-8.
Zou, W. Q., Zhang, Z. G., Yang, H. & Li, W. (2016). Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting. China Foundry. 13(4), 248-255. https://doi.org/10.1007/s41230-016-6037-3.
Sakwa, W., Jura, S., Sakwa, J. (1980). Abrasion-resistant iron alloys. Part I. Cast Iron. Kraków: Wydawnictwo ZG STOP. (in Polish).
Maratray, F., Usseglio-Nanot, R. (1971). Atlas - transformation characteristics of chromium and chromium-molybdenum white irons. Paris, France: Climax Molybdenum. 230.
Huang, X. & Wu, Y. (1998). A high Cr-Mo alloy iron. Journal of materials engineering and performance. 7(4), 463-466. https://doi.org/10.1361/105994998770347594.
Zumelzu, E., Cabezas, C., Opitz, O., Quiroz, E., Goyos, L. & Parada, A. (2003). Microstructural characteristics and corrosion behaviour of high-chromium cast iron alloys in sugar media. Protection of Metals. 39,183-188.
Studnicki, A. (2008). Effect of boron carbide on primary crystallization of chromium cast iron. Archives of Foundry Engineering. 8(1), 173-176. ISSN (1897-3310).
Yaer, X., Shimizu, K., Matsumoto, H., Kitsudo, T., Momono, T. (2008). Erosive wear characteristics of spheroidal carbides cast iron. Wear. 264(11-12), 947-957. https://doi.org/10.1016/j.wear.2007.07.002.
Bedolla-Jacuinde, A., Hernández, B. & Béjar-Gómez, L. (2005). SEM study on the M7C3 carbide nucleation during eutectic solidification of high chromium white irons. International Journal of Materials Research. 96(12), 1380-1385.
Bedolla-Jacuinde, A. & Rainforth, W.M. (2001). The wear behaviour of highchromium white cast irons as a function of silicon and mischmetal content. Wear. 250(1-12), 449-461. https://doi.org/10.1016/S0043-1648(01)00633-0.
Bedolla-Jacuinde, A. (2001). Microstructure of vanadium-, niobium- and titanium-alloyed high-chromium white cast irons. International Journal of Cast Metals Research. 13(6), 343-361. https://doi.org/10.1080/13640461.2001.11819416.
Carpentera, S.D., Carpenterb, D. & Pearcec, J.T.H. (2004). XRD and electron microscope study of an as-cast 26.6% chromium white iron microstructure. Materials Chemistry and Physics. 85(1), 32-40. https://doi.org/10.1016/j.matchemphys.2003.11.037.
Laird, G., Nielsen, R.L. & Macmillan, N.H. (1991). On the nature of eutectic carbides in Cr-Ni white cast irons. Metallurgical Transactions A. 22A, 1709-1719. https://doi.org/10.1007/BF02646494.
Chung, R.J. (2014). Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance. University of Alberta, Canada.
Srivastava, A.K. & Das, K. (2009). Microstructural and Mechanical Characterization of in situ TiC and (Ti,W)C-reinforced high manganese austenitic steel matrix composites. Materials Science and Engineering: A. 516(1-2), 1-6. https://doi.org/10.1016/j.msea.2009.04.041.
Das, K., Bandyopadhyay, T.K., & Das, S. (2001). A review on the various synthesis routes of TiC reinforced ferrous based composites. Journal of materials science. 37(18), 3881-3892. https://doi.org/10.1023/A:1019699205003.
Olejnik, E., Janas, A., Kolbus, A. & Sikora, G. (2011). The composition of reaction substrates for TiC carbides synthesis and its influence on the thickness of iron casting composite layer. Archives of Foundry Engineering. 11(2), 165-168. ISSN (1897-3310).
Olejnik, E., Tokarski, T., Sikora, G., Sobula, S., Maziarz, W., Szymański, Ł. & Grabowska, B. (2019). The effect of Fe addition on fragmentation phenomena, macrostructure, microstructure, and hardness of TiC-Fe local reinforcements fabricated in situ in steel casting. Metallurgical and Materials Transactions A. 50(2), 975-986. https://doi.org/10.1007/s11661-018-4992-6.
Sobula, S., Olejnik, E. & Tokarski, T. (2017). Wear resistance of tic reinforced cast steel matrix composite. Archives of Foundry Engineering. 17(1), 143-146. ISSN (1897-3310).
Szymański, Ł., Olejnik, E., Tokarski, T., Kurtyka, P., Drożyński, D. & Żymankowska-Kumon, S. (2018). Reactive casting coatings for obtaining in situ composite layers based on Fe alloys. Surface and Coatings Technology. 350, 346-358. https://doi.org/10.1016/j.surfcoat.2018.06.085.
Szymański, Ł., Olejnik, E., Sobczak, J.J., Szala, M., Kurtyka, P., Tokarski, T. & Janas, A. (2022). Dry sliding, slurry abrasion and cavitation erosion of composite layers reinforced by TiC fabricated in situ in cast steel and gray cast iron. Journal of Materials Processing Technology. 308, 117688, 1-15. https://doi.org/10.1016/j.jmatprotec.2022.117688.
Głownia, J., Tęcza, G., Asłanowicz, M. & Ościłowski, A. (2013). Tools cast from the steel of composite structure. Archives of Metallurgy and Materials. 58(3), 803-808. DOI: 10.2478/amm-2013-0075.
Kalandyk, B., Tęcza, G., Zapała, R., & Sobula, S. (2015). Cast high-manganese steel - the effect of microstructure on abrasive wear behaviour in Miller test. Archives of Foundry Engineering. 15(2), 35-38. DOI: 10.1515/afe-2015-0033.
Tęcza, G. & Głownia, J. (2015). Resistance to abrasive wear and volume fraction of carbides in cast high-manganese austenitic steel with composite structure. Archives of Foundry Engineering. 15(4), 129-133. DOI: 10.1515/afe-2015-0092.
Tęcza, G. & Garbacz-Klempka, A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168. ISSN (1897-3310).
Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122. DOI: 10.24425/118823.
Tęcza, G. (2021). Changes in abrasive wear resistance during Miller test of high-manganese cast steel with niobium carbides formed in the alloy matrix. Applied Sciences. 11(11), 4794, 1-10. https://doi.org/10.3390/app11114794.
Tęcza, G. (2021). Changes in abrasive wear resistance during miller test of Cr-Ni cast steel with Ti carbides formed in the alloy matrix. Archives of Foundry Engineering. 21(1), 110-115. DOI: 10.24425/afe.2021.139758.
Tęcza, G. (2022). Changes Changes in microstructure and abrasion resistance during Miller test of Hadfield high-manganese cast steel after the formation of vanadium carbides in alloy matrix. Materials. 15(3), 1021, 1-11. https://doi.org/10.3390/ma15031021.
Tęcza, G. (2023). Changes in abrasion resistance of cast Cr-Ni steel as a result of the formation of niobium carbides in alloy matrix. Materials. 16(4), 1726, 1-14. https://doi.org/10.3390/ma16041726.
Tęcza, G. (2023). Changes in the microstructure and abrasion resistance of tool cast steel after the formation of titanium carbides in the alloy matrix. Archives of Foundry Engineering. 23(4), 173-180. DOI: 10.24425/afe.2023.148961.
Studnicki, A., & Szajnar, J. (2012). Testing the wear resistance of low-alloy and chromium cast steel. Archives of Foundry Engineering. 12(2), 79-84. ISSN (1897-3310).
Studnicki, A., Kondracki, M., Suchoń, J., Szajnar, J., Bartocha, D. & Wróbel, T. (2015). Abrasive wear of alloyed cast steels applied for heavy machinery. Archives of Foundry Engineering. 15(1), 99-104. ISSN (1897-3310).
Cuppari, M.G.D.V. & Santos, S.F. (2016). Physical properties of the NbC carbide. Metals. 6(10), 250, 1-17. https://doi.org/10.3390/met6100250.
Ross R.B. (1992). Metallic Materials Specification Handbook, 4th edn,. London: Chapman and Hall.
Studnicki, A. (2002). Investigation of crystallization process of wear resistant cast iron. Archives of Foundry. 2(4), 259-264. ISSN (1642-5308). (in Polish).
Bedolla-Jacuinde, A. (2016). Niobium in cast irons. In V.Glebovsky (Eds.), Progress in Metallic Alloys (pp. 187-220). Croatia: InTech. http://dx.doi.org/10.5772/64498.
Mohrbacher, H., Jarreta, D. (2015). Technology, Properties and Applications of NbC Reinforced Steel and Iron Alloys, In Proceedings of the Symposium on Fundamentals and Applications of Mo and Nb Alloying in High Performance Steels.
Guesserm W.L. (1985). Using niobium in high-chromium irons. Foundry Management Technology.
Zhou, Y., Yang, Y., Yang, J., Hao, F., Li, D., Ren, X. & Yang, Q. (2021). Effect of Ti additive on (Cr, Fe)7C3 carbide in arc surfacing layer and its refined mechanism, Applied Surface Science. 258(17), 6653-6659. https://doi.org/10.1016/j.apsusc.2012.03.101.
Zhang, Y.C., Song, R.B., Yu, P., Wen, E. & Zhao, Z.Y. (2020). The formation of TiCeNbC coreshell structure in hypereutectic high chromium cast iron leads to significant refinement of primary M7C3. Journal of Alloys and Compounds. 824, 153806, 1-10. https://doi.org/10.1016/j.jallcom.2020.153806.
Qu, Y., Xing, J., Zhi, X., Peng, J. & Fu, H. (2008). Effect of cerium on the as-cast microstructure of a hypereutectic high chromium cast iron. Materials Letters. 62(17-18), 3024-3027. https://doi.org/10.1016/j.matlet.2008.01.129.
Wu, X.J., Xing, J.D., Fu, H.G. & Zhi, X.H. (2007). Effect of titanium on the morphology of primary M7C3 carbides in hypereutectic high chromium white iron. Materials Science and Engineering: A. 457(1-2), 180-185. https://doi.org/10.1016/j.msea.2006.12.006.
Szeliga, D., Bzowski, K., Rauch, Ł., Kuziak, R. & Pietrzyk, M. (2020). Mean field and full field modelling of microstructure evolution and phase transformations during hot forming and cooling of low carbon steels. Computer Methods in Materials Science. 20(3), 121-132. https://doi.org/10.7494/cmms.2020.3.0727.
Avrami, M. (1939). Kinetics of phase change. I: General theory. The Journal of Chemical Physics. 7(12), 1103-1112. DOI: 10.1063/1.1750380.
Pietrzyk, M., Szeliga, D. & Kuziak, R. (2014). Physical and numerical simulation of the continuous annealing of DP steel strips. Steel Research International. 85(1), 99-111, DOI:10.1002/srin.201200318.
Szeliga, D., Foryś, J., Kusiak, J., Kuziak, R., Nadolski, R., Oprocha, P., Pietrzyk, M., Potorski, P., Rauch, Ł. & Zalecki, W. (2025). Stochastic model of accelerated cooling of eutectoid steel rails. Modelling and Simulation in Materials Science and Engineering, 33(2), 025008, 1-19. DOI: 10.1088/1361-651X/ada81c.
Ludwig, A., Wu, M. & Kharicha, A. (2016). Simulation in metallurgical processing: recent developments and future perspectives. JOM. 68(8), 2191-2197. https://doi.org/10.1007/s11837-016-1992-0.
Arun Babu, K., Prithiv, T.S., Gupta, A. & Mandal, S. (2021). Modeling and simulation of dynamic recrystallization in super austenitic stainless steel employing combined cellular automaton, artificial neural network and finite element method. Computational Materials Science. 195, 110482, 1-17. DOI: https://doi.org/10.1016/j.commatsci.2021.110482.
Majta, J., Madej, Ł., Svyetlichnyy, D. S., Perzyński, K., Kwiecień, M. & Muszka, K. (2016). Modeling of the inhomogeneity of grain refinement during combined metal forming process by finite element and cellular automata methods. Materials Science and Engineering. 671, 204-213. https://doi.org/10.1016/j.msea.2016.06.052.
Ren, X., Huo, Y., Hosseini, S. R. E., He, T., Yan, Z., Fernandes, F. A., Pereira, A.B., Ji, H., Bai, J., Bian, Z. & Du, X. (2023). A multi-scale modelling by coupling cellular automata with finite element method and its application on cross-wedge rolling. Materials today Communications. 37, 106976, 1-11. https://doi.org/10.1016/j.mtcomm.2023.106976.
Fang, D. O. N. G., Zhang, T. & Lei, L. I. U. (2023). Multi-scale simulation of flow behavior and microstructure evolution for AA2219 alloy during multi-pass ring rolling process. Transactions of Nonferrous Metals Society of China. 33(10), 2926-2942. https://doi.org/10.1016/S1003-6326(23)66308-3.
Mede, T., Kocjan, A., Paulin, I. & Godec, M. (2020). Numerical mesoscale modelling of microstructure evolution during selective laser melting. Metals. 10(6), 800, 1-15. https://doi.org/10.3390/met10060800.
Madej, L., Sieradzki, L., Sitko, M., Perzynski, K., Radwanski, K. & Kuziak, R. (2013). Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic–pearlitic microstructure. Computational Materials Science. 77, 172-181. https://doi.org/10.1016/j.commatsci.2013.04.020.
Duan, X., Wang, M., Che, X., He, L. & Liu, J. (2023). Cellular automata coupled finite element simulation for dynamic recrystallization of extruded AZ80A magnesium alloy. Journal of Materials Science. 58, 1345-1367. https://doi.org/10.1007/s10853-022-08069-9.
Chen, F., Zhu, H., Chen, W., Ou, H. & Cui, Z. (2021). Multiscale modeling of discontinuous dynamic recrystallization during hot working by coupling multilevel cellular automaton and finite element method. International Journal of Plasticity. 145, 103064, 1-24. https://doi.org/10.1016/j.ijplas.2021.103064.
Zhi, Y., Jiang, Y., Ke, D., Hu, X. & Liu, X. (2024). Review on cellular automata for microstructure simulation of metallic materials. Materials. 17(6), 1370, 1-38. https://doi.org/10.3390/ma17061370.
Zhang, Y. & Zhang, J. (2019). Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata. Additive Manufacturing. 28, 750-765. https://doi.org/10.1016/j.addma.2019.06.024.
Wu, C., Jia, B. & Han, S. (2019). Coupling a cellular automaton model with a finite element model for simulating deformation and recrystallization of a low-carbon micro-alloyed steel during hot compression. Journal of Materials Engineering and Performance. 28, 938-955. https://doi.org/10.1007/s11665-018-3834-4.
Bakhtiari, M. & Salehi, M.S. (2018). Reconstruction of deformed microstructure using cellular automata method. Computational Materials Science. 149, 1-13. https://doi.org/10.1016/j.commatsci.2018.02.053.
Łach, Ł. (2021). Modeling of microstructure evolution during deformation processes by cellular automata—boundary conditions and space reorganization aspects. Materials. 14(6), 1377, 1-22. https://doi.org/10.3390/ma14061377.
Sitko, M. & Madej, Ł. (2016). Modelling of the cellular automata space deformation within the RCAFE framework. AIP Conference Proceedings. 1769, 160004. https://doi.org/10.1063/1.4963547.
Svyetlichnyy, D.S. (2012). Reorganization of cellular space during the modeling of the microstructure evolution by frontal cellular automata. Computational Materials Science. 60, 153-162. https://doi.org/10.1016/j.commatsci.2012.03.029.
Hojny, M. (2018). Modeling steel deformation in the semi-solid state. Switzerland: Springer.
Liang Yu, L., Wu, L. S., Li, L. S. & Dong, Y. C. (2008). A cellular automata model for dendrite structure simulation. Materials Science Forum. 575-578, 109-114. https://doi.org/10.4028/www.scientific.net/MSF.575-578.109.
Hojny, M. & Dębiński, T. (2022). A novel FE/MC-based mathematical model of mushy steel deformation with GPU support. Archives of Metallurgy and Materials. 67(2), 735-742. DOI: https://doi.org/10.24425/amm.2022.137812
Hojny, M., Głowacki, M., Bała, P., Bednarczyk, W. & Zalecki, W. (2019). A multiscale model of heating-remelting-cooling in the Gleeble 3800 thermo-mechanical simulator system. Archives of Metallurgy and Materials. 64(1), 401-412. DOI: 10.24425/amm.2019.126266.
Submission
To submit the article, please use the Editorial System provided here:
https://www.editorialsystem.com/afe
Papers submitted in any other way will not be accepted.
The Journal does not have submission charges.
The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.
Bank account details:
Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748
Instructions for the preparation of an Archives of Foundry Engineering Paper